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Abstract This is a pioneering work, introducing a novel class of optimization of objective functions over subsets of prime
only integer points. We show a rich variety of Prime Optimization and mixed problems.
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1. Introduction

It is well-known that an optimization problem can be represented in the following way: given a function f : G
→ R from some set G to the real numbers; sought: an element x0 ∈ G such that f(x0) ≤ f(x) for all x ∈
G,(“minimization”), or such that f(x0) ≥ f(x) for all x ∈ G (“maximization”). Typically, G is some subset of
the Euclidean space Rn, specified by a set of constraints and the function f is called an objective function or
target function. Its well-known in Optimization Theory the case when G is some subset of integer points: Integer
Optimization (see, e.g., [5, 7, 10]). A general model of mixed-integer optimization could be written as: max/min
f(x) subject to g1(x) ≤ 0 , ... , gm(x) ≤ 0, x ∈ Rk × Zs , where f, g1, ..., gm : Rn → R are arbitrary nonlinear
functions. We are going to be focused on Primes: an infinite countable subset P ⊂ Z of Integers and introduce
a novel class of optimization: optimization of real-valued functions over subsets of prime only points and mixed
problems. Recall that a natural number is called a prime number (or a prime) if it is greater than 1 and cannot be
written as the product of two smaller natural numbers The first 25 prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. In the 1970s, when it was publicly announced that
prime numbers could be used as a basis for the creation of public key cryptography algorithms, these applications
have led to significant study of algorithms for computing with prime numbers, and in particular of primality testing,
methods for determining whether a given number is prime [1, 4]. Prime numbers are also used in computing for
checksums, hash tables, and pseudorandom generators. Prime numbers are of central importance to Number Theory
but also have many applications to the other areas within mathematics including abstract algebra and elementary
geometry (see, e.g., [6, 9, 14]). The purpose of this paper is to introduce and describe wide variety of optimization
problems of real-valued functions over subsets of prime only points: Prime Optimization and mixed problems.
Prime Optimization certainly would serve needs of at least Number Theory and its applications.

2. Some simple Prime Optimization Problems

We start out with the following simple cases to demonstrate Prime Optimization over Euclidean space subsets.
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2.1. One-dimensional Prime Optimization

epop21a = {max ex subject to 6 ≤ x ≤ 18, x ∈ P}.
argmax(epop21a) = 17.

epop21b = {min ex subject to 6 ≤ x ≤ 18, x ∈ P}.
argmin(epop21b) = 7.

2.2. Two-dimensional Prime Optimization

epop22 = {max (x+ y) subject to x+ 7y ≤ 91, 3x+ y ≤ 33, x, y ∈ P}.

Its clear that feasible region of epop22 is bounded by the line, passing through the points (0, 13), (7, 12) and the
line, passing through the points (7, 12), (11, 0), as well as by the lines x = 0 and y = 0, so argmax(epop22) = (7,
11).

2.3. Three-dimensional Prime Optimization(Contribution to the Number Theory)

epop23 = {min |xn + ym − zk| subject to x, y, z ∈ P, n,m, k ∈ N}.

Due to Fermat Last Theorem and P ⊂ Z,
epop23 > 0 for n = m = k > 2 .

3. Euclidean space Prime Optimization

Now, let us introduce in details classes of Prime Optimization Problems in a Euclidean space.

3.1. Single variable. Polynomial Prime Optimization

epop31 = {max cnx
n + ...+ c1x subject to

a1nx
n + ...+ a11x ≤ b1, · · · , amnx

n + ...+ am1x ≤ bm,

x ∈ P, aij ∈ R, bi ∈ R, cj ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

By introducing the slack variables w1 ≥ 0, ..., wm ≥ 0, the above inequalities can be converted into the following
equations:

a1nx
n + ...+ a11x+ w1 = b1, · · · , amnx

n + ...+ am1x+ wm = bm.

More sophisticated problems would contain rational functions.

3.2. Single variable. Nonlinear Prime Optimization

epop32 = {min ex − log(x) subject to x2 ≤ a, x ∈ P, a ∈ R}.

3.3. Several variables. Linear Prime Optimization

epop33a = {max c1x1 + ...+ cnxn subject to
a11x1 + ...+ a1nxn ≤ b1, · · · , am1x1 + ...+ amnxn ≤ bm,

xj ∈ P, aij ∈ R, bi ∈ R, cj ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

By introducing the slack variables w1 ≥ 0, ..., wm ≥ 0, the above inequalities can be converted into the following
equations:

a11x1 + ...+ a1nxn + w1 = b1, · · · , am1x1 + ...+ amnxn + wm = bm.

epop33b = {max c1x1 + ...+ cnxn subject to
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a11x1 + ...+ a1nxn = b1, · · · , am1x1 + ...+ amnxn = bm,

xj ∈ P, aij ∈ R, bi ∈ R, cj ∈ R, (Ax = b), 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}. (See [9] as well.)

