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Abstract An important aspect of improving software system is testing. However, it is time demanding and
sometimes labour intensive if done manually. In this paper, we developed an automatic search-based approach
for testing the non-functional properties of a software system using hybrid harmony search and particle swarm
optimization algorithms. The approach birthed a new algorithm named HSPSO, which is proposed based on the
strength of HS over Genetic algorithm (GA) in terms of less adjustable parameters, quick convergence and smooth
implementation. On the other hand, we propose the PSO to complement the drawback of HS in terms of time
consumption problem. Besides, we used four programs for the comparative efficiency analysis of the proposed
algorithm in relation to competing algorithms based on average branch coverage and execution time. The results
from the analysis showed that the HSPSO algorithm was able to achieve 100% average coverage with a fewer
number of generated test cases and under limited execution time.
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1. Introduction

Software testing identifies the test cases which determine errors or detect the presence of a fault in the
program, which eventually causes software failures [1, 2, 3]. The process of testing any software system is a
tedious task which is expensive and time-consuming; almost 50% of software system development resources
used while adding nothing to the raw functionality of the final product [4]. Moreover, the increase in the
difficulty in the growth of software has directed the clients to demand higher quality software. Thus it
was noticed that properties concerning non-functionalities in software need to be considered as a primary
factor in the developmental process. However, it was also observed that several software systems failed due
to higher inadequacies in these properties [5]. Previous studies shows that non- functional part are treated
as properties or traits of completed programming to be considered among software engineering researchers
[6]. Software testing is generally used to estimate the quality of a software system where the condition
is defined as a functional attribute on the behaviour of the system and non-functional requirements
such as reliability, efficiency, portability, maintainability, compatibility, and usability [8]. Consequently,
software test is comprised of two significant components, such as an input to the executable program and
a definition of the expected outcome [9]. Nevertheless, it is essentially importance to maintain the number
of test cases as smallest as possible and ensure that the generated test inputs covers as many lines of
codes as possible [3]. Moreover, since human testers perform these tasks, several errors were noticed to
occur [10]. Therefore, it is necessary to consider search-based methods incorporated with criteria, such
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as branch or method coverage to extent the effectiveness of a test case and optimize such that there are
no faults exist [11]. Hence, it is necessary to develop an exhaustive testing technique for efficient testing
of non-functional properties of the software system [12]. Current researches observed the significance
of non-functional search-based software testing (NFSBST) [13]. There by allowing the identification of
potential non-functional properties suitable for applying numerous techniques that provides a general view
of existing non-functional properties using metaheuristic search techniques. In this study, the existing non-
functional properties were identified and reviewed based on the properties to determine the constraints
and limitations. The study seeks to extend the early optimistic results by applying NFSBST to larger
real world systems towards a generalization of results. According to [12], it is required to identify various
software systems to which search-based software testing might be useful to correlate with a set of non-
functional properties . Besides poor productivity, slow processing, high cost, and low quality were found
to be the issues in the software system [6]. This will provide list out a set of challenges and suggestions to
solve them. However, the data needed for the research is considered as a prime concern. Therefore, it is
necessary to extend the idea such that would lead to the formulation of a framework for Non-functional
Search-based Software Testing (NFSBST). Moreover, a larger framework will provide the identification
of diverse information.

An extensive review in [7] identified the various practical challenges and problems of search-based
software (SBST) test data generation as execution environment handling issues, branch coverage, fitness
function designs, maximization problem exploration, structured parallel approaches, single versus multi-
objective functions, regression test optimization and most especially testing non-functional properties.
Of the eight challenges identified, seven have been well documented and solved in many studies while
there are still many rooms for improvement as regards non-functional software testing such as optimizing
test cases to analyze the Best Case Execution Time (BCET) and Worst Case Execution Time (WCET).
Thus, it is important to develop optimal test cases generation technique useful for testing non-functional
properties such as BCET and WCET.

