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Abstract In this paper, we present an empirical comparison of some Gradient Descent variants used to solve global
optimization problems for large search domains. The aim is to identify which one of them is more suitable for solving an
optimization problem regardless of the features of the used test function. Five variants of Gradient Descent were implemented
in the R language and tested on a benchmark of five test functions. We proved the dependence between the choice of the
variant and the obtained performances using the khi-2 test in a sample of 120 experiments. Those test functions vary on
convexity, the number of local minima, and are classified according to some criteria. We had chosen a range of values for
each algorithm parameter. Results are compared in terms of accuracy and convergence speed. Based on the obtained results,
we defined the priority of usage for those variants and we contributed by a new hybrid optimizer. The new optimizer is tested
in a benchmark of well-known test functions and two real applications were proposed. Except for the classical gradient
descent algorithm, only stochastic versions of those variants are considered in this paper.

Keywords global numerical optimization, mono-objective, descent gradient variants, analytic hierarchy process, hybrid
optimization, random search.
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1. Introduction

Optimization techniques have common applications in fields such as differential calculus, regression models for prediction,
shapes optimization, topological optimization, and other applications in logistic and graph theory [1]. The optimization
is mono-objective when it consists of finding the best solution that optimizes a given objective [2]. On the other hand,
multi-objective optimization concerns multiple contradictory criteria for making a decision [3]. Commonly, Numerical
methods can provide practical and adaptable solutions in both cases. Although finding exact analytical solutions is a
challenging task because of dimensions or because of the nature of the objective function, algorithms such as gradient
descent are considered to find acceptable solutions with an error margin [4]. One of the main issues with gradient descent
variants is how to select the appropriate algorithm according to the problems features. When it comes to applying gradient
descent variants on a real application, a practitioner will prefer to use some criteria for making a quick decision. Because
not all variants have the same performance. The use of a decision technique will help in saving time, especially while
performing a simulation. For this purpose, we will compare the performance of gradient descent variants based on a panel
of test functions. After that, we will apply a khi-2 test to help in deploying suitable decisions that match the researchers
goals or understanding of a problem.

The paper is organized as follows: In Section 2, we provide a review of the related work. In section 3, we present briefly
the mono-objective optimization. Afterward, we describe the used five variants in Section 4. The used test functions as well
as the obtained performance results are presented in section 5. The statistical khi-2 and ahp technique are deployed to our
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case study. In section 6, we will suggest and test our hybrid optimizer in a benchmark of 11 test functions then we will report
the performances. Two real applications are proposed in section 7. Last of all, we discuss the results then we conclude.

2. Related works

Gradient descent method was first introduced by Louis Augustin Cauchy in his Compte rendu lacadmie des Sciences
of October 18, 1847, [5]. Gradient descent is based on the observation that if a function is continuous and non-negative,
the function should decrease in the direction of the negative gradient. The difficulty of this method is how to choose the
suitable learning rate. The method is often not suitable for non-convex problems, an effect of fluctuations around local
minimum could be observed. For that reason, the method isn’t widely used in real applications [6][7]. To surpass those
limits, Robbins and Monro in their paper, A Stochastic Approximation Method proves that for a given equation when the
solution is unique, the stochastic method converges in probability to the desired solution [8]. Even though the results of
this algorithm are not deterministic, they are good in the sense of reducing the dependence with the starting points. This
dependence may be problematic for large search space [1]. Later, Kiefer and Wolfowitz subsequently published their paper,
Stochastic Estimation of the Maximum of a Regression Function, which is more recognizable to be the first application of
stochastic approximation in optimization [9]. Momentum version appaired in Rumelhart, Hinton, and Williamss article about
learning by error propagation [10]. In 1997, Qian proved that the momentum term is equivalent to the mass of a Newtonian
particle that moves through a viscous medium under a conservative force field [11]. In 2011, John Duchi, Elad Hazan, and
Yoram Singer presented a new adaptive method that incorporates the geometry of the observed data. This new algorithm
adaptively modifies the step learning depending on the data dispersion [12]. In the next year, Tieleman, Tijmen, Hinton, and
Geoffrey suggested dividing the learning rate by an exponentially decaying average of squared gradients. This optimizer
reduces oscillations in the vertical direction and increases the learning step in the horizontal direction to converge quickly
[13]. Concerning hybrid optimization, it consists of combining several optimization techniques at once . Hybrid optimizers
are known to be quite efficient in optimization.[14][15]

3. The problem

In the case of optimizing a single criterion f , the term optimum means either its maximum or minimum depending on the
decision we are looking for. For example, if we own an industrial plant and we need to deliver products to customers in a
way that minimizes the transportation costs then the optimum will be the minimum of the transportation cost function. The
unconstrained optimization problem consists of minimizing a real-valued function f in their definition domain D ̸= ∅ :

f : D → R
x : 7−→ f(x)

Where D ⊂ RN and N ∈ N.

We search a vector x∗ of n-components that verify for all x ∈ D :

f(x∗) ≤ f(x)

This vector represents the global optimum of f in the domain D. A local optimum is an optimum of only a subset of the
domain D. The problem is unconstrained because we we don’t impose any conditions on the N variables and we assume
that f its defined in their definition domain D [2]. Only this type of optimization problems is discussed in this research.

4. Gradient descent variants literature review

Multiple gradient descent variants exist. They vary according to how much data we use to evaluate the objective function
gradient. We make a trade-off ( based on the amount of data ) between the parameter update precision versus the necessary
time of performing an update.
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4.1. Vanilla Gradient descent
If a multi-variables function is defined and differentiated on the neighborhood of its minimum x∗ then the function f
decrease in the opposite direction of the gradient. The algorithm starts by choosing an initial guess solution x0 ∈ D.

The simplest form of update is to change the parameters along the negative gradient direction . The standard gradient
descent algorithm is formulated as follows :

x ( j , t+ 1) = x( j , t )− α.∇f(x ( j, t) ) (1)

Where :

• x ( j , t+ 1) Represents the j-ith component of the current solution x(t) and t+ 1 represents the actual iteration.
• ∇f(x (j, t)) Represents the j-ith component of the gradient vector for the function f(x) in the last iteration t .
• α is the learning rate.

For a small positive, if the last estimation of the gradient is negative then:

f( x( j , t+ 1 ) ) ≥ f( x( j , t ) ) (2)

Because we need to calculate the gradients for the whole dataset to perform just one update, traditional vanilla gradient
descent performs slowly close to the minimum and is hard to control for large data sets that do not fit in memory. The
other problem is the way we choose the convergence step α. Step α must be chosen carefully because it determines both
the convergence speed and the accuracy of the estimated solution x∗. This parameter determines how big of an update we
perform. [5] [16] .

This version of the main discussed algorithm is also called Batch gradient descent. It’s based on the naive / full
computation of the gradient and uses the entire available dataset. Note that state-of-the-art deep learning libraries provide
automatic gradient computation like the well-known Rootsolve R package.

When evaluated on the full dataset, and when the learning rate is low enough, this is guaranteed to make non-negative
progress on the loss function. Batch gradient descent is guaranteed to converge to the global minimum for convex error
shapes and to local minimum for non-convex surfaces.

The following R code is an example of how batch gradient descent could be implemented :

1 library("rootSolve")
2
3 grad_descent<-function(objFun ,iter = 100, alpha = 0.001 , start_init ){
4
5 # define the objective function f(x)
6 # iter is the number of iterations to try
7 # alpha is the step parameter
8 # define the gradient of f(x)
9 # Note we don’t split up the gradient

10 init = start_init #initial point search
11
12 gradient_1 <- function(init , objFun) {
13 result <- gradient(objFun, init,pert = 1e-8) # vector of gradient / partial derivatives
14 return(result)
15 }
16
17 x <- init
18
19 # create a vector to contain all xs for all steps
20 x.All = numeric(iter)
21 # gradient descent method to find the minimum
22
23 for(i in seq_len(iter)){
24 # Guard against NaNs
25 tmp <- c(x) - alpha * gradient_1(x , objFun)
26 if ( !is.nan(suppressWarnings(objFun(tmp))) ) {
27 x <- tmp
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28 }
29
30 print(c(i, x,objFun(x))) # we print the current iteration with corresponding

objective function value
31 }
32
33 # print result and plot all xs for every iteration
34 print(paste("The minimum of f(x) is ", objFun(x), " at position x = ", x, sep = ""))
35 plot(x.All, type = "l")
36 }
37 }

Listing 1: Example of used R Vanilla GD code

4.2. Stochastic gradient descent
Batch gradient descent performs redundant computations for large datasets , as it recomputes gradients for similar examples
before each parameter update. If the training set is very large (big data) and no simple formula is available for computing
gradients, calculating the sum of the gradients can quickly become excessive. [8] [9] [17] [18]

It is in order to improve the computational cost of each step that the stochastic gradient descent method had been
developed. Indeed, at each step, this method draws a random sample from the set of functions fi constituting the sum. This
trick becomes very effective in the case of large or very large learning problem [19] [8] [9] .

