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2Instituto de Matemáticas, Universidad de Antioquia, Medellı́n, Colombia

Abstract
In this article a new bivariate distribution, whose both the marginals are finite mixtures of gamma distributions, has been
defined. Several of its properties such moments, correlation coefficients, measure of skewness, moment generating function,
Rényi and Shannon entropies have been derived. Simulation study has been conducted to evaluate the performance of
maximum likelihood method.
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1. Introduction

The univariate gamma distribution is one of the most commonly used statistical distributions to analyze skewed
data in many disciplines and has been studied extensively in scientific literature. The chi-square distribution, which
is of utmost importance in statistical inference, is a special case of gamma distribution. Probability distributions
such as exponential and Erlang are also special cases of the gamma distribution. Several univariate generalizations
and variants of gamma distribution have also been developed and applied in various areas.

The univariate gamma distribution has been generalized to the bivariate case in many different ways and many
forms of bivariate gamma distribution are available. Several techniques to generate bivariate distributions have also
been proposed in the scientific literature, e.g., see Balakrishnan and Lai [1], Mardia [12], and Zhang and Singh [30].

Bivariate gamma distributions have found useful applications in many areas. They have been used for
representing joint probabilistic properties of multivariate hydrological events such as floods and storms or in
the modeling of rainfall at two nearby rain gauges, data obtained from rainmaking experiments, the dependence
between annual streamflow and aerial precipitation, wind gust modeling (Smith and Adelfang [25], Smith,
Adelfang, and Tubbs [26]), and the dependence between rainfall and runoff (see Nadarajah and Gupta [16],
Nadarajah [14, 15] and references therein). For an interesting review of bivariate gamma distributions for
hydrological application, the reader is referred to Yue, Ouarda, and Bobée [29] and Zhang and Singh [30].

Nadarajah [13] has listed a number of bivariate gamma distributions such as McKay’s bivariate gamma
distribution, Dussauchoy and Berland’s bivariate gamma distribution, Cherians bivariate gamma distribution,
Arnold and Strauss’ bivariate gamma distribution, Becker and Roux’s bivariate gamma distribution, and Smith
and Adelfang’s bivariate gamma distribution.
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Chatelain and Tourneret [3] proposed a family of bivariate gamma distributions whose marginals have different
shape parameters and indicated its usefulness in detecting changes in two synthetic radar aperture (SAR) images
acquired by different sensors and having different numbers of looks. Nadarajah [14] defined gamma-exponential
distribution whose margins have the gamma and the exponential distributions. Nadarajah [15], by using two
independent gamma variables, constructed a bivariate distribution which has gamma and beta distributions as
its marginals. By using conditional approach (see Section 5.6 of Balakrishnan and Lai [1], Nagar, Nadarajah
and Okorie [19]), Nagar, Zarrazola and Sánchez [18] constructed a bivariate distribution whose marginal laws
are gamma and Macdonald. Piboongungon, Aalo, Iskander and Efthymoglou [20] derived the bivariate correlated
generalised gamma fading distribution and have indicated its use in radar signal processing and communications.
The bivariate gamma distribution has also been defined as the joint distribution Z2

1 and Z2
2 , where both Z1 and

Z2 are standard normal variables with the correlation coefficient ρ (Vere-Jones [27], Maejima and Ueda [11]).
Saboor and Ahemad [23] introduced a bivariate gamma-type density function of two variables involving a confluent
hypergeometric function. Bondesson [2] reviewed some results for generalized gamma convolutions and derived
new bivariate gamma distributions from shot-noise models.

For a review of known bivariate distributions, we refer the readers to Mardia [12], Kotz, Balakrishnan and
Johnson [8], and Balakrishnan and Lai [1]. For an excellent review on univariate and bivariate gamma distributions
the reader is referred to Saboor, Provost and Ahmad [22]. For matrix variate generalization of the gamma
distribution one can consult Gupta and Nagar [6].

In this paper, we introduce a bivariate gamma distribution whose marginals are finite mixtures of gamma
distributions and study its properties. This is the first bivariate distribution of its kind and is suitable for bivariate
data with negative correlation. We organize our article as follows. In Section 2 we propose the bivariate gamma
distribution and discuss some of its properties. Sections 3 and 4 deal with several results such as moments,
correlation coefficients, measure of skewness, moment generating function, etc. Entropies such as Rényi and
Shannon are derived in Section 5. Distributions of sum, quotient and product and many other distributional results
are obtained in Section 6. Estimation of parameters and Fisher information matrix are discussed in Section 7.
Finally, in the last section, simulation study is conducted to evaluate the performance of maximum likelihood
method.

