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Abstract In this paper, we discuss the prediction of the lifetimes to failure of censored units from Weibull distribution for 
a simple step-stress plan under Khamis-Higgins model. Different methods of prediction are considered including maximum 
likelihood predictor, modified m aximum l ikelihood p redictor, c onditional m edian p redictor, a nd b est u nbiased predictor. 
Another aspect of prediction is constructing prediction limits for future lifetimes of the censored units. The pivotal quantity, 
highest conditional density, and shortest-length based methods are discussed in this paper. Monte Carlo simulations are 
performed to compare all the prediction methods developed here and one real data set is analyzed for illustrative purposes.
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1. Introduction

Accelerated Life Test (ALT) is commonly used to evaluate the lifetime of highly reliable products or components
within a reasonable testing time. In ALT, the products or components are run at higher than usual levels of
stress (including temperature, voltage, pressure, etc.) to obtain failures quickly. The data obtained from such an
accelerated test are then transformed to estimate the distribution of failures under specified conditions. If a constant
stress level is used and some selected stress levels are very low, there are many non-failed products or components
during the testing time, which reduces the effectiveness of accelerated tests.

In this case, the step stress accelerated life test (SSALT) is used to overcome such problems. For further details,
one may refer to Lawless [15] and Nelson [18]. In the SSALT, the stress-level in the model will be changed in
steps at stages of experiment. Specifically, a test unit is subjected to a specified level of stress for a prefixed period
of time. If it does not fail during that period of time, then the stress level is increased for future prefixed time.
This process continues until the test units fail or some termination conditions are met. Simple SSALT contains
only two levels of stress. To analyze the data under SSALT, there is more than one model that relates the lifetime’s
distribution under different stress levels to the lifetimes under the step stress test. The most popular one is the
cumulative exposure model (CEM), which was proposed first by Seydyakin [20], and later by Nelson [17]. The
model assumes that the remaining lifetime of the experiment units depends only on the cumulative exposure the
units have experienced, with no memory on how this exposure was accumulated. Inferential aspects of step-stress
model under Type-I and Type-II censoring schemes are addressed by Bai and Kim [3] and Kateri and Balakrishnan
[13], respectively.
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Though CEM is the most popular model for exponential distribution, it is not the case for Weibull distribution,
the reason is that Weibull CEM does not transform to exponential CEM under power transformation. An alternative
model is Khamis and Higgins (K-H) model, which was proposed by Khamis and Higgins [14]. This model is based
on a time-transformation of the exponential model. The K-H model is analytically more tractable than the CEM
without sacrificing flexibility for fitting data. For this reason, the prediction problem is addressed in this article
under K-H model. The Weibull K-H model has been discussed by many authors, Alhadeed and Yang [1] obtained
optimal simple step-stress plan for K-H model. Ganguly et al. [9] presented Bayesian inference for Weibull K-H
model under restricted and unrestricted priors. For further inferences on SSALT under censoring data, one may
refer to Ismail [10, 11].

However, it may worth mentioning that no attention has been paid to the problem of prediction of future lifetimes
of Weibull distribution under K-H model. Generally, the prediction problem has not been discussed extensively
for step-stress model in the literature. Basak [5], Basak and Balakrishnan [6] and Basak and Balakrishnan [7]
considered the problem of predicting the failure times of censored items for a simple step-stress model from
exponential distribution with progressive Type-I censoring, progressive Type-II censoring and Type-II censoring,
respectively. Most recently, Amleh and Raqab [2] discussed the prediction problem under SSALT for Lomax
distribution when the data are Type-II censored.

In this paper, we consider the simple SSALT for the Weibull distribution based on Type-II censoring data,
in which the experiment is terminated as soon as the r-th failure takes place. It is assumed that failures occur
according to K-H model. Mainly, the paper is aimed at predicting future order statistics based on Type-II censored
observations under simple step-stress with K-H model via point prediction as well as prediction intervals.