In this paper, we developed an enhanced search-based technique for testing of non-functional properties
of a software system using hybrid harmony search and particle swarm optimization algorithm. The
remainder of this paper proceeds as follows. Section 2 presents related work. Section 3 presents the
proposed methodology. Section 4 presents the experimental setup, Section 5 discusses the results, and
finally, Section 6 concludes the paper with some indication of future work.

2. Related Works

In the recent past, it was observed that with the increase in the size of the software systems, the manual
generation of test inputs was found to be costly and a difficult task [14]. Thus, several studies were
conducted using diverse techniques for the automation of test data generation. From those researches, it
was noticed that the enumeration of test inputs is infeasible for large programs as the random methods
involved in the process ignores features of the software which are not included in the tests [15]. The
foremost complexities engaged with test data generation were found to be the size and complexity of the
software as the problems were found to be unpredictable [16]. Also, there are several approaches employed
to derive test cases from models by automated test case generation [17]. Other methods often used include
the production of test cases based on input source code for dealing with the size of the software, such as
Genetic Algorithms (GA) [18, 19] . Similarly, Simulated Annealing (SA) [20], Ant Colony Optimization
(ACO) [21] have also been used for the same purpose. Ram¨ªrez, Romero, & Ventura [22] develop a search-
based algorithm based on the Simulated Annealing (SA) optimization to solve complex problems. This
search-based meta-heuristic technique was employed for the processing of annealing in metallurgy. The SA
algorithm was further used in extracting source code design abstractions. This showed the applicability
of the SA algorithm in solving multi-objective tasks. The author also compared the algorithm with other
search-based algorithms. Qin et al. [21] defined the opportunities of simulated annealing in designing
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software architecture and further applied the algorithms to modularize the source code classes into
packages. This approach was developed by automating the process of reducing package coupling and
cycle dependencies for systems that are based on an object oriented system. In addition to the GA and
SA algorithm, Hill Climbing (HC) algorithm has also been applied to solve the software modularization
problem in the experiments conducted by [23]. According to [24] Genetic Algorithm (GA) uses a scientific
model to generate test data for numerous paths coverage but fail to establish test platform and generate
test data when the number of target paths is vast. In addition, Firefly algorithm(FA) is used to maximize
the mathematical function, but the study fails to use fitness function that may give better code, statement
coverage and maximize path coverage [25]. According to [26], Genetic Algorithm(GA) and Particle Swarm
Optimization(PSO) were combined for Software Test Case Generation. The result fails to analyze the test
case generation in each iteration. Also, [28] combined Particle Swarm Optimization (PSO) and Artificial
Bee Colony (ABC) Algorithm for optimizing the Test Cases is used, but time for convergence is uncertain.
This technique does not solve the test case generation problem for non-functional software testing.

2.1. Evaluation Metrics
The metrics employed in this paper is based on system utility which is determined by its structural (branch
coverage: Average Coverage and Average Generation) and non-functional (Worst-Case Execution Time
[WCET] and Best-Case Execution Time [BCET]) characteristics [27, 29, 28, 30, 31, 32]. This paper was
implemented by focusing on these characteristics incorporated in the software system to overcome the poor
productivity, slow processing, high cost, and low quality which were found to be the issues in the software
system. As a recent population-based metaheuristic algorithm, HS algorithm was first used to solve the
optimization problem and was considered an efficient combinatorial optimization algorithm. Compared
to traditional evolutionary algorithms (genetic based), this algorithm has been shown to have several
advantages such as less adjustable parameters, rapid convergence and smooth implementation. However,
this conventional HS algorithm is not possible to be directly applicable to the time consumption problem.
Thus, the algorithm is modified and then applied to solve the object-oriented software re-modularization
problem. Therefore, in this paper, we developed an efficient methodology by integrating Harmony search-
based algorithm with Particle Swarm optimization algorithm for the testing of non-functionalities in the
software system.

