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Abstract The quality of the web page classification process has a huge impact on information retrieval systems. In this
paper, we proposed to combine the results of text and image data classifiers to get an accurate representation of the web pages.
To get and analyse the data we created the complicated classifier system with data miner, text classifier, and aggregator. The
process of image and text data classification has been achieved by the deep learning models. In order to represent the common
view onto the web pages, we proposed three aggregation techniques that combine the data from the classifiers.
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1. Introduction

Information retrieval (IR) systems play an important role in modern-day society [1]. The goal of an information
retrieval system is to collect, store, and provide an efficient search mechanism for the client. During the last decades,
information retrieval systems have come a long way from the Boolean model [2] systems for Artificial Intelligence
(AI) based [3] complicated models. The client wants to get the relevant data from the search system. Organizing the
users queries into the set of target categories, belonging to the area of query categorization, which is important for
the search relevance. The quality of the indexing and classification process plays a crucial role in the information
retrieval process.

To perform relevant information retrieval information should be classified effectively. The most common web
page classification methods are based on text [4][5] and graph data [6] analysing. This approach is explained
by the fact that the classification of the rest of the embedded media data such as images, audio, and video data
is a time-consuming and computationally expensive process. Because the power of the computing systems was
dramatically increased during the last five years [7] it gave the new capability for data scientists to develop new
methods for webpage categorisation. In this work, we proposed the models that we called aggregation strategies
for merging different classification algorithms in order to achieve more accurate results and to discover the new
web page categories. Discovering the new web pages classes allow for the retrieval systems (built on top of the
categorization system) to find additional materials as the results on queries.

The article organized as follows: The problem definition in Section 2 where we explain the reason why do we
need to use different web page classification algorithms and combine them to get the consistent representation of
the target classes, next we discuss some related works in Section 3, The classifiers system discussed in Section
4 where we also cover the work principles of text classifier and image caption generator. We also include the

*Correspondence to: Suleyman Suleymanzade (Email: suleyman.suleymanzade.nicat@gmail.com). Institute of Information Technology,
Azerbaijan National Academy of Sciences, 9A, B. Vahabzade Street, AZ1141, Baku, Azerbaijan.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 2021 International Academic Press
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aggregation strategies and algorithms to discover the new web page target classes in Section 4, the results of a
process combining the target data are shown in Section 5, after what we discussed the future works in Section 6,
and conclude the article in Section 6.

2. Problem definition

The amount of data on a web page must be enough to classify it efficiently. The data in a page presented as text,
image, URLs, or meta tags. Each of these data types must be analysed with different algorithms. If some of the data
are not presented in a web page, then the process of classification must be laid down on the rest of the data. For
example, some web pages may include many images without (or with small amount) of text data, some web pages
dont have a metadata in meta tags. The process of web page categorization required to include mechanisms for
aggregating different classifier results in order to increase the classifiers accuracy and find the new target classes
that are not shown in the metadata. In results of discovering the new class tags, the search engine build upon the
target class data will produce more relevant data. To solve this problem, we created the web crawler [8] system with
two different classifiers subsystems that classifies text and image data separately and then aggregate the results of
both subsystems. For the aggregation process, we modelled three aggregation strategies that are shown in combiners
part.

3. Related Works

There are many studies in developing a web page classifier. Some of them based on one aspect of the data that
existed on a page another based on hybrid approach and include more than one method. Some of these methods
give priority to classification speed and not the accuracy, and these methods generally based on analysing the meta
tag combinations and do not use the content-based information that requires machine learning technique to discover
the new class labels. One of the interesting content-free method that includes machine learning technique discussed
in [9] which is based URLs analysing only to classify the content of the link itself without analysing the full web
page content. The content-based methods can be organized as a text based or image-based web page classification
techniques. In [10], there was discussed the technique of page categorization of images data with support of CNN
deep learning model. Another approach based on meta tag information was discussed in [11] where RNN was used
during the test phase. There is also a hybrid method to classify data based on content and link-based (URLSs) [12]
method. The scientific works that are mentioned above requires in aggregation strategy to combine these methods
in order to discover the new target classes. Some classification techniques that are related to relational data was
discussed in [13]. In general, the aggregation technique can be separated by features based and class-based results
[14]. In our work we used the technique based on the class prediction results.

4. Proposed system Architecture

The architecture of the classifier includes several blocks: 1. Miner 2. Image caption generator [15], 3. text classifier
and 4. combiner. Each of these blocks responsible for the next tasks: miner includes web crawler that gathers text
and image data from the internet, it also estimates the weights of text and image data then stores it in separated
repositories.

Image caption generator generates the text related to the images, then the text classifier classifies text data from
the miner and the image caption generator. The last block is a combiner that aggregates results from both text
classifiers.
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Figure 1. The architecture of web page classifier system.