2. The bivariate gamma distribution

The random variables X1 and X2 are said to have a bivariate gamma distribution with parameters α, β and k,
denoted by (X1, X2) ∼ BGa(α, β, k), if their joint density is given by

f(x1, x2;α, β, k) = C(α, β, k)(x1x2)
α−1(x1 + x2)

k exp

[
− 1

β
(x1 + x2)

]
, (1)

where x1 > 0, x2 > 0, α > 0, β > 0, k ∈ N0 and C(α, β, k) is the normalizing constant.
By integrating the joint density of X1 and X2 over its support set, the normalizing constant is derived as

[C(α, β, k)]−1 =

∫ ∞

0

∫ ∞

0

(x1x2)
α−1(x1 + x2)

k exp

[
− 1

β
(x1 + x2)

]
dx1 dx2. (2)

Now, expanding (x1 + x2)
k using binomial theorem and integrating x1 and x2, we obtain

[C(α, β, k)]−1 =

k∑
j=0

(
k

j

)∫ ∞

0

∫ ∞

0

xα+j−1
1 xα+k−j−1

2 exp

[
− 1

β
(x1 + x2)

]
dx1 dx2

= β2α+kΓ2 (α)

k∑
j=0

(
k

j

)
(α)j (α)k−j .
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Finally, using Lemma A.1, we get

[C(α, β, k)]−1 = β2α+kΓ2 (α) (2α)k (3)

and

C(α, β, k) =
Γ (2α)

β2α+kΓ2 (α) Γ (2α+ k)
. (4)

An alternative way to compute (2) is to substitute s = x1 + x2 and r = x1/(x1 + x2) and integrate s and r by using
gamma and beta integrals. Since this approach works for all k > 0, we will use it to compute Shannon entropy.

Let us now briefly discuss the shape of (1). The first order derivatives of ln f(x1, x2;α, β, k) with respect to x1
and x2 are

fx1(x1, x2) =
∂ ln f(x1, x2;α, β, k)

∂x1
=
α− 1

x1
+

k

x1 + x2
− 1

β
(5)

and

fx2(x1, x2) =
∂ ln f(x1, x2;α, β, k)

∂x2
=
α− 1

x2
+

k

x1 + x2
− 1

β
, (6)

respectively. Setting (5) and (6) to zero, the only stationary point of (1) is obtained as

a = x10 = x20 =
β(2α+ k − 2)

2
,

where 2α+ k − 2 > 0. Computing second order derivatives of ln f(x1, x2;α, β, k), from (5) and (6), we get

fx1x1(x1, x2) =
∂2 ln f(x1, x2;α, β, k)

∂x21
= −α− 1

x21
− k

(x1 + x2)2
, (7)

fx1x2(x1, x2) =
∂2 ln f(x1, x2;α, β, k)

∂x1∂x2
= − k

(x1 + x2)2
, (8)

and

fx2x2(x1, x2) =
∂2 ln f(x1, x2;α, β, k)

∂x22
= −α− 1

x22
− k

(x1 + x2)2
. (9)

Further, from (7), (8) and (9), we get

fx1x1(a, a) = − 4α+ k − 4

(2α+ k − 2)2β2
,

fx1x2(a, a) = − k

(2α+ k − 2)2β2
,

fx2x2(a, a) = − 4α+ k − 4

(2α+ k − 2)2β2

and finally

fx1x1(a, a)fx2x2(a, a)− [fx1x2(a, a)]
2 =

8(α− 1)

(2α+ k − 2)3β4
.

Now, observe that
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• If α > 1, then fx1x1(a, a)fx2x2(a, a)− [fx1x2(a, a)]
2 > 0, fx1x1(a, a) < 0 and fx2x2(a, a) < 0 and therefore

(a, a) is a maximum point.
• If 0 < α < 1 and 2α+ k − 2 > 0, then fx1x1(a, a)fx2x2(a, a)− [fx1x2(a, a)]

2 < 0, and therefore (a, a) is a
saddle point.

Figure 1 illustrates the shape of the pdf (1) for selected values of α and β and k.
It can easily be observed that (X1, X2) and (X2, X1) are identically distributed and hence X1 and X2 are

exchangeable.
A distribution is said to be negatively likelihood ratio dependent if the density f(x1, x2) satisfies

f(x1, x2)f(x
∗
1, x

∗
2) ≤ f(x1, x

∗
2)f(x

∗
1, x2)

for all x1 > x∗1 and x2 > x∗2 (Lehmann [9], Tong [28]). One can check that the bivariate distribution defined by the
density (1) is negatively likelihood ratio dependent.