The rest of the paper is organized as follows. The K-H model, basic model assumptions, and maximum likelihood
estimation of the unknown parameters based on the observed data are presented in Section 2. The Maximum
likelihood predictor, modified maximum likelihood predictor, best unbiased predictor, and conditional median
predictor are discussed in Section 3. In Section 4, we propose different methods for constructing prediction
intervals of the censored lifetimes. Numerical simulation study has been performed to assess the effectiveness
of the prediction procedures and a real data set is analyzed for illustration in Section 5. Finally, we conclude the
paper in Section 6.

2. Model Assumption and Estimation Problem

In the simple step-stress model under Type-II censoring, the test is conducted as follows. All n units are initially put
on the lower stress S1and run until time τ . Then, the stress is changed to high level S2, and the test continues until
a pre-specified number of failures r ≤ n are observed. Let n1 denotes the random number of failures before the
stress change time τ , and n2 = r − n1denotes the number of failures after τ . If n1 = r, then the test is terminated at
the first step. Otherwise, the stress level is increased to the next step, and the test continues until required r failures.

It is further assumed that the lifetimes of the items being tested have a Weibull distribution

f(t, α, λ) = αλtα−1e−λt
α

, t > 0, α > 0, λ > 0, (2.1)

and its respective cumulative distribution function (CDF):

F (t, α, λ) = 1− e−λt
α

, t > 0, α > 0, λ > 0. (2.2)

Here, α > 0, λ > 0 are the shape and scale parameters, respectively. The Weibull distribution with the shape and
scale parameters as α and λ will be denoted by WE(α, λ). The Weibull distribution is one of the most widely
used lifetime distributions in reliability engineering that aims to plan maintenance, determine the life-cycle cost
and prediction failures to determine warranty periods of products.

Basic Assumptions:
1. Units are tested at two stress levels S1 < S2;
2. The failure times of the units for any stress level follow Weibull distribution;
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3. The scale parameters for the life distribution are λi, i = 1, 2, corresponding to stress level Si,i = 1, 2;
4. α is independent of the stress level Si,i = 1, 2;
5. Failures follow the K-H model that was described above.

Let us denote the ordered observed lifetimes by t = (t1:n, . . . , tn1:n, tn1+1:n, . . . , tr:n) with the following cases: CaseI : τ < t1:n < . . . < tr:n;
CaseII : t1:n < . . . < tn1:n < τ ≤ tn1+1:n < tr:n;

CaseIII : t1:n < . . . < tr:n < τ.
(2.3)

Here, the data vector t represents the observed values of the variable

T = (T1:n, . . . , Tn1:n, Tn1+1:n, . . . , Tr:n),

which denotes the Type-II censored order statistics. Suppose the lifetimes CDFs at stress levels S1and S2 are F1and
F2, respectively. The stress level is changed from S1to S2 at a prefixed time τ . Different models are available in
the literature to relate the distributions of lifetimes under different stress levels. The most popular one is the CEM
which assumes that the remaining lifetime of a unit depends only on the cumulative exposure accumulated at the
current stress level, regardless of the previous accumulated exposure. By denoting the CDF of the lifetime under
the step-stress pattern by G(.), then G(t) = F1(t), for 0 ≤ t < τ and G(t) = F2(t− h), for τ ≤ t <∞, where h is
the solution of the equation

F2(τ − h) = F1(τ).

This model has been widely discussed in the literature, especially for exponential lifetimes; see for example, a
review article by Balakrishnan [4]. Actually, the Weibull CEM does not transform to the exponential CEM under
a power transformation. For this reason, an alternative proposed model to the Weibull CEM is the K-H model. The
K-H model in step-stress accelerated life testing is based on a power time-transformation of the exponential model.
Therefore, the distribution of the lifetimes has the CDF

G(t, α, λ1, λ2) =

{
G1(t) = 1− e−λ1t

α

, 0 ≤ t < τ,

G2(t) = 1− e−λ2(t
α−τα)−λ1τ

α

, τ ≤ t <∞, (2.4)

and its corresponding PDF

g(t, α, λ1, λ2) =

{
g1(t) = αλ1t

α−1e−λ1t
α

, 0 ≤ t < τ,

g2(t) = αλ2t
α−1e−λ2(t

α−τα)−λ1τ
α

, τ ≤ t <∞. (2.5)