4.1. Miner

The component that includes a web crawler and storage system for these data structures we called a miner. The
loosely coupled architecture of the system allows us to use other approaches [5] for data mining as well. The
web page categorization process starts from the mining of the web pages. The mining process of text and media
data achieved by a web crawler (spider) [2] that traverses over external links by Breath first search or Depth first
search strategy [3]. While crawler traverses through the web pages it stores data in associated key-value principles
[4]. For each gathered web page, the key represents a hash code of the web page address, the value represents
the references of three data components: text, images and meta tags from a web page that contained meta data
keywords these references located in separated data structures for storing text and binary data. The picture below
shows the structure of the saved image and text components for each webpage.

www.example3.com
www.example2.com
www.examplel.com hash table Image |
i ——
hash 1
as “www.examplel.com”: “123”
code 123 Text

T
N |
—|—> Metadata

“www.example2.com™: “223” 22 3

SElis

Figure 2. Hash-table based data storage.

Each webpage paragraph and image stores in a separated bucket with associated weight, this paired data we call
a data component. The weights represent the priority of each data component that later used in the summary of
category computation. Initially, the weights that related to each text paragraph in the web page are equal to one, the
flexibility of loosely coupled architecture of the system allows to calculate the weights for each data component
separately based on various algorithms The algorithm for weights computation can be based on the next properties:

1. Text appearance: font styles, colours and size of the text data in each paragraph. This approach, computational
cheap and fast [16].

2. Paragraphs and images location. This method includes: tag hierarchy analysing in DOM [17] [18].

3. Numerical statistics, where algorithms such as TF-IDF [19], Okapi BM25 [20] [21].
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4. Combining techniques where one or more methods can be used to compute the weights for each data
component.

In this work for analysing the weights we used the method based on text appearance where text paragraphs that
include more than a half of the text in bold or italic style, the weights are taken as 1.5 instead of 1.

4.2. Image classifier

The image classifier includes a deep neural network for an image caption generation. It receives the image data
components from the miner and generates the feature by using YOLO [22][23] algorithm. The general principles of
image caption generator based on [24] it consist of two neural networks: YOLO based CNN , for feature extraction
and LSTM [25] for generating the text sequence, which is similar to [15] model but instead of RNN [26], the
LSTM was used because it carries relevant data during the training process and excludes non relevant information
by forget gate.

Sequential
Text data LST™M
merger —» softmax
Dense
Image CNN
data

Figure 3. Image caption generator

Figure 3 shows the Merge Architecture for Encoder-Decoder Model from [15]. For training the image caption
generator we used the flickr_8K dataset.

4.3. Text classifier
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Figure 4. Receiving data structures of the combiner

For a more complex dataset with more than five classes such as 20 newsgroups , in order to achieve more
accurate results, its there are other options such as a convolutional neural network for text classification [27], a
combination of multichannel neural networks [29] or more complex solutions with RNN [30]. In our case, for the
real-time system that gathers webpages and works continuously in the background the simple and efficient class
computation with accuracy more than 95% is enough. More complex extensions that require more computational
resources can be achieved with the help of HPC [31] platform and continuous deployment DevOps [32] methods.
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Figure 5. Confusion Matrix

4.4. Combiner

The goal of the combiner is to aggregate the results from the text and imagedata component. The data that the
combiner receives represented by the data structure shown in Figure 6. The data structure contains the header and
the data part (separated with a dashed line). The header includes a web pages hash code and two global weights:
W; represents the global image weight and W global text weight respectively. The data part includes the set data
components with three parameters: 1. Tag (I, T') that shows to which data type the component belongs to, 2. Local

weight (float number on a picture after the tag) and ordered list data with the numeric representation of class labels
(five float numbers).

223: (W;: 0.3, W:0.7)
(0.5,0.5,0.7,0.2, 0.4) (0.1,0.4,0.2,0.2,0.8)
(0.2,0.2,0.4,0.1,0.7) (0.7,0.1,0.3, 0.6, 0.6)

123: (W;: 0.4, Wy:0.6)
(0.2,0.8,0.1,0.9, 0.4) (0.6,0.2,0.2,0.7,0.1)
(0.4,0.5,0.2,03,4.1) (0.1,0.7,0.2,0.7,0.1)

Figure 6. Receiving data structures of the combiner

This data is enough for the combiner to aggregate the set of data components for each web page separately. We
decided to model three aggregation strategies for class combining to produce and then analyse the results of each
strategy. Combiner generates the result tags 7' by aggregating the results of separated images C*"9¢ and texts
C'e*t data components. Where C"m49¢ = {c;""9¢ : ¢["*9® € R"}. And aggregation function A can be defined as
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A - O({ctea:t N ,wteart7 Wtewt’ Cimage N ,wimage’ Wimage}) ST (l)

That includes mapped image and text components with respect to their local weights.

cimage s qp'mase . 1y, czma‘qe — wf;mage} 2)

ctewt N wtewt . {Vz . Cﬁea:t N wzext} (3)

Two global weights parameters Wm29¢ /*e*? regulate the classification priority for each component type. In
our case, there are only two component types (text and image). Output function O, may differ depending on the
objectives presented below:

1. To get only one class from the aggregator, the O must be taken as the argmax function.

2. If the goal is to get the n constant number of categories, then O function must choose the first n highest
number of the categories (if n is not higher than the total number of classes)

3. To discover the new n classes from the web page then O function must process as the pseudocode that
presented in Algorithm I below.