By integrating x2 in (1) the marginal density of X1 is obtained as

fX1(x1) = C(α, β, k)

∫ ∞

0

(x1x2)
α−1(x1 + x2)

k exp

[
− 1

β
(x1 + x2)

]
dx2. (10)

Substituting x2/x1 = z in (10), the marginal density of X1 is rewritten as

fX1(x1) = C(α, β, k)x2α+k−1
1 exp

(
−x1
β

)∫ ∞

0

zα−1(1 + z)k exp

(
−x1z

β

)
dz. (11)

Now, Writing (1 + z)k using binomial theorem and integrating z in (11), the marginal density of X1 is derived as

fX1(x1) = C(α, β, k)xα+k−1
1 βα exp

(
−x1
β

) k∑
j=0

(
k

j

)
Γ (α+ j)

(
x1
β

)−j

= C(α, β, k)xα−1
1 βα+k exp

(
−x1
β

) k∑
j=0

(
k

j

)
Γ (α+ k − j)

(
x1
β

)j

. (12)

Likewise, the marginal density of X2 is obtained as

fX2(x2) = C(α, β, k)xα+k−1
2 βα exp

(
−x2
β

) k∑
j=0

(
k

j

)
Γ (α+ j)

(
x2
β

)−j

. (13)

Thus, the marginal density of Xi is a finite mixture of gamma densities. Figure 2 shows some plots of the marginal
density ofX1 for β = 2, k = 0, 1, . . . , 20 and some values of α. Substituting u = z/(1 + z) with dz = (1− u)−2du
in (11), one gets

fX1(x1) = C(α, β, k)x2α+k−1
1 exp

(
−x1
β

)
×
∫ 1

0

uα−1(1− u)−(α+k+1) exp

[
− x1u

β(1− u)

]
du. (14)

Now, writing

(1− u)−(α+k+1) exp

[
− x1u

β(1− u)

]
=

∞∑
j=0

ujL
(α+k)
j

(
x1
β

)
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Figure 1. Pdf (1) with contour plots for some selected values of parameters.

in (14) and integrating u, the density fX1(x1), in series involving generalized Laguerre polynomials, is derived as

fX1(x1) = C(α, β, k)x2α+k−1
1 exp

(
−x1
β

) ∞∑
j=0

1

α+ j
L
(α+k)
j

(
x1
β

)
, x1 > 0. (15)

Stat., Optim. Inf. Comput. Vol. 8, December 2020



M. RAFIEI, A. IRANMANESH AND D. K. NAGAR 955

where L(α)
j (·) is the generalized Laguerre polynomial (see Appendix for the definition).

From the joint pdf (1) and the marginal density of X given in (12), the conditional pdf of X2 given X1 = x1 is
given by

f(x2 | x1) =
xα−1
2 (x1 + x2)

k exp(−x2/β)∑k
i=0

(
k
i

)
βα+iΓ (α+ i)xk−i

1

. (16)

Also, the conditional pdf of X1 given X2 = x2 is given by

f(x1 | x2) =
xα−1
1 (x1 + x2)

k exp(−x1/β)∑k
i=0

(
k
i

)
βα+iΓ (α+ i)xk−i

2

. (17)

3. Moments

By definition

E(Xm
1 X

n
2 ) = C(α, β, k)

∫ ∞

0

∫ ∞

0

xm1 x
n
2 (x1x2)

α−1(x1 + x2)
k exp

[
− 1

β
(x1 + x2)

]
dx1dx2.

Substituting s = x1 + x2 and r = x1/(x1 + x2) with the Jacobian J(x1, x2 → r, s) = s in the above integral, one
gets

E(Xm
1 X

n
2 ) = C(α, β, k)

∫ 1

0

rα+m−1(1− r)α+n−1dr

∫ ∞

0

s2α+m+n+k−1 exp

(
− s

β

)
ds

= C(α, β, k)
Γ(α+m)Γ(α+ n)

Γ(2α+m+ n)
β2α+m+n+kΓ(2α+m+ n+ k),

where the last line has been obtained by using beta and gamma integrals. Finally, simplifying the above expression,
we get

E(Xm
1 X

n
2 ) = βm+nΓ(α+m)Γ(α+ n)(2α+m+ n)k

Γ2(α)(2α)k
.