2.2. Harmonic Search
The common harmony search optimization approach has three parameters which are, the harmony
memory size HMS, the harmony memory consideration rate HMCR and the pitch adjustment rate PAR
[33]. As required in most optimization technique, the maximum number of iterations is also provided. HMS
procedure starts with generation of initial solutions x1, x2, . . . , xHMS which follows a uniform distribution
U(0, 1). The process is repeated iteratively with newly generated solutions until the maximum number of
iterations is exceeded. The pattern of solutions is unique such that they are independent of p decisions
variables used. By the use of the consideration probability HMCR, a memory consideration step is
achieved. The next step involves the selection of a decision variable value from the stored uniform random
variables initially stored in the HMS.

Furthermore, the next step involves the consideration of pitch adjustment rate using the probability
PAR. If PAR is set at 0.5, pitch adjustments increase the decision by 1, and if otherwise, it decreases
the decision variable by 1. If the probability exceeds the interval bounds, the decision variable remains
at the initial point. In contrast, the step will consider no memory such that it occurs with a probability
that equals 1−HMCR, which implies a typical random selection has occurred. At this step, the decision
variable takes any value from the uniform distribution.

Consequently, the yielded solution is supplied to the objective function for convergence examination. If
the current solution is better than the worst solution in the harmonic memory, the new solution suffices
and if otherwise the worst solution is retained for further examination in the preceding step provided the
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Figure 1. Flow chart of Harmony Search Optimization [34]

maximum number of iterations is not exceeded. If the number of iteration is reached, the best solution
from the harmonic memory is returned. Figure 1 presents the flowchart of the algorithm.

2.3. Particle Swarm Optimization (PSO)
Towards the end of the last century, the particle swarm optimization algorithm was first proposed by
[32]. This kind of artificial intelligence algorithm is an imitation of birds in the process of searching for
food in nature. Each particle swarm is set with velocity and position parameters like the birds’ move, and
its diversity can be ensured by changing the particle velocity and position in the process of evolution.
At the beginning of each iteration, particle information is compared with others to find the best mobile
solutions which can meet the end conditions [35]. If an optimal solution is found, the movement terminates
otherwise it will continue to evolve until the output particle. Besides, its speed and position parameters
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of each particle, there is a value of the fitness for each particle. This value can be used to judge the good
or bad particle. In the evolution process, the choice of the best particle is the evolutionary process by
which a particle is continuously updated to compare itself with the optimal particle. Assuming that c1
and c2 are respectively, the acceleration factor of the best particle selected from the overall situation and
the individual, w is the inertia factor, r1() and r2() are uniform random values in the interval [0, 1], and
the update rate of the particle is:

vid(t+ 1) = wvid(t) + c1r1()[pbestid(t)− xid(t)] + c2r2()[gbestid(t)− xid(t)] (1)

With the use of the dimension vector D to represent the particle’s individual information, the position
of each particle is expressed as Xi = (xi1, xi2, . . . , xid), and the formula for the particle to update its
position is:

xid(t+ 1) = xid(t) + vid(t+ 1) (2)

In formula (1), the acceleration factors of c1 and c2 are relative to the key. When the values are relatively
small, it will cause the small particle’s moving distance, and it is difficult to obtain qualified particles.
When the values are more substantial, it will be too far away from the particle flight distance and make it
easy to deviate from the target area. According to previous studies, it is easier to obtain qualified particles
when the selected value is 1.

The algorithm flow of particle swarm algorithm is as follows. (1) To initialize the parameters such
as velocity and position of particle, and initial parameters are randomly generated in the space of the
solution. Furthermore, the initial parameters are set up to set the global and the extreme value of the
particle. (2) The velocity and position of the particle are updated, and the extreme value is compared
with the set value. If it is in accordance with the requirements of evolution, the particle information and
the global extremum are transformed. Otherwise, the conversion of particle information and individual
extremum will be made. (3) To update the velocity and position of the particle in the solution space,
continue to search for the updated particles as the new particles. The updated particles are used as the
new particles, and the following steps are repeated to carry out a round of evolution. (4) Each evolution is
compared to whether particles can meet the maximum number of iterations set. If the algorithm satisfies
the algorithm, the optimal particle will be output. Otherwise, repeated cycle steps are needed until the
optimal solution is obtained [36]. The basic algorithm flow of particle swarm is shown in Figure 2.