The stochastic gradient is a descent method used to minimize an objective function formulated as a sum of M-
differentiated functions fi.

The objective function could be formulated as a sum of M terms :

f(x) =
1

M

M∑
i=1

fi (3)

The estimators that minimize a sum are called the M-estimators, they are used in the estimation of maximum-likelihood
or even the empirical risk minimization for supervised learning problems. In supervised learning, each function fi is
associated with an observation belonging to the data set. Evaluating the gradient for the entire data set may require a lot of
computational resources [8] [9].

To resolve the problem, the stochastic gradient samples a subset of the sum pieces (we choose at uniform K functions fi
from the sum where K ≤ M then we evaluate the gradient vector) [8] [9].

The algorithm starts by choosing an initial vector of parameters x0 and a learning rate α. First, we evaluate the gradient for
only a sum of K function fi that are chosen in uniform. This means that the chosen functions could differ from an iteration
to the other one. After that, we execute the update equation (4) until an approximation of the minimum is obtained [8] [9]
[1] [20] :

x( j , t+ 1 ) = x( j , t )− α.
1

M
.∇(fi( x( j , t ))) (4)

Note that we can shuffle a single function fi at each iteration because of the gradient operator linearity. If we shuffle more
than one function fi simultaneously, the version of the algorithm is then called the mini-batch stochastic descent gradient.
The problem with the stochastic gradient method is the frequent updates and fluctuations. This complicates the convergence
even if we choose a small step α.

It has been shown that even though we slowly decrease the learning rate, SGD shows the same convergence behavior as
batch gradient descent. The mini-batch version could be a solution for the fluctuations around the optimum. For this, it’s
preferable at each iteration to evaluate the full gradient value uniformly for only some K-random dimensions and to keep
the other dimensions unchanged until the next iteration [21].

An example of R implementation could be something like :
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1 library("rootSolve")
2
3 stoc_grad<-function(objFun,iter = 50000, alpha = 0.00001, start_init ){
4
5 init = start_init
6
7 gradient_1 <- function(init , objFun ) {
8
9 p=ceiling(runif(1,min=0,max =length(init) ))

10 result <- gradient(objFun, init,pert = 1e-8) # vector of gradient / partial d??
rivatives

11 #replace(result, sample(length(init),2), 0) # we shuffle three compenenets
12
13 # print("gradient")
14 # print(replace(result, sample(length(init),2), 0))
15
16 return(replace(result,p, 0))
17 }
18
19 x <- init
20
21 # create a vector to contain all xs for all steps
22 x.All = numeric(iter)
23
24 # gradient descent method to find the minimum
25
26 for(i in seq_len(iter)){
27
28 tmp = c(x) - (alpha)*gradient_1(x,objFun)
29
30 alpha=exp(-i)
31
32 if (!is.nan(suppressWarnings(objFun(tmp) ))) {
33 x <- tmp
34 }
35
36 x.All[i] = x
37
38 if(!iter>10000){
39 print(c(i, x,objFun(x)))
40 }
41
42 }
43
44 # print result and plot all xs for every iteration
45 print(paste("The minimum of f(x) is ", objFun(x), " at position x = ", x, sep = ""))
46 plot(x.All, type = "l")
47
48 }

Listing 2: Example of used R SGD code

The following figure shows the oscillation problem for the ackley test function :

4.3. Momentum

Among the other variants we find the momentum method . It appears in an article by Rumelhart, Hinton and Williams about
the back propagation learning. This update can be motivated from a physical perspective of the optimization problem. The
optimization process could be seen as equivalent to the process of simulating the parameter vector of a particle rolling on
the landscape.[11] [22] , [23] [24]

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in
another, which are common around local optima. In these scenarios, SGD oscillates across the slopes of the ravine while
only making hesitant progress along the bottom towards the local optimum . Momentum is a method that helps accelerate
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Figure 1. Example of SGD running - case of the ackley function

SGD in the relevant direction and dampens oscillations [11] [17] [25] .

Since the force on particle with a mass m is related to the gradient of potential energy (i.e.F =?∇U ), the force felt by
the particle is precisely the (negative) gradient of the loss function. Moreover, F = ma so the (negative) gradient is in this
view proportional to the acceleration of the particle. Note that this is different from the SGD update shown above, where
the gradient directly integrates the position. Instead, the physics view suggests an update in which the gradient only directly
influences the velocity, which in turn has an effect on the position. In particular, the loss can be interpreted as the height of a
hilly terrain (and therefore also to the potential energy since U = mgh and therefore U ∝ h).[26][24]

The SGD method with moment keeps in memory the update at each step ∆x(t), and calculates the following update as a
convex combination of the current gradient and the previous change:

∆x( j , t+ 1 ) = α.∇f( x( j, t )) + β.∆x( j , t ) (5)

The term momentum is used in physics when a particle is subject to a rotation movement applied by a force. The moment
measures the ability of a force to rotate an object around an axis or a reference point.The name moment comes from an
analogy with the moment in physics: the vector of parameters x(t), considered as a particle which travels through the space
of parameters (often in large dimension), undergoes an acceleration via the gradient (which acts as a ”force”). Unlike the
classic SGD method, this variant tends to keep traveling in the same direction, preventing oscillations. [11][17] [27]

The previous variants of the gradient descent algorithms have troubles when the convexity is irregular and variations are
more severe in one dimension than others. In this case, the momentum approach tries to keep the vector we want to estimate
in the direction of the gradient. By this, the referent vector can be seen as a particle subject to a force that pulls the vector to
the local minimum. The force in our situation can be compared to the gradient of the objective function [11][17][27][24].

Unlike classical gradient descent, the momentum approach keeps the referent vector x traveling in the same direction to
which prevent oscillations of the loss function. The new update ∆x is a convex linear combination of the last update and the
gradient value [28][24] [29] [30]:

The term β.∆x( j , t ) represents the previous update of the field x( j , t ) multiplied by a weight β.

The new ∆x( j , t+ 1 ) is a moving average of the gradient and the last update [10]. Commonly, we choose a weight β
such that: 0.8 ≤ β ≤ 0.999

By default, we choose a value of β = 0.9. . The term α. represents the convergence step. We use the same equation of the
descent gradient using the new update as follow:

x( j , t+ 1 ) = x( j , t )− α.∆x( j , t+ 1) (6)

Essentially, we drive a ball down a hill by using momentum. As it moves downhill, the ball accumulates energy, getting
faster and faster on the way (until it reaches its terminal velocity, if air resistance is present, i.e. β ≤ 1 ).
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Figure 2. SGD momentum improvement - case of the ackley function

For our parameter changes, the same thing happens: For dimensions whose gradients point in the same directions, the
momentum term increases, and decreases updates for dimensions whose gradients change directions. As a consequence, we
achieve faster convergence and decreased oscillation.

On the other hand , a particle that rolls down a hill is extremely unsatisfying, blindly following the slope. We just want
to see a clever particle , a particle that acts as a ball which has a sense of where it’s going, so that before the hill ramps up
again, it knows how to slow down. [17]

4.4. Adaptive gradient descent

Adagrad version adapts the learning rate to the parameters, performing larger updates for infrequent and smaller updates for
frequent parameters x(t). For this reason, it is well-suited for dealing with sparse data. This version of the gradient descent
algorithm takes the sparsity of parameters into account. Adagrad uses a different learning rate for every parameter x(t) at
every time step t [12] [31] [17] [32].

An interesting application of Adagrad was done by Dean et al. he has found that Adagrad greatly improved the robustness
of SGD and used it for training large-scale neural nets at Google, which C among other things C learned to recognize cats
in YouTube videos.[17]

In the current iteration τ + 1 , The Adagrad reduces the convergence step α for a high variation in a given point and
increases the same step for a low gradient value [33] [12]. For this reason,the algorithm is suitable for sparse data.

Let G(t) be the outer product matrix of the gradient vector ∇f( x(t) ) at the t-ith iteration. The algorithm divides the step
α by the sum of diagonal elements G( j , j , t ) of the matrix G(t) until the current iteration τ ∈ N [34]. The update formula
is as follows :

x( j , τ + 1 ) = x( j , τ )− α.[ S( j , j , τ )]−1/2.∇f( x( j , τ) ) (7)
Where :

S( j , j , τ ) =

τ∑
k=1

G( j , j , k ) (8)

And : for all t in {1, ..., τ}

G( j , j , t ) = [ ∇f( x( j, t ) ]2. (9)
Besides, G(i , j , t) is the element within the row i and column j of the outer matrix G(t) and τ is the number of iterations.