Further, substituting appropriately in the above expression, one gets

E[(X1X2)
h] = β2hΓ

2(α+ h)(2α+ 2h)k
Γ2(α)(2α)k

,

E(X1X2) =
β2α(2α+ k)(2α+ k + 1)

2(2α+ 1)
,

E(X2
1X2) =

β3α(2α+ k)(2α+ k + 1)(2α+ k + 2)

4(2α+ 1)
,

E(X3
1X2) =

β4α(α+ 2)(2α+ k)(2α+ k + 1)(2α+ k + 2)(2α+ k + 3)

4(2α+ 1)(2α+ 3)

E(X2
1X

2
2 ) =

β4α(α+ 1)(2α+ k)(2α+ k + 1)(2α+ k + 2)(2α+ k + 3)

4(2α+ 1)(2α+ 3)

E(Xi) =
β(2α+ k)

2
, i = 1, 2,
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Figure 2. Plots of pdf (12) for some selected values of parameters.

E(X2
i ) =

β2(α+ 1)(2α+ k)(2α+ k + 1)

2(2α+ 1)
, i = 1, 2,

E(X3
i ) =

β3(α+ 2)(2α+ k)(2α+ k + 1)(2α+ k + 2)

4 (2α+ 1)
, i = 1, 2,
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and

E(X4
i ) =

β4(α+ 2)(α+ 3)(2α+ k)(2α+ k + 1)(2α+ k + 2)(2α+ k + 3)

4(2α+ 1)(2α+ 3)
.

Further, variances, covariances, correlation and several higher central moments are derived as

µ11 = −kβ
2(2α+ k)

4(2α+ 1)
,

µ20 = µ02 =
β2(2α+ k)(4α+ k + 2)

4(2α+ 1)
, i = 1, 2,

µ30 = µ03 =
β3(2α+ k)(8α+ 3k + 4)

4(2α+ 1)
,

corr(X1, X2) = − k

4α+ k + 2
,

βi1 =

√
4(2α+ 1)(8α+ 3k + 4)2

(2α+ k)(4α+ k + 2)3
, i = 1, 2,

µ21 = −β
3k(2α+ k)

4(2α+ 1)
,

µ31 = −3β4k(2α+ k)(2α+ k + 2)(4α+ k + 4)

16(2α+ 1)(2α+ 3)
,

µ22 =
(k + 2α)

[
3k3 + 2k2(6 + 7α) + 4kα(11 + 8α) + 8α(2α+ 1)(2α+ 3)

]
β4

16(2α+ 1)(2α+ 3)
,

where
µij = E[(X1 − µ)i(X2 − µ)j ].

4. Moment Generating Function

By definition, the joint mgf of X1 and X2 is given by

MX1,X2(t1, t2) = C(α, β, k)

∫ ∞

0

∫ ∞

0

(x1x2)
α−1(x1 + x2)

k

exp

[
t1x1 + t2x2 −

1

β
(x1 + x2)

]
dx1 dx2. (18)

Substituting x1 = rs and x2 = s(1− r) in (18) with the Jacobian J(x1, x2 → r, s) = s and integrating s, we get

MX1,X2(t1, t2) = C(α, β, k)β2α+kΓ(2α+ k)

×
∫ 1

0

[r(1− r)]α−1[r(1− t1β) + (1− r)(1− t2β)]
−(2α+k)dr, (19)

where 1− t1β > 0 and 1− t2β > 0. Now, writing

[r(1− t1β) + (1− r)(1− t2β)]
−(2α+k)

= (1− t2β)
−(2α+k)

[
1− r

(
1− 1− t1β

1− t2β

)]−(2α+k)

,
1− t1β

1− t2β
< 1,
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in (19) and integrating r, we get

MX1,X2(t1, t2) = C(α, β, k)β2α+k(1− t2β)
−(2α+k)Γ(2α+ k)

×
∫ 1

0

[r(1− r)]α−1

[
1− r

(
1− 1− t1β

1− t2β

)]−(2α+k)

dr

= C(α, β, k)β2α+k(1− t2β)
−(2α+k)Γ(2α+ k)

× Γ2(α)

Γ(2α)
F

(
α, 2α+ k; 2α; 1− 1− t1β

1− t2β

)
, (20)

where the last line has been obtained by using the integral representation of the Gauss hypergeometric function
given in (A.1). Finally, substituting for C(α, β, k) and simplifying, we get

MX1,X2(t1, t2) = (1− t2β)
−(2α+k)F

(
α, 2α+ k; 2α; 1− 1− t1β

1− t2β

)
.