3. HYBRID HARMONIC SELECTION AND PARTICLE SWARM OPTIMIZATION BASED TEST
DATA GENERATION (HSPSO)

The HSPSO algorithm is designed to integrate the potential of HS and PSO to simultaneously minimize
the number of test generation and execution of search-based testing. The algorithm starts with the
implement of the HS algorithm to find preliminary optimization vectors needed to be supplied as the
initialization particles in the PSO algorithm. The optimal solutions of HS are used to replace random
initial values in the PSO algorithm. This procedure will enhance the execution time of PSO by reducing
the search time since near-optimal values are used as initial values. In cases where the HS optimal equals
the PSO optimal, the algorithm computation time of HSPSO equals HS and if otherwise the execution
time is bounded in the interval:

time(HS) ≤ time(HSPSO) ≤ time(HS + PSO)

.
Generally, the framework of test data generated using search-based technique involves the

harmonization of Meta Heuristics Search (MHS) algorithm and programs dynamic execution. Information
coverage is achieved when the search algorithm results in the test suite where programs can be executed
through the Program Under Test (PUT). Thus, the corresponding criterion of the fitness value is achieved
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Figure 2. Particle Swarm Optimization [35]

and modified to fit into a new test suite so that maximum coverage can be attained. Nevertheless, attaining
the perfect communication among the coverage information extraction and basic search algorithm remain
a major challenge. In the case of the HSPSO search-based testing, each argument of the desired PUT
(arg1, . . . , argp) is first initialized as HMS of various solutions (arg

(1)
i , arg

(2)
i , . . . , arg

(HMS)
i ) and are

generated from a uniform distribution. The process is then repeated iteratively with newly generated
solutions until the maximum number of iterations is exceeded. The entire flow of HS is followed until the
optimal solutions for each argi is achieved at maximum iteration. Next step is to supply the best solution
from HS for all argument as a p-dimension position vector. For some given non-functional criteria such
as (coverage, execution time, number of generation), a fitness function f(.) is defined for PSO. Instead
of initializing the PSO with random values or zeros, the f(pbest) and f(gbest) are computed by setting
initial values to HS optimal solution. The optimal test cases are then obtained from the optimal PSO
values. Figure 3 displays HSPSO search-based testing.
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Figure 3. HSPSO-based test data generation algorithm.

3.1. Fitness Function
Coverage information and criterion are of paramount importance in ensuring the adjustment of the search
direction that helps to find a lasting solution to the search based software testing algorithm.. In coverage
testing, the construct basics, such as statements, branches, paths and definition-use pairs, are treated
as coverage objects [34]. In this study, Search objective is commonly used as branch coverage and all
branches in program code can be covered by functional test suite.

The probes previously embedded in the PUT code are often used to collect the branch coverage
information. Each branch is monitored by a specific probe installed to determine if the path is covered
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Figure 4. getRemainder program showing branches

or otherwise. Finding optimal solution in search base test data generation, fitness function determines a
prominent role because it is the only available information about the PUT at this stage. For the HSPSO,
the fitness function will enable us to know the goodness of fit of the provided particle solution concerning
the overall optimum solution. In general, comparing the fitness function of solutions in each population
helps in attaining an optimal solution. To measure the fitness function, objective function is decoded by
positioning vector of the program¡¯s argument [32]. For example, in the program getRemainder in Fig.
4, line4 corresponds to branch 1 of the code with the statement below:

If(divisor == 0){return(FALSE)} else {continue}. (3)

If x is represented as input, then the correlation between input variable and data in divisor can be
indicated as: line4(x).

Then the fitness function for this condition (3) can be express as:

f(x) = −line4(x) + k (4)
Where k is a positive constant when f(x) ≤ 0 the branch goal is achieved. Substantial value of f(x) is

set as fitness to represent the condition (3) that is not related to the input data and preferred condition
to minimize the problem of generating test data [37].