We have usually (i, j) ∈ [[1, N ]]× [[1, N ]]. Note that Adagrad performs also on non-convex problems [12] [35].

In Adagrad update rule, we modify the general learning rate α at each time step t for every parameter x( j, t) based on
the past gradients that have been computed for x( j, t− 1). j is the j-ith dimension of the parameters vector.

Stat., Optim. Inf. Comput. Vol. 9, September 2021



M.TOUARSI , D. GRETETE AND A. ELOUADI 637

One of the key advantages for Adagrad is removing the manually calibration need for the learning rate. The denominator’s
square gradients accumulation’s could be also a drawback: As any added term is positive, during training the cumulative
amount continues to increase[17][34][33] .

At a consequence, this leads the learning rate to diminish and inevitably become infinitesimally small, at which point
extra information can no longer be obtained by the algorithm. The RMSProp algorithm is aimed at fixing this weakness
[17][34][33] .

4.5. Root Mean Square Propagation

RMSProp is a similar gradient descent version compared to Adagrad, the difference is that RMSProp considers the last
value and the actual value of the gradient while dividing the learning rate by S(j j, τ) [13] [36] [31].

In the j-ith iteration. RMSProp avoids radically the diminish of the learning rate α [13] [37] [38].

The RMSProp update formula is formulated as follow:

v(x(j, t+ 1)) = γ.v(x(j, t)) + (1− γ).(∇f(x(j, t))2 (10)

Where x(j, t+ 1) is the j-ith field of the N-dimensional solution x that we want to estimate and t represents the last
iteration. The coefficient γ is called the memory factor, we choose a value of γ such as 0.1 ≤ γ ≤ 0.9.

Using this formula of updates, the formula of descent gradient is as follow [38][1]:

x( j , t+ 1) = x( j , t )− α.
∇f( x( j , t ) )√
v(x( j , t+ 1 )

(11)

v( x( j , t )) Is ensured to be positive when computing the square. For this, we could modify equation (10) by initially
adding a small positive number ϵ0 to its right side [13] [17].

1 library("rootSolve")
2 RMSprop<-function(objFun ,iter = 50000, alpha = 0.00001,lambda=0.2 ,start_init ){
3
4 init = start_init
5 gradient_1 <- function(init , objFun ) {
6
7 p=ceiling(runif(1,min=0,max =length(init) ))
8 result <- gradient(objFun, init,pert = 1e-8) # vector of gradient / partial d??

rivatives
9 # print("gradient")

10 # print(replace(result, sample(length(init),2), 0))
11 # return(replace(result,p, 0))
12 return(result)
13 }
14
15 x <- init # create a vector to contain all xs for all steps
16 x.All = numeric(iter)
17 tmp<-rep(0,length(init))
18 V=(1-lambda)*(gradient_1(x,objFun))ˆ2
19 # gradient descent method to find the minimum
20 for(i in seq_len(iter)){
21
22 V=lambda*V+(1-lambda)*(gradient_1(x,objFun))ˆ2
23 tmp = x - alpha*gradient_1(x,objFun)/sqrt(V)
24
25 if ( !is.nan(suppressWarnings(objFun(tmp))) ) {
26 x <- tmp
27 }
28
29 x.All[i] = x
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30 print(c(i,x,objFun(x)))
31 }
32
33 # print result and plot all xs for every iteration
34 print(paste("The minimum of f(x) is ", objFun(x), " at position x = ", x, sep = ""))
35 plot(x.All, type = "l")
36 }

Listing 3: Example of used RMSPROP R code

Figure 3. Example of RMSProp runing - Himmelblau’s function

5. Comparing performances

After presenting different variants of the descent gradient algorithm, we will try in this section to measure the performances
of the algorithms already presented. Firstly, we will define the convergence rate. After that, we give the results of those
algorithms applied in a benchmark of five test functions [39][40]. The used test functions are:

F1: Himmelblau’s function
F2: Rastrigin function
F3: Ackley function
F4: Sphere function
F5: Beale function

The formula of those functions could be found in the appendix. The following table classifies the used test functions:

Table 1. Classification of the used test functions

F1 F2 F3 F4 F5
Convexity No No No Yes No
Continuity Yes Yes Yes Yes Yes
Modality Multi Multi Multi Mono Multi
Separability No Yes No Yes No

The convergence rate of a sequence is the speed at which their terms converge to a certain unique value called the
sequence limit [41]. In our case, we consider that an algorithm is fast if the related number of iterations is small. The
accuracy is measured as the difference between the exact value of the minimum and the quantity we got using a variant
of descent gradient. In practice, some sequences converge quickly to the limit value but they lack in accuracy for a given
algorithm.

To conduct our experiments, the algorithms, and the used test functions are implemented under R language, we had chosen
[−6, 6]× [−6, 6] as a study domain and we executed 8× 105 iterations for each experiment. The initial point is usually
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(x, y) = (5, 5). Except for the classical gradient descent, only the stochastic versions of the previously presented algorithms
are tested. First, we deduct that the more α values are small, there is more chance that the error value will diminish for the
classical gradient descent and the algorithm will give accurate results.

On the other hand, the convergence speed will be slow for small values of α as shown in Table 2. The gradient descent
gives good results for both F1 & F4 but fails for F2 & F3. This is because F2 & F3 are characterized by a large number of
local minima regularly distributed and with and a large search space.

Table 2. Experiments results of the classical gradient descent

Test Function Classical gradient descent algorithm
α value Number ofiterations Value of X Value of Y f(x,y)

F1
0.1 102 1, 37× E37 −2, 92× E117 INF
0.001 102 2,99 1,99 8, 35× E − 15
0.00001 104 2,98 2,044 3, 05× E − 02

F2
0.1 1, 0127× 104 −5, 26× E − 03 −5, 26× E − 03 1, 10× E − 02
0.01 2× 104 2,72 2,72 38,52
0.00001 2× 104 4,97 4,97 49,74

F3
0.1 103 4.95 4.95 12,67
0.01 104 4.98 4.98 12,63
0.00001 105 4.98 4.98 12,63

F4
0.1 102 −3, 981× E − 09 −3, 981× E − 09 3, 17× E − 17
0.01 103 −3, 41× E − 09 −3, 41× E − 09 2, 33× E − 17
0.00001 9× 104 0,6766 0,6766 0,9157

F5
0.1 102 −2, 76× E220 −8, 27× E220 INF
0.01 102 −2, 58× E163 −7, 27× E163 INF
0.00001 104 3.31 0.43 0.487

Secondly, we conclude that the stochastic algorithm could deteriorate the results of the classical descent gradient version
whether or not we consider convex objective functions, which is the case for F1 and F2. Thus, the stochastic version should
be used only for large dimensions or for an objective function that is represented as a sum with a large number of terms.
The results deterioration is mainly explained by the fluctuations around the minimum because we shuffle components of the
gradient vector at the uniformly.

Table 3. Experiments results of the stochastic gradient descent algorithm

Test Function Stochastic gradient descent algorithm
α value Number ofiterations Value of X Value of Y f(x,y)

F1
0.1 102 4.79 -INF INF
0.01 103 3.33 0.42 12.4453
0.00001 2, 35× 103 3.13 1.95 0.5729

F2
0.1 105 -7.57 4.24 104.166
0.01 103 3.07 3.01 19.6097
0.00001 105 3.98 3.98 31.8392

F3
0.1 105 -0.43 0.32 3.695
0.01 103 3.98 3.98 10.998
0.00001 105 3.98 3.98 10.9982

F4
0.1 103 3.23E-66 3.23E-66 7.317E-127
0.01 103 1.14E-5 1.14E-5 1.47E-10
0.00001 3× 105 0.0726 0.0726 0.01078

F5
0.1 102 5.12 E+7 4.94 E+108 INF
0.01 102 5.16 +118 - 5.01 E+18 INF
0.00001 5× 103 3.223 0.6011 0.0928
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Third, the momentum version is suitable for F3 because a flat outer region and a large hole in the center characterize it,
but a bad choice of β could extremely influence the accuracy of the results. This remark explains the convergence difference
between F2 compared to F3 although the fact that both share the property of having a large number of local minima regularly
distributed. To obtain good results, we should avoid small values of α.

Fourthly, the adaptive version can give close results of the solutions (X,Y ) for each test function even with trying
different values of parameters (which is the case of F2 in Table 5). In the case we obtain close results for the objective
function, we can choose a high step as shown for F3 with α = 0.9 ( this sample will not be considered for khi-2 test to avoid
bias). The results of Table 5 illustrates that if we increase the value of the parameter α, we will get more chances to reach
the optimum.

Last, of all, the RMSPROP improves the performance of the adaptive version. The effect of using this version is clear for
F1. For F1, RMSPROP helped to ensure a stable convergence by continuing the navigation in the relevant directions and by
softening the oscillations in irrelevant directions.