3.4. Several variables. Quadratic Prime Optimization

epop34 = {max x2
1 + ...+ x2

n − x1x2 subject to
a11x1 + ...+ a1nxn ≤ b1, · · · , am1x1 + ...+ amnxn ≤ bm,

xj ∈ P, aij ∈ R, bi ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

3.5. Several variables. Nonlinear Prime Optimization

epop35 = {min ex − log(y) subject to x2 + y2 ≤ a2, x, y ∈ P, a ∈ R}.

4. Complex Prime Optimization

Let us introduce Complex Prime Optimization. Complex Optimization is considered in [17], and, in particular, in
[17]is introduced a novel concept of Integer Complex Optimization on the base of Gaussian Integers. Recall that
the Gaussian integers are the set: Z[i] := {a+ bi |a, b ∈ Z}, where i2 = −1. Gaussian integers are closed under
addition and multiplication and form commutative ring, which is a subring of the field of complex numbers. When
considered within the complex plane C, the Gaussian integers constitute the two-dimensional integer lattice (see
[11, 12, 13, 15, 16]). Let us introduce the following subset of Gaussian Integers:

ZP[i] := {a+ bi | a, b ∈ P},
ZP[i] ⊂ Z[i].
Considering optimization problems using subsets of ZP[i], we obtain a novel class of optimization: Complex

Prime Optimization.

4.1. Prime Optimization and Riemann hypothesis

The Riemann hypothesis, considered one of the greatest unsolved problems in mathematics is a conjecture that the
Riemann zeta function(see, e.g., [3, 6]):

ζ(s) =

∞∑
n=1

1

ns
, s ∈ C,

has its zeros only at the negative even integers(trivial zeros) and complex numbers with real part 1
2 (nontrivial

zeros). In the theory of the Riemann zeta function, the set: {s ∈ C : Re(s) = 1
2} is called the critical line. Let us

introduce the following two Prime Optimization problems:
poz1 = min|ζ(s)| subject to 1

2 < Re(s) < M, 1 ≤ |Im(s)| < M (to exclude trivial zeros),
poz2 = min|ζ(s)| subject to −M < Re(s) < 1

2 , 1 ≤ |Im(s)| < M , M > 0,M ∈ R, s ∈ ZP[i].
If there exists M > 0, such that poz1(argmin(poz1)) = 0 or poz2(argmin(poz2)) = 0 it would mean that Riemann

conjecture is wrong. That is why together with the facts that according to the Euler product formula:

ζ(s) =
∏
p

1

1− p−s
,

and the infinite product in the right hand side extends over all prime numbers p, P ⊂ Z and PRIMES is in P(see,
e.g., [1]), it would encourage and stimulate researchers to explore and develop Prime Optimization.

4.2. Linear Complex Prime Optimization

cpop42a = {max |c1z1 + ...+ cnzn| subject to
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|a11z1 + ...+ a1nzn| ≤ b1, · · · , |am1z1 + ...+ amnzn| ≤ bm,

zj ∈ ZP[i], aij ∈ C, bi ∈ R, cj ∈ C, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

cpop42b = {max |c1z1 + ...+ cnzn| subject to
a11z1 + ...+ a1nzn = b1, · · · , am1z1 + ...+ amnzn = bm,

zj ∈ ZP[i], aij ∈ C, bi ∈ R, cj ∈ C, (Az = b), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

n ∈ N,m ∈ N}.

4.3. Nonlinear Complex Prime Optimization

cpop43a = {max |z41 + ...+ z4n| subject to
b1 ≤ |a11z1 + ...+ a1nzn| ≤ c1, · · · , bm ≤ |am1z1 + ...+ amnzn| ≤ cm,

zj ∈ ZP[i], aij ∈ C, bi ∈ R, cj ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

cpop43b = {min ez − log(c) subject to |z2 + c2| ≤ a, z, c ∈ ZP[i], a ∈ R}.

Similarly for Eisenshtein Integers: complex numbers of the form: z = a + bω, where a and b are integers and ω2

+ ω + 1 = 0, we can introduce a subset: EP [i] := {a+ bω|a, b ∈ P }, and consider the corresponding optimization.