Algorithm 1
function FIND_N_NEW _CLASSES(exited_tags, n, classes = {class: value})
result <+ set()
inserted_classes < (
sorted_classes + sort(classes.values, descending)
for class in sorted_classes do
if len(inserted_classes) < n and class not in existed_tags then
result.insert(class)
n+<n+1
end if
end for
return result
end function

We defined three aggregating strategies for combining the data components.

T=0 (Z w;’magecZ:mage + Z w;eztczezt> (4)
i=1 j=1

The first equation (Equation 4) shows the local weights-based aggregation strategy that achieved by the class
addition of each data component with its local weight. The local weights characterise the priority of each data
component on the web page. If there is no strategy to calculate the weights, the weight parameters are initialized
as 1.

T _ O (Wimage Z wzmagecimage + Wtext Z w;ewtczext> (5)
i=1 j=1

The second strategy (Equation 5) shows the aggregation with global weights (W ™e9¢ Ty text) where each global
weigh gives priority to one of the data components types. This strategy is good for the web pages where the number
of data components of one type is more than another. For example, there are some web pages with many images
and a few text data of vice-versa and the global weights must be selected according to the difference of image and
text data number.

T=0 (Wimages (Z w;hnagecimage) + Wtemts (Z w;eztcéezt>> (6)
i=1 j=1
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The third (Equation 6) aggregation strategy uses global weights with normalization function S' that scales the
result of each component. In our experiment, we used the softmax function to achieve a similar scaling factor
between image and text component sets.

5. Experimental data and results

5.1. Experiment 1

For the experiment as an example, we took two web pages. In the first example, we took the
http://www.bbc.com/travel website and gather seven text paragraphs with seven images data, next to aggregate
them, we used three (Equation 4-6) strategies to get the combined results. In the first website we didnt calculate the
global and local weights, by default the weights have been selected as parameter 1. The text and image classifiers
have classified the gathered data as shown in Table 1-2, The distribution of target data shown in Figure 7.

text/image class distribution

I text data

030 1 B image data

0.25 -

0.20 -
0.15 -
0.10 -
0.05 -
0.00 -
sport tech

business entertainment  politics

Figure 7. The target classes distribution from the (http://www.bbc.com/traver)

Table 1. The text-based target class distribution (http.//www.bbc.com/travel)

C1: business | C2: entertainment | C3: politics | C4: sport | C5: tech | Labels (argmax)
0.2083 0.2207 0.1988 0.20034 | 0.1717 entertainment
0.2329 0.2422 0.2016 0.1968 0.1262 entertainment
0.2329 0.2422 0.2016 0.1968 0.1262 entertainment
0.2422 0.2329 0.2016 0.1968 0.1262 business
0.2047 0.1676 0.2341 0.2915 0.1019 sport
0.2057 0.2890 0.1600 0.2163 0.1287 entertainment
0.1874 0.2901 0.1627 0.2144 0.1451 entertainment

After the classification, the next phase is combining the results from both classifiers. Figures 8 shows three data
components.
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Table 2. The Image data-based target class distribution (http://www.bbc.com/travel)

C1: business | C2: entertainment | C3: politics | C4: sport | C5: tech | Labels (argmax)

0.1990 0.2428 0.2018 0.2183 0.1378 entertainment
0.2106 0.20272 0.2189 0.1998 0.1678 politics

0.2197 0.2060 0.1934 0.2329 0.1478 sport

0.1976 0.2575 0.1796 0.1854 0.1797 entertainment
0.1889 0.1954 0.2512 0.2330 0.1313 politics

0.2093 0.2356 0.1850 0.2078 0.1621 entertainment
0.2219 0.1866 0.1622 0.2586 0.1704 sport

Text/Image class distribution with local weights text/image classes with local and global weights text/image classes with global weights and normalized local weights

mmm text data
image data

sport tech

Figure 8. The aggregation strategies 1-3 based class distribution (http://www.bbc.com/travel)
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Table 3. The Image data-based target class distribution (http://www.bbc.com/travel)

Strategy | Cl1: business | C2: entertainment | C3: politics | C4: sport | C5: tech | Labels (argmax)
Strategy 1 5.7000 10.5379 4.5729 6.0963 4.0926 entertainment
Strategy 2 4.4657 8.4958 3.4136 4.9322 3.2925 entertainment
Strategy 3 0.1828 1.3787 0.1552 0.1818 0.1014 entertainment

In a result we get three answers based on Strategy 1-3 (Equation 4-6) shown in Table 3 below.