For F2, this version gave close results which is the same effect of the Adagrad version. The remark illustrates the ability
of this version to deal with the sparsity of data. Increasing can lead to improving the convergence speed.

On the other hand, Both Adagrad and RMSPROP provide better performance for F3 compared to F2 due to the shape of
F3 where the global optimum is cavernous in the central hole. Based on our results, we notice that we should avoid small
steps for this category of objective functions (F2) because iterations can stick at a local minimum. Concerning a convex
problem, which is the case of F4, the results of convergence are acceptable even though the momentum provided the best
performance for the F4 function.

Table 4. Experiments results of the momentum gradient descent algorithm

Test Function Momentum gradient descent algorithm
α β Number of iterations Value of X Value of Y f(x,y)

F1

0.1 0.8 103 -7.24 E+249 -3.426 E+125 INF
0.9 103 -5.96 E+80 -1.773 E+160 INF

0.01 0.8 104 -2.823 1.9907 35.4199
0.9 103 1.47 E+157 -1.0297 E+104 INF

0.00001 0.8 103 3.1404 2.0055 0.7798
0.9 103 3.1225 2.0006 0.3821

F2

0.1 0.8 103 -14.84 -1.692 241.224
0.9 103 -5.873 -48.76 2424.65

0.01 0.8 103 5.6580 3.7445 71.8431
0.9 103 2.6223 -4.130 44.322

0.00001 0.8 103 3.9797 3.9797 31.8384
0.9 103 3.9797 3.9797 31.8384

F3

0.1 0.8 103 -0.227 -0.285 2.7622
0.9 103 47.003 15.425 21.6450

0.01 0.8 103 3.9830 3.9830 10.9982
0.9 103 -0.125 -0.703 3.4095

0.00001 0.8 104 3.9836 3.9833 10.9982
0.9 104 3.9834 3.9827 10.9982

F4

0.1 0.8 103 -1.018 E-43 1.1437 E-43 2.34524 E-86
0.9 103 2.3987 E-19 -5.401 E-18 2.54610 E-35

0.01 0.8 103 7.7307 E-47 -6.1495 E-46 3.84147 E-91
0.9 103 -1.639 E-22 -7.2746 E-24 2.69311 E-44

0.00001 0.8 103 3.7477 3.7386 28.022
0.9 103 3.4911 3.5076 24.4913

F5

0.1 0.8 103 -1.19 E+06 3.07 E+70 INF
0.9 103 1.74 E+204 -8.30 E+268 INF

0.01 0.8 103 1.26 E+59 -INF INF
0.9 103 2.74 E+59 -INF INF

0.00001 0.8 103 -2.87 E+221 -3.899 E221 INF
0.9 103 -8.04 E+213 1.04 E+24 INF
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Table 5. Experiments results of the Adagrad gradient descent algorithm

Test Function Adagrad gradient descent algorithm
α value Number of iterations Value of X Value of Y f(x,y)

F1
0.1 103 2.9501 2.0051 0.0858
0.01 2× 103 2.9087 2.2966 1.4549
0.00001 5× 103 3.9963 3.9963 248.565

F2
0.1 103 3.9797 3.9797 31.8384
0.01 102 3.9797 3.9797 31.8384
0.00001 105 3.9950 3.9550 31.9311

F3

0.1 103 3.9831 3.9829 10.9982
0.01 104 3.9830 3.9830 10.9982
0.00001 105 3.9951 3.9951 11.0059
0.9 104 -0.007 -0.0003 0.0226

F4
0.1 2× 103 0.1426 0.1174 0.03412
0.01 2× 105 0.0905 0.0907 0.01643
0.00001 105 3.9948 3.9948 31.9178

F5
0.1 2, 5× 104 1,8745 1,3606 49,47
0.01 2, 5× 104 2,3201 2,2900 960,13
0.00001 2, 5× 104 3,9918 3,9918 6, 7× 104

Our results of using RMSPROP are shown in Table 6 :

Table 6. Experiments results of the RMSPROP gradient descent algorithm

Test Function RMSPROP gradient descent algorithm
α γ Number of iterations Value of X Value of Y f(x,y)

F1

0.1
0.2 103 3.0022 1.9535 0.03398
0.5 102 3.0270 1.9555 0.03623
0.9 102 2.9682 2.0038 0.03467

0.01
0.2 103 2.9992 1.9853 0.00387
0.5 103 2.9911 2.0033 2.506 E-03
0.9 103 2.9953 2.0019 6.74723 E-04

0.00001
0.2 27× 103 2.9669 2.1321 0.26699
0.5 25× 104 2.9973 2.1536 0.36459
0.9 2, 32× 105 2.9629 2.1338 0.27431

F2

0.1
0.2 103 3.9336 3.9286 32.7521
0.5 103 3.9342 3.9022 33.3743
0.9 103 3.9179 4.0510 33.5714

0.01
0.2 103 3.9847 3.9737 31.8505
0.5 103 3.9713 3.9844 31.8565
0.9 103 3.9876 3.9746 31.8558

0.00001
0.2 104 3.9797 3.9797 31.8384
0.5 104 3.9797 3.9797 31.8384
0.9 104 3.9797 3.9797 31.8384

F3

0.1
0.2 103 0.0235 0.0438 0.2056
0.5 103 0.0072 0.0967 0.50688
0.9 103 -0.117 0.0570 0.7739

0.01
0.2 2, 9× 105 3.9574 4.0101 11.0350
0.5 3× 105 3.9713 3.9964 11.0067
0.9 2, 6× 105 3.9609 4.0044 11.0233

0.00001
0.2 2, 5× 105 3.9830 3.9830 10.9982
0.5 2, 7× 105 3.9830 3.9831 10.9982
0.9 2, 5× 105 3.9830 3.9830 10.9982

F4

0.1
0.2 103 0.0061 -0.060 0.0502
0.5 103 0.0519 0.0515 0.00535
0.9 103 -0.057 0.0588 0.00678

0.01
0.2 103 -0.051 0.0044 4.6057 E-5
0.5 103 0.0051 0.0063 6.7633 E-5
0.9 103 0.0055 -0.007 8.3653 E-05

0.00001
0.2 4, 3× 105 1.0226 1.0293 2.09721
0.5 4× 105 1.0459 1.0452 2.18655
0.9 3, 8× 105 0.9454 0.9485 1.7937

F5

0.1
0.2 102 1.820 0.03 0.90
0.5 102 2.120 0.1817 0.36
0.9 103 2.409 0.319 0.11

0.01
0.2 103 1.855 0.036 0.83
0.5 103 2.103 0.162 0.39
0.9 103 2.135 0.110 0.42

0.00001
0.2 105 3.308 3.307 1.54 E+4
0.5 105 3.262 3.262 1.38 E+4
0.9 105 3.198 3.195 1.18 E+4
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For now, we will define our approach to select the best variant depending on several criteria, and regardless of the
problem features. The khi-2 test is a statistical test where the test statistic follows a khi-2 law under the null hypothesis. This
test allows verifying the adequation of a series of observations to a probability law. We assume that the steps for applying
the khi-2 test are known for the reader.

The details of the khi-2 test could be found at [42]. The null hypothesis is formulated as follow:

H0: There is no dependence between the choice of the method variant type and the obtained convergence speed for the
considered test functions

Table 7 gives the number of choices of parameters for each method variant where the number of iterations required for
convergence is strictly less than 104 (which means: a constant ×103 ). We consider a variant very fast when this variant
requires that magnitude of iterations.