For t1 = t2 = t, we have
MX1,X2(t, t) =MX1+X2(t) = (1− tβ)−(2α+k)

which is the mgf of a gamma random variable with shape parameter 2α+ k and scale parameter β.

5. Entropies

In this section, exact forms of Rényi and Shannon entropies are derived for the bivariate gamma distribution defined
in this article.

Let (X ,B,P) be a probability space. Consider a pdf f associated with P , dominated by σ−finite measure µ on
X . Denote by HSH(f) the well-known Shannon entropy introduced in Shannon [24]. It is define by

HSH(f) = −
∫
X
f(x) log f(x) dµ. (21)

One of the main extensions of the Shannon entropy was defined by Rényi [21]. This generalized entropy measure
is given by

HR(η, f) =
logG(η)

1− η
(for η > 0 and η ̸= 1), (22)

where

G(η) =

∫
X
fηdµ.

The additional parameter η is used to describe complex behavior in probability models and the associated process
under study. Rényi entropy is monotonically decreasing in η, while Shannon entropy (21) is obtained from (22) for
η ↑ 1. For details see Nadarajah and Zografos [17], Zografos and Nadarajah [32] and Zografos [31].

Theorem 5.1
For the bivariate gamma distribution defined by the pdf (1), the Rényi and the Shannon entropies are given by

HR(η, f) =
1

1− η

[
η lnC(α, β, k) + [η(2α+ k − 2) + 2] ln

(
β

η

)
+ 2 lnΓ [η(α− 1) + 1] + lnΓ[η(2α+ k − 2) + 2]− ln Γ[η(2α− 2) + 2]

]
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and

HSH(f) = − lnC(α, β, k)− [(2α+ k − 2) lnβ − (2α+ k)

+ 2(α− 1)ψ(α) + (2α+ k − 2)ψ(2α+ k)− (2α− 2)ψ(2α)],

respectively, where ψ(α) = Γ′(α)/Γ(α) is the digamma function.

Proof
For η > 0 and η ̸= 1, using the joint density of X1 and X2 given by (1), we have

G(η) =

∫ ∞

0

∫ ∞

0

fη(x1, x2;α, β, k) dx2 dx1

= [C(α, β, k)]η
∫ ∞

0

∫ ∞

0

(x1x2)
η(α−1) (x1 + x2)

ηk
exp

[
− η

β
(x1 + x2)

]
dx2 dx1

= [C(α, β, k)]η
∫ ∞

0

∫ 1

0

[r(1− r)]η(α−1)sη(2α−2)+ηk+1 exp

(
− η

β
s

)
dr ds,

where the last line has been obtained by substituting s = x1 + x2 and r = x1/(x1 + x2). Finally, evaluating above
integrals by using gamma and beta integrals and simplifying the resulting expression, we get

G(η) = [C(α, β, k)]η
Γ2[η(α− 1) + 1]Γ[η(2α+ k − 2) + 2]

Γ[η(2α− 2) + 2]

(
β

η

)η(2α+k−2)+2

.

Now, taking logarithm of G(η) and using (22) we get HR(η, f). The Shannon entropy is obtained from HR(η, f)
by taking η ↑ 1 and using L’Hopital’s rule.

6. Sum, Quotient and Product

In this section we derive the distributions ofX1 +X2,X1/(X1 +X2),X1X2, andX1/X2 whenX1 andX2 follow
a bivariate gamma distribution defined in (1).

Theorem 6.1
Let (X1, X2) ∼ BGa(α, β, k), and define R = X1/(X1 +X2) and S = X1 +X2. Then, R and S are independent,
the distribution of R is beta with both the parameters α and the distribution of S is gamma with shape parameter
2α+ k and scale parameter β.

Proof
Substituting x1 = rs and x2 = s(1− r) with the Jacobian J(x1, x2 → r, s) = s, in the joint density of X1 and X2,
we obtain the joint density of R and S as

C(α, β, k)[r(1− r)]α−1s2α+k−1 exp

(
− s

β

)
, (23)

where 0 < r < 1 and s > 0. Now, from (23), the desired result is obtained.

Corollary 6.1.1
Both X1/X2 and X2/X1 have inverted beta distribution with parameters α and α.