We compared the results from three strategies with the meta data of the web page and discover the new topic,
the Sport that wasnt presented in the meta data. The discovering process that we used here were based on idea to
find only the first label that wasnt presented on the web page.

5.2. Experiment 2

For the second experiment, we chose https://www.espn.com/ website. At this time, we calculated parameters with
global weights that were calculated according to the relation between the number of text paragraphs to the images
number on the web page.

The class distribution shown in Figure 9. As shown in Table 4 image classifier gave priority to politics classes
instead of the sport. The ESPN website includes many links, adverts, and images that are not related to the webpage
topics. The one way to solve this problem is to use filter functions during the crawling process that will ignore
cookies, but in our work, we wanted to show the power of global weights that give priority to the one classifiers
decision instead of other. Table 5 shows that the most of paragraphs have been classified as the sport. Because of
the amount of text data is more than the image data the global weights will give more priority to the text classifier
than in image. In our example the global weight for the image classifier was given as 0.2 and for the text classifier
1.2.
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Figure 9. The target class distribution from the (https://www.espn.com/)

Table 4. The image-based target class distribution (https://www.espn.cony/)

C1: business | C2: entertainment | C3: politics | C4: sport | C5: tech | Labels (argmax)
0.2009 0.2337 0.2768 0.1404 0.1479 politics
0.2009 0.2337 0.2768 0.1404 0.1479 politics
0.1747 0.1674 0.1253 0.3938 0.1385 sport

Table 5. text data-based target class distribution (https://www.espn.com/)

C1: business | C2: entertainment | C3: politics | C4: sport | C5: tech | Labels (argmax)

0.1275 0.1353 0.1479 0.4733 0.1157 sport
0.1510 0.2002 0.3027 0.1816 0.1642 politics
0.2165 0.1914 0.2515 0.1929 0.1474 politics
0.1067 0.1986 0.2166 0.3498 0.1280 sport
0.1327 0.2613 0.1817 0.2956 0.1285 sport
0.1540 0.1873 0.1926 0.3210 0.1449 sport
0.1623 0.1984 0.1354 0.4048 0.0989 sport
0.2478 0.1633 0.2061 0.2654 0.1172 sport
0.2472 0.2476 0.1762 0.1909 0.1378 entertainment
0.0717 0.3311 0.1202 0.4209 0.0558 sport

Table 6. The aggregation results (https://www.espn.com/)

Strategy | Cl: business | C2: entertainment | C3: politics | C4: sport | C5: tech | Labels (argmax)
Strategy 1 2.3061 3.7155 3.0506 3.9119 2.0157 sport
Strategy 2 1.7889 3.3561 2.4278 3.7386 1.6883 sport
Strategy 3 0.1361 0.3963 0.2090 0.5348 0.1236 sport

Figure 10 shows three aggregation strategies-based images and text components class parameters distribution.
The results of experiment 2 shown in Table 6.
In this example the new discovered label that wasnt presented in the meta data was politics.
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Teatimage class distribution with local weights text/image classes with local and global weights textiimage classes with global weaghts and noemalized local weights
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Figure 10. The aggregation strategies 1-3 based class distribution (https://www.espn.com/)

6. Future Works

The architecture of the classifier system can be modified: instead of chain with image caption generator and text
classifier use direct image classifier that classifies images by activity. This method will allow to use image and text
classifiers with different label sets and generate the tags, based on Boolean, continuous or combinational results of
two classifiers.

The crawling process [33] can be optimized by filtering advertisement data on images and text data [34]. The
process of finding advertisements in image and text data can be achieved by comparison the distance between text
and image labels, the numerical distribution between class probabilities must be relatively similar. The outlier [35]
can be detected by using z-score [36], Dbscan [37], isolation forests [38] algorithms.

The process of generating the global and local weights between image and text components in class combiners
can be achieved by the deep learning neural network where text and image classifiers compute categories for the
web pages and train the weights according to the categories in metadata. The control over global and local weights
and selecting the right aggregation strategy may be considered in future studies.

7. Conclusion

The improvements in web page classification effects to the performance of retrieval systems built on the top of it.
The newly discovered categories in the web pages allow for search engines to sort and find more relevant results
on queries. In this work, we improved the web page classification process by combining the results of text and
image data classifiers. To achieve this goal, we built the loosely coupled categorization system to gather, store, and
process text and image data. To combine the target summary of each data element we modeled three aggregation
strategies. During the experiments we discovered the new categories of the web pages that have not been presented
in the metadata.
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