Table 7. The contingency table of the convergence speed

M1 M2 M3 M4 M5 Total
Fast convergence speed 7 10 27 7 28 79
Low convergence speed 8 5 3 8 17 41

Total 15 15 30 15 45 120

The khi-2 score for table 7 is equal to 12.95 > Chi-2(4, 0.02) = 11.66 which means that we can reject the null hypothesis.
Thus, the obtained convergence speed will depend on the choice of the gradient descent variant type. Similarly, we prove that
the accuracy metric will depend on the chosen variant type. Table 8 gives the associated contingency table of the accuracy
based on the conducted experiments:

Table 8. The contingency table of the accuracy

M1 M2 M3 M4 M5 Total
High accuracy 5 5 6 3 24 43
Low accuracy 10 10 24 12 21 77

Total 15 15 30 15 45 120

The khi-2 score for table 8 is equal to 10.98 > Chi-2(4, 0.05) = 9.48 which means that we can reject the null hypothesis
and we could deduct that the accuracy performance depends on the chosen variant. This justifies the need for classifying the
priority of usage for those variants. For this purpose, we had applied the AHP technique that is a multi-criteria analytical
approach for decision support. The process of using AHP is explained in detail at [43] [44]. The used criteria are accuracy,
convergence speed, robustness, and fluctuations. Those criteria characterize the performance of any numerical method
and are denoted in order as C1, C2, and C3 & C4. The used alternatives are the five gradient descent variants denoted
in order as M1, M2, M3, M4 & M5. The following table gives choices priorities based on criteria & alternatives performance:

Table 9. The priority of choices based on criteria and alternatives performance

C1 C2 C3 C4
M1 0,136 0,046 0,054 0,063
M2 0,062 0,105 0,054 0,045
M3 0,218 0,245 0,127 0,133
M4 0,062 0,105 0,258 0,258
M5 0,520 0,497 0,504 0,499

Note that the sum of each column is equal to 1. The matrix elements sum is equal to the number of criteria which is 4.
The priorities of actions for each alternative are presented in the next table:
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Table 10. The priority of usage based on criteria and alternatives performance

Gradient descent variant Priority of usage
M1 0,083853165
M2 0,076775086
M3 0,20924938
M4 0,1227359
M5 0,507386469

Total: 100%

We understand from previous tables that AHP results are coherent with the khi-2 test results. The RMSPROP has a
priority of 50.73% to be chosen for a random situation based on the elaborated judgment matrice. In the next section, we will
propose and test our hydride optimizer. This optimizer combines recursive random search with the stochastic RMSPRPOP.
This optimizer is built based on our understanding of the obtained experimental results for the considered gradient descent
variants.

6. Suggested hybrid optimizer

Because the accuracy of the compared versions usually depends on the chosen initial position x0 ∈ D for large search
domains and into the characteristics of the used test function. We will suggest and test our optimizer that is based on the
following suggested algorithms written in pseudo-codes :

Algorithm 1: Initial domain search n dim
Inputs : N , p , Lower boundaries vector , Upper boundaries vector ,Object fun

X = Uniform(N,min = Lower boundaries vector,max = Upper boundaries vector)

// we generate N points at uniform from the n-dimensional study domain defined by
Lower boundaries vector and Upper boundaries vector. Those vectors have the same length, which is
equal to n.

Y = matrix(data = X,nrow = N,ncol = n)

// we store those N points in a matrix with n columns and N rows where the rows represent the
n-dimensional points. The columns represent the dimensions of the n-dimensional space.

Outer = Object fun(Y )

// we compute the objective function values for all of those N points present in the matrix Y rows. After
that, we add Outer after the last column of Y with Cbind.

Y=Cbind (Y, Outer)

P minimum values = Subset(Y, Sort(Outer[1 : p]))

// we retrieve the p-points in the n-dimensional space from Y rows that are minima in term of Object fun
values. P minimum values is a submatrix of Y.
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Lower boundaries=apply (P minimum values, 1, min)

// we retrieve the minimum of each column of the matrix P minimum values. Those minima present the
lower-boundaries of the new reduced domain study.

Upper boundaries=apply (P minimum values, 1, max)

// we retrieve the maximum of each column of the matrix P minimum values.

New domain= Cbind (Lower boundaries, Upper boundaries)

// we place the vectors Lower boundaries and Upper boundaries in columns of the matrix New domain.
Each row presents the boundaries of the new domain in the respective dimension.

Outputs : New domain

Example of R outputs for a 3-d domain study [−4.5, 4.5]3:

Initial search domain function pdim (8, 5, c (-4.5,-4.5,-4.5), c (4.5, 4.5, 4.5), rastrigin)

Figure 4. Example of the proposed algorithm 1 outputs

The algorithm 1 starts by retrieving for each dimension the lower and the upper boundaries. First, the algorithm generates
N points at uniform from the study domain defined by the two boundaries vectors then it computes the corresponding
objective function values for those N points. Secondly, we subset the p points that are minima in term of the used objective
function. After that, we identify for each objective function variable/column the minimum and the maximum values. Those
values represent the boundaries of the new study domain, which is the output of algorithm 1.

Concerning the algorithm 2, we call the first algorithm recursively in a number of iterations that is given as input. The
purpose is to reduce the study domain as possible to obtain an initial point. In each iteration of the algorithm 2, we adjust
the boundaries by adding a very small quantity p/N to the Upper boundaries vector and we subtract the same quantity from
the Lower boundaries vector. Those adjusted vectors will be the inputs for the upcoming call of algorithm 1 and the number
of iterations will decrease by one. In each iteration, we retrieve the column where the objective function is minimum. This
column represents the current obtained initial point and algorithm 2 continues until the stopping condition is met. The output
of the algorithm 2 is the initial point vector that will be used by stochastic RMSPROP to solve the optimization problem.

The next figure gives an example of algorithm 2 result :
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Example of R outputs for a 3-d domain study [−4.5, 4.5]3(the obtained initial point is in green):

Initialization (3, 40, 5, c (-4.5,-4.5,-4.5), c (4.5, 4.5, 4.5), rastrigin)

Figure 5. Example of the proposed algorithm 2 outputs

Algorithm 2: Initialization // recursive search

Inputs : Nbre iterations, N, p, Lower boundaries vector, Upper boundaries vector, Object fun

D=Call Initial domain search n dim (N, p, Lower boundaries vector, Upper boundaries vector, Object fun)

// we initialize the matrix D by calling Algorithm 1

Init sol=D [, D [nrow(D),] == min (D [nrow(D),])]

// we retrieve from D the unique column where the objective function Obj-val is minimum

D=D [- nrow (D),]

// we delete the last row of D that contains the objective function values (Obj-val).

Repeat {

MIN t = D [, 1] - p/N

MAX t = D [, 2] + p/N

// we substruct the quantity p/N from the first column of D (L boundaries)

// we add the quantity p/N to the second column of D
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Nbre init iteration=Nbre init iteration-1

// The remaining number of iterations is Nbre init iteration, we substruct 1 in each call

If (Nbre init iteration == 0) {

Return (Init sol)

Break

// we break the function Initialization if the condition is meet and we return the initial solution Init sol

}

D=Call Initialization (Nbre init iteration, N, p, MIN t, MAX t, Objfun)

// Algorithm 2 is called recursively until Nbre init iteration variable is equal to zero.

}

Outputs : Init sol

The next algorithm presents the suggested hybrid optimizer :

Algorithm 3: Hybrid Stochastic RMSPROP optimizer with random search initialization for large domains

Inputs : Nbre iterations, N, p, Lower boundaries vector, Upper boundaries vector, Object fun, α, γ.

X init = Call Initialization (Nbre iterations, N, p, Lower boundaries vector, Upper boundaries vector,
Object fun)

X sol= Call Stochastic RMSPROP (X init, α, γ)

// The final obtained solution of the proposed hybrid optimizer

Outputs : X sol

Our optimizer starts by reducing recursively the study domain in a number of iterations Nbre iterations (which is the
role of algorithm 2). After reporting an initial solution by algorithm 2, the hybrid optimizer uses the stochastic version of
RMSPROP to obtain an accurate solution to the problem for the considered objective function.

To improve the solution X sol we obtained by the proposed hybrid optimizer, we suggest applying a number of operations
such as : replacing all this vector components by the minimum / maximum values , integer part of components , rounding of
values , etc. The purpose of algorithm 4 ( presented as R code ) is to compare some possible modifications of the obtained
solution . The output of algorithm 4 is a solution better than X sol :

1
2
3 Improvement<-function(x_sol, objFun ,rounds_to_try){
4 # x1 to x10 represent the possible improvements we could make .
5
6 x1=x_sol # The first row of M : The solution x_sol itself
7 x2=rep(min(x_sol),length(x_sol)) # The second row of M : replace all x_sol components by

its minimum
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8 x3=rep(max(x_sol),length(x_sol)) # The third row of M : replace all x_sol components by its
maximum

9 x4=as.integer(x_sol) # For each of x_sol components , we replace the component
by the integer part

10
11 x5=ceiling(x_sol) # ceiling() takes a single numeric argument x and returns a numeric vector

containing the smallest integers not less than the corresponding elements of x.
12
13 x6=rep(min(ceiling(x_sol)),length(x_sol))
14 x7=rep(max(ceiling(x_sol)),length(x_sol))
15
16 x8=floor(x_sol) # floor() takes a single numeric argument x and returns a numeric vector

containing the largest integers not greater than the corresponding elements of x.
17
18 x9=rep(max(floor(x_sol)),length(x_sol))
19 x10=rep(min(floor(x_sol)),length(x_sol))
20
21 # Trying to round solution
22 c11=round(x_sol, digits = 0)
23
24 for (i in 1:rounds_to_try){
25 c11=rbind(c11,round(x_sol, digits = i)) # The i-th row of c11 contains the roundig of x_sol

until the i-th digit
26
27 }
28 M=rbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11) # we rowbind the possible improvements / we

store them in the matrix M rows .
29
30 M=cbind(M,"Objfun"=apply(M,1,objFun)) # For each row / possible improvement , we compute the

objective value associated with the row
31
32 X_improved=M[order(M[,"Objfun"], decreasing = FALSE),][1,]
33 print("Decision") # We print the best improvement we had made
34 print(X_improved)
35 print("Matrix of possible improvements") # We print the matrix M
36 print(M)
37
38 return(X_improved)
39 }

Listing 4: Algorithm 4 - Improving the hybrid optimizer solution by rounding operations

6.1. principles analysis of the suggested optimizer

To present how our algorithm is efficient, we should first mention that the used two-stages algorithm combines a slightly
modified random search version with the accuracy features of the RMSprop. The input of the proposed optimizer is an
n-dimensional volume. First of all , the algorithm 1 samples N points and retireve the p vectors with the minimum objective
values. Secondly , the p vectors are stored in a matrix Y where columns represents the n-dimensions and rows represents
the p vectors. Therefore , we retrieve for each column of the Y matrix its minimum and its maximum. The combining of
those minima and maximas represents the new rectangluar search domain.