Theorem 6.2
Let (X1, X2) ∼ BGa(α, β, k), and define P = X1X2. Then, the density of P is given by

C(α, β, k)2pα+k/2−1
k∑

j=0

(
k

j

)
Kk−2j

(
2

√
p

β

)
, p > 0.
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Proof
Transforming X1 = X and P = X1X2 with the Jacobian J(x1, x2 → p) = 1/x in the joint density of X1 and X2

and integrating x, we obtain the density of P as

C(α, β, k)pα−1

∫ ∞

0

1

x

(
x+

p

x

)k

exp

[
− 1

β

(
x+

p

x

)]
dx

= C(α, β, k)pα−1
k∑

j=0

(
k

j

)
pj

∫ ∞

0

xk−2j−1 exp

[
− 1

β

(
x+

p

x

)]
dx. (24)

Now, using the integral (Gradshteyn and Ryzhik [4, Eq. 3.471.9]),∫ ∞

0

exp

(
−az − b

z

)
zν−1 dz = 2

(
b

a

)ν/2

Kν(2
√
ab), a > 0. b > 0,

where Kν is the modified Bessel function of the second kind, we obtain the desired result.

Next two theorems deal with bivariate distributions of (X1/Y,X2/Y ) and (X1/U,X2/U), where (X1, X2) ∼
BGa(α, β, k), Y ∼ Ga(ν, β) and U ∼ B(a, b).

Theorem 6.3
Let (X1, X2) ∼ BGa(α, β, k), and Y ∼ Ga(ν, β) be independent. Then, the joint density of Z1 = X1/Y and
Z2 = X2/Y is given by

Γ(2α)Γ(2α+ k + ν)

Γ2(α)Γ (2α+ k) Γ(ν)

(z1z2)
α−1(z1 + z2)

k

(1 + z1 + z2)2α+k+ν
, z1 > 0, z2 > 0.

Proof
TransformingX1 = Z1Y andX2 = Z2Y with the Jacobian J(x1, x2,→ z1, z2) = y2 in the join density of (X1, X2)
and Y , the joint density of (Z1, Z2) and Y is obtained as

C(α, β, k)

Γ(ν)βν
(z1z2)

α−1(z1 + z2)
ky2α+k+ν−1 exp

[
− (1 + z1 + z2)y

β

]
, z1 > 0, z2 > 0, y > 0.

Now, integrating y by using gamma integral, we get the desired result.

For k = 0, the variables X1, X2 and Y are independent gamma with scale parameter β and therefore
(X1/Y,X2/Y ) has a Dirichlet type 2 distribution.

Theorem 6.4
Let (X1, X2) ∼ BGa(α, β, k), and U ∼ B(a, b) be independent. Then, the joint density of Z1 = X1/U and
Z2 = X2/U is given by

β−(2α+k)Γ(2α)Γ(2α+ k + a)Γ(a+ b)

Γ2(α)Γ(2α+ k)Γ(2α+ k + a+ b)Γ(a)
(z1z2)

α−1(z1 + z2)
k

× Φ

(
2α+ k + a; 2α+ k + a+ b;−z1 + z2

β

)
, z1 > 0, z2 > 0.

Proof
TransformingX1 = Z1U andX2 = Z2U with the Jacobian J(x1, x2,→ z1, z2) = u2 in the join density of (X1, X2)
and U , the joint density of (Z1, Z2) and U is obtained as

C(α, β, k)

B(a, b)
(z1z2)

α−1(z1 + z2)
ku2α+k+a−1(1− u)b−1 exp

[
− (z1 + z2)u

β

]
,

where z1 > 0, z2 > 0, and 0 < u < 1. Now, integrating u by using integral representation of confluent
hypergeometric function given in (A.2), we get the desired result.
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7. Estimation

Let (X11, X12), · · · , (Xn1, Xn2) be a random sample from BGa(α, β, k). The log-likelihood function, denoted by
l(α, β), is given by

l(α, β) = n [ln Γ(2α)− (2α+ k) lnβ − 2 ln Γ (α)− ln Γ(2α+ k)]

+ (α− 1)

n∑
i=1

(lnxi1 + lnxi2) + k

n∑
i=1

ln(xi1 + xi2)−
1

β

n∑
i=1

(xi1 + xi2).

Now, differentiating l(α, β) w.r.t. α, we get

∂l(α, β)

∂α
= n [2ψ(2α)− 2 lnβ − 2ψ (α)− 2ψ(2α+ k)] +

n∑
i=1

(lnxi1 + lnxi2).

Using the duplication formula for digamma function, namely,

2ψ(2z) = ln 4 + ψ(z) + ψ

(
z +

1

2

)
we obtain

∂l(α, β)

∂α
= n

[
ln 4 + ψ

(
α+

1

2

)
− ψ (α)− 2 lnβ − 2ψ(2α+ k)

]
+

n∑
i=1

(lnxi1 + lnxi2).