For HSPSO search-based, a branch distance function is created as in the case of f(x) for each predicate
in PUT (see Table 1). The fitness of each branch determines the fitness function of entire program, for
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Table 1. Branch fitness function for different predicates

S/N Predicate Fitness function
1. Boolean If true then 0 else k
2. ∼ x Negation over x
3. x1 = x2 If |x1 − x2| = 0 then 0 else |x1 − x2|+ k
4. x1 ̸= x2 If |x1 − x2| ̸= 0 then 0 else k
5. x1 < x2 If x1 − x2 < 0 then 0 else |x1 − x2|+ k
6. x1 ≤ x2 If x1 − x2 ≤ 0 then 0 else |x1 − x2|+ k
7. x1 > x2 If x2 − x1 > 0 then 0 else |x2 − x1|+ k
8. x1 ≥ x2 If x2 − x1 ≥ 0 then 0 else |x2 − x1|+ k
9. x1 and x2 f(x1) + f(x2)
10. x1 or x2 min[f(x1), f(x2)]

example the fitness function of the entire program that has B branches can be determined by the formula
(5) below:

fitness =
1∑B

b=1 f(x)b
(5)

4. EXPERIMENTAL SETUP

The HSPSO-based test data generation procedure was demonstrated using four real-world programs. The
four programs are well-known benchmark programs and documented in [29]. Specific details of each of
the four programs are documented in Table 2. The experiment is performed in the environment of MS
Windows 10 with 64-bits and runs on Core i5 with CPU @ 1.60GHz − 1.80GHz and 8 GB memory.
The algorithms are implemented in Splus and run on the platform of R Studio version 3.6.1. In the
experiments, we compare the coverage, the number of generations and execution times for GA, ABC,
HGPSTA, PSO, PSABC and HSPSO. The population size (Ps) for each algorithm was varied between
10− 60 with an increment of 10. Other peculiar parameters for each algorithm are illustrated in Table 3.
The six algorithms were compared across the four programs using the following metrics:

Table 2. Description of programs used for comparative analysis

Program #(args) Branch Description
getRemainder 2 18 Calculate the remainder of an integer division
getDayofWeek 3 11 Calculate the day of the week
classifyTriangle 3 5 Type classification for a triangle
getDifference 6 18 Compute the days between two dates

1. Average coverage (AC): this is the average of the branch coverage attained by all test inputs in 1,000
runs.

2. Average generation (AG): this is the average evolutionary generation for realizing all branch
coverage.

3. Best Case Execution Time (BCET): this is the minimum execution time (ms) a program can be
executed using an optimal generated test case. This process is repeated 100000 times for stability.

4. Worst-Case Execution Time (WCET): this is the maximum execution time (ms) a program can be
executed using an optimal generated test case. This process is repeated 100000 times for stability.
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5. Average Case Execution Time (ACET): this is the average execution time (ms) a program can be
executed using an optimal generated test case. This process is repeated 100000 times for stability.

Table 3. Specific parameter setup for each algorithm

Algorithm Parameter Value
GA Selection strategy Roulette Whell Selection

Cross-over probability Pc = 0.8
Mutation probability Pm = 0.1

ABC Cycle limit cl = Ps×#args

PSO Inertia weight (w)
Acceleration factors c1 and c2 c1 = c2 = 1.49445
Maximum velocity V max = 20

HGPSTA (GA + PSO) Same as GA and PSO Same as GA and PSO
PSABC (PSO + ABC) Same as PSO and ABC Same as PSO and ABC
HSPSO (HS + PSO) Harmony memory considerate rate HMCR = 0.95

Pinch Adjusting Ratio PAR = 0.3
Same as PSO Same as PSO

5. RESULTS AND DISCUSSION

Table 4 shows the results for AC and AG for each program and two criteria, the best algorithm on
average for all programs is the proposed HSPSO. For a specific program, the best algorithm in terms of
the minimal number of generations and 100% coverage is HSPSO. However, the existing hybrid algorithms
(HGPSTA and PSABC) also compete favourably with the proposed HSPSO. After HSPSO, the next is
HGPSTA then PSABC follows. PSO has high coverage with a high number of generations, thus making
it not entirely usable as this also results in high execution time. The GA algorithm is the lowest in terms
of coverage but with a considerable number of generations.