Given an interval [a, b] In one-dimensional , consider a sample of N points drawn at uniform such that :
S1 = {x1, x2, ..., xN} then consider its graph G={(x1, f(x1), ..., (xN , f(xN )} where :

f(x1) ≥ f(x2)... ≥ f(xN ) and xN ≥ ... ≥ xN−p ≥ ... ≥ x1 ( Without losing of generality ).

Then , for the global solution x∗ :

P (x
(1)
min ≤ x∗ ≤ x

(1)
max) =

x(1)
max−x

(1)
min

b−a
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Such that S1 boundaries are : x(1)min = min{S1} and x
(1)
max = max{S1} ( the power index (1) represents the current

iteration ).

As explained at [45] , consider a region of v = 5% around the minimum , the drawn sample has a chance of 5% in landing
within the minimum interval. The probability that all of the N points miss the desired interval is :

(1− v)N = (1− 0.05)N

So the probability of the N points to miss the desired interval is : 1− (1− v)N . As we want a confidence level of 95%
then we should have : 1− (1− v)N > 0.95 ⇒ N = 60

Now consider the points S2 = {xN−p..., xN} which represents the obtained p minimum values of the first iteration.
Suppose that the upper boundaries of search domain for the second iteration are : x(2)min = xN−p and x

(2)
max = xN .

For the set S2 , we are sure with 95% that at least one element is belongign to the minimum region . By adding
a fluctuation term of p/N , we avoid situations where x∗ isn’t within S2 boundaries [L(2) = x

(2)
min;U

(2) = x
(2)
max].

Now consider the search domain of the third iteration [L(2) − p/N ;U (2) + p/N ] and sample N points again uniformly.
Construct the new interval [L(2);U (2)] and correct it to be [L(3) − p/N ;U (3) + p/N ].

Repeat this procedure nbre iterations times until reaching the last iteration. After that , Report the solution with the
minimum objective value denoted x init. This solution will be improved by the Rmsprop variant.

For proving the convergence accuracy of the stochastic RMSPROP, we refer the reader to [46]. We had tested our
optimizer in several multi-dimensional test functions that vary on their complexity and some of the obtained results are given
in table 11 .

6.2. Illustration example
To illustrate how our algorithm works, we will consider the simple 4d sphere function case ( n=4 ).

The study domain is [−6, 6]4 = [−6, 6]× [−6, 6]× [−6, 6]× [−6, 6]( it represents the optimizer input ) so boundaries
of the search domain are : Lower boundaries vector = (-6,-6,-6,-6) and Upper boundaries vector = (6,6,6,6)

The used parameters are : N iter=3 , N=7 , p=2 , Lower boundaries vector=rep(-6,4) , Upper boundaries vector=rep(6,4) ,
Objfun=Sphere 1 pdim , Rmsprop iter=1000 , alpha = 0.1 , lambda=0.9 , rounds to try=10

From this domain [−6, 6]4 , we will sample in each iteration N = 7 vectors ( belonging to 4-dimensional space )
and we will report the p = 2 vectors such as the objective values represents the p lowest values of the matrix Y ( The two first
rows ).

After obtaining a sub-matrix of Y with p rows , we will retrieve the minimum and maximum of each column. The next
step is to subtract the quantity p/N = 3/7 = 0.285. We obtain the New search domain ( used in the next iteration 2 )
then we repeat the same procedure N iter = 3.

In the last iteration N iter = 3 , we consider the actual New search domain then we report the column
with the minimum objective value. This columns is the initial solution X init that will be used by the RMSPROP
( We run Rmsprop (X init, α, λ) Rmsprop iter = 1000 times ).

After running RMSPROP , we obtain X sol ( which is the algorithm 3 output ). We improve this solution by applying
several rounding operations ( We obtain the X improved solution ).

The next R output illustrates that our conceived optimizer was able to obtain the exact solution of the 4-dimensional
sphere function :

1 [ 1 ] ” p /N” ” p=2” ”N=7” ” n=4” ”0 .285714285714286”
2 [ 1 ] ” Y m a t r i x : We had c r e a t e d N=7 v e c t o r s , The l a s t column r e p r e s e n t s t h e o b j f u n v a l u e ”
3 X1 X2 X3 X4 o b j f u n
4 [ 1 , ] 0 .02317865 0 .7321702 4 .548808 −1.7116222 24 .15791
5 [ 2 , ] 3 .11638165 −3.7814377 2 .502486 4 .4049393 49 .67703
6 [ 3 , ] −1.48218395 3 .8111884 3 .514621 5 .4698777 58 .99415
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7 [ 4 , ] 4 .49967960 0 .4711529 −3.227314 −5.5347297 61 .51789
8 [ 5 , ] −2.57771804 −4.7701161 −2.364299 −5.4679915 64 .88748
9 [ 6 , ] 5 .92790742 −2.9609501 −5.290385 0 .6381693 72 .30275