5. Quaternionic Prime Optimization

Let us introduce Quaternionic Prime Optimization. Recall that quaternions are generally represented in the form:
q = a+ bi + cj + dk, where, a ∈ R, b ∈ R, c ∈ R, d ∈ R, and i, j and k are the fundamental quaternion units and
are a number system that extends the complex numbers [2, 8]. The set of all quaternions H is a normed algebra,
where the norm is multiplicative: ∥pq∥ = ∥p∥∥q∥, p ∈ H, q ∈ H, ∥q∥2 = a2 + b2 + c2 + d2. This norm makes it
possible to define the distance d(p, q) = ∥p− q∥ which makes H into a metric space. Quaternionic Optimization
is considered in [17] and in particular, in[17] is introduced a novel concept of Integer Quaternionic Optimization
on the base of Lipschits quaternions L := {q : q = a+ bi + cj + dk | a, b, c, d ∈ Z}. Let us introduce the following
subset of Lipschits quaternions:

LP := {q : q = a+ bi + cj + dk |a, b, c, d ∈ P},LP ⊂ L.
Considering optimization problems using subsets of LP, we obtain a novel class of optimization: Quaternionic

Prime Optimization.

5.1. Linear Quaternionic Prime Optimization

qpop51a = {max ||c1q1 + ...+ cnqn|| subject to
||a11q1 + ...+ a1nqn|| ≤ b1, · · · , ||am1q1 + ...+ amnqn|| ≤ bm,

qj ∈ LP, aij ∈ H, bi ∈ R, cj ∈ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

By introducing the slack variables w1 ≥ 0, ..., wm ≥ 0 the above inequalities can be converted into the following
equations:

||a11q1 + ...+ a1nqn||+ w1 = b1, · · · , ||am1q1 + ...+ amnqn||+ wm = bm.

qpop51b = {max ||c1q1 + ...+ cnqn|| subject to
a11q1 + ...+ a1nqn = b1, · · · , am1q1 + ...+ amnqn = bm,

qj ∈ LP, aij ∈ H, bi ∈ H, cj ∈ H, (Aq = b),

1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

5.2. Polynomial Quaternionic Prime Optimization

qpop52 = {max ||cnqn + ...+ c1q || subject to
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||a1nqn + ...+ a11q || ≤ b1, · · · , ||amnq
n + ...+ am1q || ≤ bm,

q ∈ LP, aij ∈ H, bi ∈ R, cj ∈ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

By introducing the slack variables w1 ≥ 0, ..., wm ≥ 0 the above inequalities can be converted into the following
equations:

||a1nqn + ...+ a11q||+ w1 = b1, · · · , ||amnq
n + ...+ am1q||+ wm = bm.

5.3. Nonlinear Quaternionic Prime Optimization

qpop53a = {max ||q41 + ...+ q4n|| subject to
b1 ≤ ||a11q1 + ...+ a1nqn|| ≤ c1, · · · , bm ≤ ||am1q1 + ...+ amnqn|| ≤ cm,

qj ∈ LP, aij ∈ H, bi ∈ R, cj ∈ R, bi ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

qpop53b = {min ||ep − log(q) || subject to ||p|| ≤ a, ||q|| ≤ b,

p, q ∈ LP, a, b ∈ R}.

5.4. Mixed Prime-Integer-Real-Complex-Quaternionic Optimization

qpop54 = {min xz2||p2 − pq + r2|||iz41 − z22z3| − x2 + y3t2 subject to
xy ≥ N, a1 ≤ ||p|| ≤ b1, a2 ≤ ||q|| ≤ b2, a3 ≤ ||r|| ≤ b3, a4 ≤ |z1| ≤ b4,

a5 ≤ |z2| ≤ b5, a6 ≤ |z3| ≤ b6, a7 ≤ x ≤ b7, a8 ≤ y ≤ b8, a9 ≤ z ≤ b9, a10 ≤ t ≤ b10,

p ∈ H, q ∈ L, r ∈ LP, z1 ∈ C, z2 ∈ Z[i], z3 ∈ ZP[i], x ∈ Z, y ∈ Z,
z ∈ P, t ∈ R, ai, bi ∈ R, N ∈ N, ai ≥ 0, 1 ≤ i ≤ 10}.

The corresponding Optimization Problems can be introduced for two other infinite countable subsets of Integers
as well: Odd numbers and Even numbers.

6. Open Problems

Despite wide proliferation of Integer Optimization, it would be preferable to develop specific methods and
algorithms for the Prime Optimization problems to serve the needs of the Number Theory and other fields and
applications. The corresponding complexity evaluations for the Prime Optimization problems would be developed
as well: for example in binary encoded length of the coefficients(see, e.g., [5, 10]), and in particular, finding
conditions for the polynomial-time optimization. Recall that PRIMES is in P(see, e.g., [1, 5]).

Prime Optimization ideas may be further extended for octonions and other hypercomplex systems, forming
Hypercomplex Prime Optimization, as well as useful for similar approaches in other subfields of the Optimization
Theory.

7. Conclusion

We described a rich variety of problems of optimization of target functions over subsets of prime only integer
points and the corresponding open problems: complexity, extension for octonions and other hypercomplex systems,
forming Hypercomplex Prime Optimization. It would inspire and motivate researchers to develop the corresponding
new methods and algorithms.
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