Table 4. Comparison analysis for Average Coverage (AC) in % and Average Generation (AG).

Program Metrics GA ABC PSO HGPSTA PSABC HSPSO
getRemainder AC 97.07 99.54 99.86 99.89 99.93 100.00

AG 9.41 10.81 10.52 17.70 17.41 12.82
getDayofWeek AC 96.50 100.00 98.69 99.97 100.00 100.00

AG 2.97 3.36 3.09 6.17 5.93 7.05
classifyTriangle AC 84.78 100.00 100.00 100.00 99.99 99.99

AG 46.73 47.26 46.69 94.36 95.31 93.64
getDifference AC 99.63 100.00 100.00 100.00 100.00 100.00

AG 7.99 7.71 7.54 14.93 14.77 14.39
Average AC 94.50 99.89 99.64 99.97 99.98 100.00

AG 16.78 17.29 16.96 33.29 33.36 31.98

Table 4 present the results for the AC and AG for each of the eight programs. For the two criteria,
the best algorithm on average for all programs is the proposed HSPSO. However, in terms of the number
of generation, the hybrid algorithms (HGPSTA, PSABC and HSPSO) returned high average generations
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Table 5. Comparison analysis for Best Case Execution Time (BCET), Worst-Case Execution Time (WCET) and
Average Case Execution Time (ACET) in nanoseconds (ns).

Program Metrics GA ABC PSO HGPSTA PSABC HSPSO
getRemainder BCET 710.04 994.88 920.85 1441.83 1464.12 1047.43

ACET 940.55 1081.44 1051.51 1770.43 1741.14 1281.66
WCET 1171.06 1168.00 1182.17 2099.03 2018.15 1815.90

getDayofWeek BCET 2.51 3.00 2.63 6.03 4.85 5.85
ACET 2.97 3.36 3.09 6.17 5.93 7.05
WCET 3.42 3.71 3.55 6.32 7.01 8.26

classifyTriange BCET 43.71 44.22 44.08 88.22 89.57 88.58
ACET 46.73 47.26 46.69 94.36 95.31 93.64
WCET 49.76 50.31 49.29 100.49 101.05 98.70

getDifference BCET 6.42 6.38 6.00 12.80 11.72 11.60
ACET 7.99 7.71 7.54 14.93 14.77 14.39
WCET 9.56 9.04 9.09 17.06 17.81 17.19

Average BCET 190.67 262.12 243.39 387.22 392.57 288.37
ACET 249.56 284.94 277.21 471.47 464.29 349.19
WCET 308.45 307.77 311.03 555.73 536.01 485.01

compared to single algorithms (GA, ABC and PSO). This is obvious as the number of generations is
summed up for the two algorithms combined to form the hybrid algorithms. Thus, within the class of
single algorithms (GA, ABC and PSO) the best in terms of a minimal number of generations is ABC while
for the hybrid procedure, the best is the proposed HSPSO. For a specific program, the best algorithm
for getRemainder, getDayofWeek, classifyTriangle, getDifference, getBesselj, printCalendar, computeTax,
lines, is HSPSO in terms of coverage while in terms of average generations the best is ABC. The result
of ABC is not reliable as it could not guarantee high coverage. Overall, the best algorithm that can
guarantee high coverage with minimal sufficient average generations within the class of hybrid procedures
is HSPSO.

Figure 5 presents the association between the population size and average coverage for the various
algorithms. The plots show that the higher the population size, the higher the coverage for all programs.
The worse algorithms, in terms of coverage, is GA. Figure 6 shows the impact of population size on
Average Generation AG. Although, the results of AC in Figure 5 shows that for the AC, the higher the
population size, the higher the AC, however, in contrast, the higher the population size, the lower the
number of generations.