10 [ 7 , ] −5.65442471 4 .9268807 −5.455438 5 .6672393 118 .12608
11 [ 1 ] ”We s e l e c t e d t h e f i r s t p−rows ”
12 Y o b j f u n
13 [ 1 , ] 0 .02317865 0 .7321702 4 .548808 −1.711622 24 .15791
14 [ 2 , ] 3 .11638165 −3.7814377 2 .502486 4 .404939 49 .67703
15 [ 1 ] ” i t e r a t i o n 1”
16 [ 1 ] ” New search domain ”
17 L bound U bound
18 X1 −0.2625356 3 .402096
19 X2 −4.0671520 1 .017884
20 X3 2.2167714 4 .834522
21 X4 −1.9973365 4 .690654
22 Objfun 25 .5140791 57 .985182
23
24 [ 1 ] ” p /N” ” p=2” ”N=7” ” n=4” ”0 .285714285714286”
25 [ 1 ] ” Y m a t r i x : We had c r e a t e d N=7 v e c t o r s , The l a s t column r e p r e s e n t s t h e o b j f u n v a l u e ”
26 X1 X2 X3 X4 o b j f u n
27 [ 1 , ] 1 .555821678 −0.6240687 2 .599677 −0.2381384 9 .625071
28 [ 2 , ] 0 .504681790 −2.6029133 3 .128620 0 .8054785 17 .466920
29 [ 3 , ] 3 .027363246 −0.3299426 2 .959313 −1.3225050 19 .780341
30 [ 4 , ] 2 .302834340 −0.7104443 4 .091197 2 .3137839 27 .899270
31 [ 5 , ] 0 .467910245 −2.7245188 4 .674959 2 .5998943 36 .256637
32 [ 6 , ] −0.004128654 −0.8988267 4 .084195 4 .5336900 38 .042899
33 [ 7 , ] 2 .379866222 −1.4864051 4 .112094 4 .4163327 44 .286476
34 [ 1 ] ” We s e l e c t e d t h e f i r s t p−rows ”
35 Y o b j f u n
36 [ 1 , ] 1 .5558217 −0.6240687 2 .599677 −0.2381384 9 .625071
37 [ 2 , ] 0 .5046818 −2.6029133 3 .128620 0 .8054785 17 .466920
38 [ 1 ] ” i t e r a t i o n 2”
39 [ 1 ] ” New search domain ”
40 L bound U bound
41 X1 0.2189675 1 .8415360
42 X2 −2.8886276 −0.3383544
43 X3 2.3139623 3 .4143342
44 X4 −0.5238527 1 .0911928
45 Objfun 14 .0209595 16 .3541182
46
47 [ 1 ] ” p /N” ” p=2” ”N=7” ” n=4” ”0 .285714285714286”
48 [ 1 ] ” Y m a t r i x : We had c r e a t e d N=7 v e c t o r s , The l a s t column r e p r e s e n t s t h e o b j f u n v a l u e ”
49 X1 X2 X3 X4 o b j f u n
50 [ 1 , ] 1 .3125472 −0.7363105 2 .361524 0 .5717645 8 .168643
51 [ 2 , ] 0 .5649406 −2.4966890 2 .635841 −0.4315972 13 .686547
52 [ 3 , ] 1 .5607746 −1.9408374 2 .801027 −0.2324693 14 .102661
53 [ 4 , ] 1 .2189323 −1.6282879 3 .199503 −0.2039405 14 .415526
54 [ 5 , ] 0 .9168073 −2.6514770 2 .640698 0 .9584484 15 .762775
55 [ 6 , ] 1 .6821103 −2.7172811 2 .423547 −0.4962821 16 .332989
56 [ 7 , ] 0 .6916646 −2.4129567 3 .311227 −0.5232971 17 .538824
57 [ 1 ] ” i t e r a t i o n 3”
58 [ 1 ] ” We s e l e c t e d t h e f i r s t p−rows ”
59 Y o b j f u n
60 [ 1 , ] 1 .3125472 −0.7363105 2 .361524 0 .5717645 8 .168643
61 [ 2 , ] 0 .5649406 −2.4966890 2 .635841 −0.4315972 13 .686547
62 [ 1 ] ” New search domain ”
63 L bound U bound
64 X 0.2792264 1 .5982614
65 −2.7824033 −0.4505962
66 2 .0758096 2 .9215552
67 −0.7173115 0 .8574788
68 Objfun 12 .6432568 12 .0282310
69
70 ” A l g o r i t h m e 2 o u t p u t ( I n i t i a l i z a t i o n p h a s e : Th i s s o l u t i o n w i l l be t h e s t a r t p o i n t o f RMSPROP ) : ”
71
72 [ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
73 [ 1 , ] ”1 .59826143695565” ” −0.450596205313941” ”2 .92155516538981” ”0 .857478781442245”
74
75
76 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77
78 ” A l g o r i t h m e 3 o u t p u t ( Hybr id s t o c h a s t i c RMSPROP o p t i m i z e r wi th random s e a r c h i n i t i a l i z a t i o n ) : ”
79
80 [ 1 ] ” The minimum of f ( x ) i s 0 .00926212229767579 a t p o s i t i o n x = −0.0457854473974009”
81 [ 1 ] ” X so l ”
82 [ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
83 [ 1 , ] −0.04578545 0 .0312465 7 .579842 e−07 0 .07867319
84
85 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86
87 [ 1 ] ” D e c i s i o n a f t e r improvement phase ( The o p t i o n a l a l g o r i t h m 4 ) ”
88 [ 1 ] ” X improved ”
89 Objfun
90 0 0 0 0 0
91 [ 1 ] ” Tab le o f p o s s i b l e improvements we made ( a l g o r i t h m 4 ) ”
92 Objfun

Stat., Optim. Inf. Comput. Vol. 9, September 2021



650 A NEW HYBRID OPTIMIZER FOR GLOBAL OPTIMIZATION

93 x1 −0.04578545 0 .03124650 7 .579842 e−07 0 .07867319 0 .009262122
94 x2 −0.04578545 −0.04578545 −4.578545e−02 −0.04578545 0 .008385229
95 x3 0 .07867319 0 .07867319 7 .867319 e−02 0 .07867319 0 .024757886
96 x4 0 .00000000 0 .00000000 0 .000000 e +00 0 .00000000 0 .000000000
97 x5 0 .00000000 1 .00000000 1 .000000 e +00 1 .00000000 3 .000000000
98 x6 0 .00000000 0 .00000000 0 .000000 e +00 0 .00000000 0 .000000000
99 x7 1 .00000000 1 .00000000 1 .000000 e +00 1 .00000000 4 .000000000

100 x8 −1.00000000 0 .00000000 0 .000000 e +00 0 .00000000 1.000000000
101 x9 0 .00000000 0 .00000000 0 .000000 e +00 0 .00000000 0 .000000000
102 x10 −1.00000000 −1.00000000 −1.000000 e +00 −1.00000000 4 .000000000
103 x11 0 .00000000 0 .00000000 0 .000000 e +00 0 .00000000 0.000000000
104 −0.05000000 0 .03000000 0 .000000 e +00 0 .08000000 0.009800000
105 −0.04600000 0 .03100000 0 .000000 e +00 0 .07900000 0.009318000
106 −0.04580000 0 .03120000 0 .000000 e +00 0 .07870000 0.009264770
107 −0.04579000 0 .03125000 0 .000000 e +00 0 .07867000 0.009262256
108 −0.04578500 0 .03124600 1 .000000 e−06 0 .07867300 0 .009262020
109 −0.04578540 0 .03124650 8 .000000 e−07 0 .07867320 0 .009262119
110 −0.04578545 0 .03124650 7 .600000 e−07 0 .07867319 0 .009262122
111 −0.04578545 0 .03124650 7 .580000 e−07 0 .07867320 0 .009262122
112 −0.04578545 0 .03124650 7 .580000 e−07 0 .07867319 0 .009262122
113 Objfun
114 0 0 0 0 0

For this simple case , the next figure presents the evolution for each component based on the number of iterations. Each
curve represents one of the 4 dimensions :

Figure 6. Convergence plot of the conceived optimizer for the 4-d shpere function based on number of
iterations
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(a) Alpin ( dim = 10 ) (b) Beale ( dim = 2 )

(c) Colville ( dim = 4) (d) Brown ( dim = 10 )

Figure 7. Convergence plots of the conceived hybrid optimizer based on iterations number : part-1
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(a) Himmelblau’s ( dim = 2 ) (b) Rastrigin ( dim = 8 )

(c) Rosenbrock ( dim = 9 ) (d) Schaffer ( dim = 2 )

Figure 8. Convergence plots of the conceived hybrid optimizer based on iterations number : part-2
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(a) Sphere ( dim = 13 ) (b) Ackley ( dim = 2 )

(c) Sheckel ( dim = 4 )

Figure 9. Convergence plots of the conceived hybrid optimizer based on iterations number : part-3
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The figures 7 , 8 and 9 represents the convergence plots of the used test functions. Those plots were drawn
using the R ggplot2 package. For each of the used test functions, the curves represents the evolution of each
component/dimension based on the number of iterations. In order to measure the convergence speed and the accuracy of
the conceived optimizer, we had chosen the following performance metrics in addition to the CPU time [47] :

MAE =
1

n

n∑
i=1

|xopti − x̂i| (12)

and :

MPE =
1

n

n∑
i=1

xopti − x̂i

xopti

(13)

where xopti is the i-th component of the true optimum for the concerned test function and x̂i is the i-th component of the
computed solution by the algorithm. Note that the drawback of MPE measure is that it is undefined whenever a single
actual value /denominator is zero as mentioned in [48]. The next table gives the obtained performances results :

Table 12. Summary of the conceived optimizer performance measures

Test function CPU Mean time ( sec ) MAE MPE
Himmelblaus 0.036 0.01556404 0.00143391
Rastrigin 0.10 0.25610 Undefined
Ackley 0.032 2.580055e-08 Undefined
Sphere 0.020 4.14798e-10 Undefined
Beale 0.056 0.0097928 -0.00850469
Shekel 0.028 0.002322220 -9.642327e-05
Brown 0.064 0.000611665 Undefined
Rosenbrock 0.048 0.00997344 0.0241082
Alpin 0.059 0.32422425 Undefined
Colville 0.055 0.03273932847 0.028292086948
Schaffer 0.040 9.355678e-07 Undefined

To analyze the obtained convergence speed and the accuracy results, we should first remember the reader that the main
purpose is to find an approximate solution in large search domains. Our hybrid optimizer context is for global search
optimization which is totally different from the local search context. If we go back to table 6, the classical RMSPROP
alone wasn’t able to converge for the rastrigin n-dimensional function and the obtained objective value was f(x, y) = 31.85
which is far from the optimum and this is just for a two-dimensional problem. Our suggested optimizer was able to solve
the rastrigin problem in 8-dimensions with an error of MAE = 0.25610. This error is very small and acceptable compared
to the search domain and taking into account the truncation error which means that the real error is strictly lower than the
MAE value of the rastrigin problem. Concerning the Schaffer and Alpin functions, the objective value at the true optimum
is equal to zero. The proposed hybrid optimizer was able to minimize the objective values for those functions to be equal
respectively to 5.551115123e-15 and 0.02013423150 for the large study domains [−100, 100]2 and [0, 10]10. The proposed
hybrid optimizer consumes fewer resources of CPU time/number of iterations compared to the classical stochastic RMSPOP.

The results of table 12 shows that the suggested optimizer is able to find relevant approximate solutions for the considered
artificial landscape problems.