Further,

∂l(α, β)

∂β
= −n(2α+ k)

β
+

1

β2

n∑
i=1

(xi1 + xi2),

∂l(α, β)

∂α∂β
= −2n

β
,

∂2l(α, β)

∂α2
= nψ1

(
α+

1

2

)
− nψ1 (α)− 4nψ1(2α+ k),

∂2l(α, β)

∂β2
=
n(2α+ k)

β2
− 2

β3

n∑
i=1

(xi1 + xi2),

E

[
∂l(α, β)

∂α∂β

]
= −2n

β
,

E

[
∂2l(α, β)

∂α2

]
= nψ1

(
α+

1

2

)
− nψ1 (α)− 4nψ1(2α+ k),

E

[
∂2l(α, β)

∂β2

]
= −n(2α+ k)

β2
.
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For a given observation vector (x1, x2), the Fisher information matrix for the bivariate distribution given by the
density (1) is defined as (

−ψ1(α+ 1/2) + ψ1 (α) + 4ψ1(2α+ k) 2/β
2/β (2α+ k)/β2

)
.

Further

∂l(α, β)

∂β
= −n(2α+ k)

β
+

1

β2

n∑
i=1

(xi1 + xi2) = 0

gives

(2α+ k)β = x̄1 + x̄2 (25)

and

∂l(α, β)

∂α
= n [2ψ(2α)− 2 lnβ − 2ψ (α)− 2ψ(2α+ k)] +

n∑
i=1

(lnxi1 + lnxi2) = 0

gives

ψ(2α+ k)− ψ(2α) + lnβ + ψ (α) =
1

2
ln(x̃1x̃2),

where x̃i =
∏n

j=1 x
1/n
ij , i = 1, 2. Further, using

ψ(z +N)− ψ(z) =

N−1∑
j=0

1

z + j

we have
k−1∑
j=0

1

2α+ j
+ lnβ + ψ (α) =

1

2
ln(x̃1x̃2). (26)

Thus, by solving numerically (25) and (26), the MLEs of α and β can be obtained.

8. Simulation

In this section a simulation study is conducted to evaluate the performance of maximum likelihood method.
Samples of size n = 30, 50, 200, 500 from Equation (1) for selected values of parameters are generated by
MCMC methods (Gibbs Metropolise, Markov Chain Monte Carlo Metropolise, Metropolise, Metropolise gaussian,
random walk Metropolise and Metropolise-Hastings). For α = 6, β = 2 and k = 1, 4, 8 that ρ = − 1

27 , ρ = − 4
30 and

ρ = − 8
34 respectively, the random walk Metropolis algorithm method has better results. When α = 0.75, β = 2,

k = 1, 4, 8 that ρ = − 1
6 , ρ = −2

7 and ρ = −3
8 , the Gibbs sampling method provides better results and is used to

simulate samples.
For each sample, MLEs for α, β and k based on the numerical procedures are computed. This procedure is

repeated five hundred times and (α̂, β̂, k̂), the bias (Ab) and the mean squared error (MSE) are obtained by using
Monte Carlo method. The results are reported in Tables (1) and (2). Figures 3, 4 and 5 show the simulation data and
contour plots for α = 6, β = 2 and k = 1, 4, 8 with n = 200. Figure 6 shows pairs style of random walk Metropolis
method for α = 6, β = 2 and k = 1 with n = 500 and Figure 7 exhibits pairs style of Gibbs sampling method for
α = 0.75, β = 2 and k = 4 with n = 200.

Stat., Optim. Inf. Comput. Vol. 8, December 2020



M. RAFIEI, A. IRANMANESH AND D. K. NAGAR 963

gibbs_met

x

y

 5e−04 

 0.001 

 0.0015 

 0.002  0.0045 

0 5 10 15 20 25 30

0
10

20
30

MCMCmetrop1R

x

y

 5e−04 

 0.001 

 0.0015 

 0.002  0.0045 

0 5 10 15 20 25 30

0
10

20
30

met_gaussian

x

y

 5e−04 

 0.001 

 0.0015 

 0.002  0.0045 

0 5 10 15 20 25 30

0
10

20
30

Metro_Hastings

x

y
 5e−04 

 0.001 

 0.0015 

 0.002  0.0045 

0 5 10 15 20 25 30
0

10
20

30

metrop

x

y

 5e−04 

 0.001 

 0.0015 

 0.002  0.0045 

0 5 10 15 20 25 30

0
10

20
30

rwmetrop

x

y

 5e−04 

 0.001 

 0.0015 

 0.002  0.0045 

0 5 10 15 20 25 30

0
10

20
30

Figure 3. Simulation data and contour plots for different methods for α = 6, β = 2 and k = 1 with n = 200.