Table 4 further gives the average of the average generation (AG) across various population sizes.
The AG results show that there exists a clear distinction between single and hybrid algorithms. The
hybrid algorithms returned high values in average generations compared to the single algorithms. For the
getRemainder program, GA returned the lowest AG among the single algorithm while within the class
of hybrid algorithms, HSPSO returned the lowest AG. This shows that for the getRemainder program,
HSPSO is the best among the main comparison of algorithms within the class of hybrid algorithms. For
the getDayofWeek program, GA returned the lowest AG among the single algorithm while within the class
of hybrid algorithms, PSABC returned the lowest AG. This shows that for the getDayofWeek program,
PSABC is the best among the main comparison of algorithms within the class of hybrid algorithms. For the
classifyTriangle program, PSO returned the lowest AG among the single algorithm while within the class
of hybrid algorithms, HSPSO returned the lowest AG. This shows that for the classifyTriangle program,
HSPSO is the best among the main comparison of algorithms within the class of hybrid algorithms. For
the getDifference program, PSO returned the lowest AG among the single algorithm while within the class
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Figure 5. Average Coverage (AC) versus population size

of hybrid algorithms, HSPSO returned the lowest AG. This shows that for the getDifference program,
HSPSO is the best among the main comparison of algorithms within the class of hybrid algorithms.

Table 5 presents the results of the execution time. Three types of execution timings were considered;
BCET, ACET and WCET. For getRemainder program, the algorithm that returned test cases that
minimize the BCET within the class of single algorithms is GA, while PSO returned test cases that
minimize the ACET and ABC returned test cases that maximize the WCET. Similarly, within the hybrid
algorithms, HSPSO returned test cases that minimize the BCET, ACET and maximize the WCET. For
getDayofWeek program, the algorithm that returned test cases that minimize the BCET within the class
of single algorithms is GA, while GA also returned test cases that minimize the ACET and as well
returned test cases that maximize the WCET. Similarly, within the hybrid algorithms, PSABC returned
test cases that minimize the BCET, ACET and maximize the WCET. For classifyTriangle program, the
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Figure 6. Average generations (AG) versus population size

algorithm that returned test cases that minimize the BCET within the class of single algorithms is GA,
while PSO returned test cases that minimize the ACET and as well returned test cases that maximize the
WCET. Similarly, within the hybrid algorithms, HGPSTA returned test cases that minimize the BCET,
while HSPSO returned test cases that minimize the ACET and as well returned test cases that maximize
the WCET. For getDifference program, the algorithm that returned test cases that minimize the BCET
within the class of single algorithms is PSO, and it also returned test cases that minimize the ACET
and ABC returned test cases that maximize the WCET. Similarly, within the hybrid algorithms, HSPSO
returned test cases that minimize the BCET, ACET while HGPSTA returned test cases that maximize
the WCET.
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6. Conclusion

In this paper, a new metaheuristics approach for testing software using hybrid Harmony Search HS
and Particle Swarm Optimization (HSPSO) was proposed. By way of introduction, different existing
search-based testing algorithms were reviewed, and the current place within the sphere of non-functional
properties is presented. Also, the main algorithm of HSPSO was presented, and its application in the
generation of test data for four different programs was presented. The algorithm is implemented by
defining fitness functions for branch coverage and execution time. While the coverage and BCET execution
time are minimization optimization problems, the execution time in terms of WCET is a maximum
optimization problem. The branch coverage results for all programs show that the HSPSO search-based
testing is usable as it achieved 100% AC in all the entire programs used. Similar performances were
observed in terms of execution times (BCET, ACET and WCET). The main limitation of the work is
in terms of complexity of programs used, which ranges from simple to moderate. The generalizability
performance of the HSPSO algorithm should be observed on more complex programs such as ATM or
stopwatch to assess its usability and execution time.
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