After finding the approximate solution in global search, any other local search optimizer algorithm as well as our suggested
optimizer, could be used by the practitioner if he desires to improve the obtained solution accuracy. It should be mentioned
that among the used test functions , there are functions that vary greatly locally ( which are sensitive to small variations of
the input space ). This will result in rapid amplification of the objective function locally for small perturbation. Using the
suggested algorithm 4 , we were be able to improve the accuracy of the obtained solutions. The results are presented in
table 13 :
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Table 13. Final obtained solutions after using the optional algorithm 4

Test function Real solution Final obtained solution ( algorithm 4) Error
Himmelblaus (3,2) (3,2) 0
Rastrigin (0, . . . 8 times . . . ,0) (0, . . . 8 times . . . ,0) 0
Ackley (0,0) (0,0) 0
Sphere (0, . . . 13 times . . . ,0) (0, . . . 13 times . . . ,0) 0
Beale (3,0.5) (2.980414,0.494759) 0.02027509
Shekel (4,4,4,4) (4,4,4,4) 0
Brown (0, . . . 10 times . . . ,0) (0, . . . 10 times . . . ,0) 0
Rosenbrock (1, . . . 9 times . . . ,1) (1, . . . 9 times . . . ,1) 0
Alpin (0, . . . 10 times . . . ,0) (0, . . . 10 times . . . ,0) 0
Colville (1,1,1,1) (1,1,1,1) 0
Schaffer (0,0) (0,0) 0

Except the case of the beale function , the algorithm 4 was able to find the exact solutions. In the next section, we will
propose two real applications of the proposed hybrid optimizer. Those applications concern the mechanical and the biology
fields.

7. Real applications

7.1. Mechanical application
Consider the mechanical problem of a beam embedded on one side and subjected to a concentrated load P on the other. The
beam has a length l. Its material has Young’s modulus E and the section has an inertia I.This structure is modeled by a beam
element of the Bernoulli type of length l, whose degrees of freedom in the xOy plane are the two rotations θ1 and θ2 as well
as the two translations V1 and V2. The purpose is to minimize the potential energy stored in the structure is given by the
sum of the internal energy and the work of the applied loads, also called compliance. The objective function is formulated
as described in [49][50] with the limit conditions : θ1 = 0 and V1 = 0.

If we consider x1 = V2 , x2 = θ2l and Pl3

EI = 1, then the objective is to minimize in [−5, 5]2 :

Π = EI
2l3

(12 V 2
2 + 4θ22l

2 − 12 V2lθ2) + PV2

which is equivalent to minimize:

f(x1, x2) = 12x21 + 4x22 − 12x1x2 + 2x1

The true optimum is at (x1, x2) = (−1
3 , −1

2 ) with f(x1, x2) = −0.3333...

Using the suggested hybrid algorithm with parameters ( N = 20 , p = 2 , α = 0.01 , γ = 0.98 ) and a total of 56
iterations, we had found :

x1 = −0.3331000 , x2 = −0.4996330

with :

f(x1, x2) = −0.3333332 , CPU time = 0.019s , MAE = 0.0003001666 and MPE = −0.00071699999

7.2. biology application
In a biology experiment, we study the relationship between the concentration of the substrate [S] and the reaction rate in an
enzymatic reaction from data reported in the following table [51]:
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Table 14. Experimental data for an enzymatic reaction

index 1 2 3 4 5 6 7
S 0.038 0.194 0.425 0.626 1.253 2.500 3.740

rate 0.050 0.127 0.094 0.2122 0.2729 0.2665 0.3317

The purpose is to find the optimal non-linear regression parameters for the following model :

rate =
Vmax.[S]
KM+[S]

The minimum least squares optimization concerns the parameters Vmax and KM . The true optimal parameters are :

Vmax = 0.362 and KM = 0.556.

Using the suggested hybrid optimizer with the parameters (N = 40 , p = 5 , α = 0.01 , γ = 0.9 ) and a total
of 55 iterations , we had found :

x1 = 0.368628885411317 , x2 = 0.584903810979226

with :

MSE = 0.00787198729199282 , CPU time = 0.044s , and MAE = 0.005866082032

In this application, we used the same study domain of the previous mechanical problem as input for the suggested hybrid
optimizer. The next figures give the convergence plot for those applications :

(a) Mechanical application ( dim = 2 ) (b) Biology application ( dim = 2 )

Figure 10. Convergence plots of the conceived hybrid optimizer for the two real applications : Part-1
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Figure 11. Convergence plots of the conceived hybrid optimizer for the two real applications : Part-2

8. Discussion and conclusion

In this paper, we had compared some variants of the well-known descent gradient algorithm in a benchmark of five
test functions. We proved a statistical test using 120 experiments samples that the performance metrics depend on the
chosen version of the algorithm regardless of the considered problem features. After that, we have arranged those variants
based on their usage priority using the AHP decision technique in two-dimensional. We had found that RMSPROP
has a priority of usage equal to 50.73%. Based on those results that are coherent with previous related works, we
suggested a new hybrid optimizer that combines a recursive random search of initial points and the accuracy features
of the stochastic RMSPROP. The features of the conceived algorithm consist of its ability to use the given study
domain as input in addition to reaching approximate solutions for global optimization problems with the use of fewer
resources. In a benchmark of 11 multi-dimensional test functions that vary on their complexity and dimensionality, we
proved that our hybrid algorithm can effectively reduce useless iterations of the classical stochastic RMSPROP, which
results in faster convergence speed. The simulation results of the new proposed hybrid algorithm show the obtention
of accurate and significant results for the considered test functions in large search domains. Two real applications
of mechanical and biology fields were proposed.
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Appendix :Test functions

The used test functions are from : [39, 40, 52, 53]

Test function Study domain Formula Global minimum at
Rastrigin

( dim = n ) −5.12 ≤ xi ≤ 5.12 f(x1 · · ·xn) = 10n+

n∑
i=1

(x2
i − 10cos(2πxi)) f(0, · · · , 0) = 0

Ackley
( dim = 2 ) −5 ≤ xi ≤ 5

f(x0 · · ·x2) =− 20exp(−0.2

√√√√1

2

2∑
i=1

x2
i )

− exp(
1

2

n∑
i=1

cos(2πxi)) + 20 + e

f(0, 0) = 0

Rosenbrock
( dim=n ) RN f(x1 · · ·xn) =

n−1∑
i=1

(100(x2
i − xi+1)

2 + (1− xi)
2) f(1, 1, · · · , 1) = 0

Sphere
(dim = n ) RN f(x1 · · ·xn) =

n∑
i=1

x2
i f(0, · · · , 0) = 0

Beale
( dim = 2 ) −4.5 ≤ xi ≤ 4.5

(1.5− x+ x.y)2 + (2.25− x+ x.y2)2

+ (2.625− x+ x.y3)2
f(3, 0.5) = 0

Alpine
( dim = n) 0 ≤ xi ≤ 10

∑n
i=1 | xi.sin(xi) + 0.1.xi | f(0, · · · , 0) = 0

Brown
( dim = n) −1 ≤ xi ≤ 4

n−1∑
i=1

[(x2
i )

(x2
i+1+1) + (x2

i+1)
(x2

i+1)] f(0, · · · , 0) = 0

Schaffer
( dim = 2 ) −100 ≤ xi ≤ 100 f(x, y) = 0.5 +

sin(x2 − y2)− 0.5

[1 + 0.001 · (x2 + y2)]2
f(0, 0) = 0

Colville
( dim = 4) −10 ≤ xi ≤ 10

100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2

+ 90(x2
3 − x4)

2 + 19.8(x2 − 1).(x4 − 1)

+ 10.1((x2 − 1)2) + (x4 − 1)2))

f(1, 1, 1, 1) = 0

Himmelblaus −6 ≤ xi ≤ 6 (x2 + y − 11)2 + (x+ y2 − 7)2

f(3, 2) = 0
f(−2.805..., 3.131) = 0
f(−3.779...,−3.283) = 0
f(3.584...,−1.848) = 0

Shekel
( dim = 4) 0 ≤ xi ≤ 10 f(x) = −

m∑
i=1

4∑
j=1

((xj − Cji)
2 + βi)

−1 f(4, 4, 4, 4) = −10.5364

Shekel function parameters :

m=10

C =

4.00 1.00 8.00 6.00 3.00 2.00 5.00 8.00 6.00 7.00
4.00 1.00 8.00 6.00 7.00 9.00 3.00 1.00 2.00 3.60
4.00 1.00 8.00 6.00 3.00 2.00 5.00 8.00 6.00 7.00
4.00 1.00 8.00 6.00 7.00 9.00 3.00 1.00 2.00 3.60



β = 1
10 [1, 2, 2, 4, 4, 6, 3, 7, 5, 5]

T
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