9. Multivariate generalization

The multivariate generalization of (1) can be defined as follows:

Cn(α, β, k)(x1x2 · · ·xn)α−1(x1 + x2 + · · ·+ xn)
k exp

[
− 1

β
(x1 + x2 + · · ·+ xn)

]
, (27)

where x1 > 0, x2 > 0, . . . , xn > 0 and C(α, β, k) is the normalizing constant given by

Cn(α, β, k) =
Γ (nα)

βnα+kΓn (α) Γ (nα+ k)
. (28)
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Figure 4. Simulation data and contour plots for different methods for α = 6, β = 2 and k = 4 with n = 200.

Appendix

The Gauss hypergeometric function, denoted by F (a, b; c; z), and confluent hypergeometric function, denoted by
Φ(b; c; z) , for Re(c) > Re(b) > 0, are defined as (see Luke [10]),

F (a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt, | arg(1− z)| < π, (A.1)

and

Φ(b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1 exp(zt) dt. (A.2)
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Figure 5. Simulation data and contour plots for different methods for α = 6, β = 2 and k = 8 with n = 200.

Using the series expansion of (1− zt)−a in (A.1) and exp(zt) in (A.2), the following series representations of the
hypergeometric functions can be obtained:

F (a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, |z| < 1. (A.3)

and

Φ(b; c; z) =

∞∑
k=0

(b)k
(c)k

zk

k!
, (A.4)

where the Pochhammer symbol (a)n is defined by (a)n = a(a+ 1) · · · (a+ n− 1) = (a)n−1(a+ n− 1) for n =
1, 2, . . . , and (a)0 = 1.
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Figure 6. Pairs style of random walk Metropolis method for α = 6, β = 2 and k = 1 with n = 500.

Also, under suitable conditions, we have (Luke [10, Eq. 3.6(10)]),∫ 1

0

zα−1(1− z)β−1
pFq(a1, . . . , ap; b1, . . . , bq; zy) dz

=
Γ(α)Γ(β)

Γ(α+ β)
p+1Fq+1(a1, . . . , ap, α; b1, . . . , bq, α+ β; y). (A.5)

Lemma A.1
For a > 0, b > 0 and k ∈ N, we have

k∑
i=0

(
k

i

)
(a)i (b)k−i = (a+ b)k.
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Figure 7. Pairs style of Gibbs sampling method for α = 0.75, β = 2 and k = 4 with n = 200.

Proof
Writing (1− θ)−(a+b) as (1− θ)−a(1− θ)−b and using power series expansion, for 0 < θ < 1, we get

(1− θ)−a(1− θ)−b =

∞∑
i=0

∞∑
j=0

(a)i(b)j
i! j!

θi+j

=

∞∑
k=0

θk
∑

i+j=k

(a)i(b)j
i! j!

=

∞∑
k=0

θk
k∑

i=0

(a)i(b)k−i

i! (k − i)!
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and

(1− θ)−(a+b) =

∞∑
k=0

(a+ b)k
k!

θk.

Now, comparing the coefficients of θk, we get the desired result.

The generating function of the generalized Laguerre polynomial is

(1− t)−(a+1) exp

(
− zt

1− t

)
=

∞∑
j=0

tjL
(a)
j (z).

Finally, we define the gamma, beta type 1 and beta type 2 distributions. These definitions can be found in
Johnson, Kotz and Balakrishnan [7].

Definition A.1
A random variable X is said to have a gamma distribution with parameters θ (> 0), κ (> 0), denoted by X ∼
Ga(κ, θ), if its pdf is given by

{θκΓ(κ)}−1
xκ−1 exp

(
−x
θ

)
, x > 0. (A.6)

Note that for θ = 1, the above distribution reduces to a standard gamma distribution and in this case we write
X ∼ Ga(κ).

Definition A.2
A random variable X is said to have a beta type 1 distribution with parameters (a, b), a > 0, b > 0, denoted as
X ∼ B1(a, b), if its pdf is given by

{B(a, b)}−1xa−1(1− x)b−1, 0 < x < 1, (A.7)

where B(a, b) is the beta function.

Definition A.3
A random variable X is said to have a beta type 2 (inverted beta) distribution with parameters (a, b), denoted as
X ∼ B2(a, b), a > 0, b > 0, if its pdf is given by

{B(a, b)}−1xa−1(1 + x)−(a+b), x > 0. (A.8)
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