For convenience, let us denote the parameters vector θ = (α, λ1, λ2). It is clear to note that Case I and Case III
in (2.3) are included in Case II by setting (n1 = 0, n2 = r ) and (n1 = r, n2 = 0), respectively. Now, for Case II,
where 0 < n1 < r, the likelihood function of the lifetimes can be written as:

L(θ|data) = αrλn1
1 λn2

2 e−(λ1A1+λ2A2)
r∏
i=1

tα−1i:n , (2.6)

where

A1 = A1(α, n1, τ) =

n1∑
i=1

tαi:n + (n− n1)τα,

and

A2 = A2(α, r, τ) =

r∑
i=n1+1

(tαi:n − τα) + (n− r)(tαr:n − τα),
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or equivalently,

A2 =

r∑
i=n1+1

tαi:n + (n− r)tαr:n − (n− n1)τα.

So, the corresponding log-likelihood function (l) can be written as

l(θ|data) = r lnα+ n1 lnλ1 + n2 lnλ2 − (λ1A1 + λ2A2) + (α− 1)

r∑
i=1

ln ti:n. (2.7)

By differentiating (2.7) with respect to λ1 and λ2, we immediately obtain the maximum likelihood estimators
(MLEs) of λ1 and λ2, respectively, as

λ̂1 =
n1
A1

, (2.8)

and

λ̂2 =
n2
A2

. (2.9)

Now, the MLE of α, α̂, can be obtained as a solution of the following equation:

∂l

∂α
= ϕ(α) =

r

α
+

r∑
i=1

ln ti:n − λ1[

n1∑
i=1

tαi:n ln ti:n + (n− n1)τα ln τ ]

− λ2[

r∑
i=n1+1

tαi:n ln ti:n + (n− r)tαr:n ln tr:n − (n− n1)τα ln τ ] = 0.

(2.10)

By plugging λ̂1 and λ̂2 into (2.10), α̂ is obtained numerically by solving the following simplified equation:

ϕ(α) =
r

α
+

r∑
i=1

ln ti:n − n1
B1

A1
− n2

B2

A2
= 0, (2.11)

where

B1 = B1(α, n1, τ) =

n1∑
i=1

tαi:n ln ti:n + (n− n1)τα ln τ,

and

B2 = B2(α, r, τ) =

r∑
i=n1+1

tαi:n ln ti:n + (n− r)tαr:n ln tr:n − (n− n1)τα ln τ.

In fact, the MLE α̂ of α can be obtained as a fixed point solution of the following equation:

α = h(α), (2.12)

where

h(α) =
r

n1
B1

A1
+ n2

B2

A2
−

r∑
i=1

ln ti:n

.

The simple iterative technique α(j) = h(α)(j), can be used to find a numerical solution of (2.12), where α(j) is the
value computed in the j-th iteration. The following theorem shows the existence and uniqueness of the MLEs of
α, λ1and λ2.
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Theorem 1
Let {ti:n : 1 ≤ i ≤ r} be observed Weibull lifetimes to failure under simple SSALT with K-H model. Then, the
MLEs of α, λ1and λ2 are unique real values.

Proof
It suffices to show that the non-linear equation (2.12) has a unique positive real root. Once the MLE of α is shown
to be a unique positive root, then the MLEs of λ1and λ2 should be unique since they can be obtained uniquely
based on (2.8) and (2.9). Firstly, we show there is only one real root to the equation, ϕ(α) = 0, where

ϕ(α) =
r

α
+

r∑
i=1

ln ti:n − n1C1 − n2C2 = 0,

with

C1 = C1(α, n1, τ) =

n1∑
i=1

tαi:n ln ti:n + (n− n1)τα ln τ

n1∑
i=1

tαi:n + (n− n1)τα
,

and

C2 = C2(α, r, τ) =

r∑
i=n1+1

tαi:n ln ti:n + (n− r)tαr:n ln tr:n − (n− n1)τα ln τ

r∑
i=n1+1

tαi:n + (n− r)tαr:n − (n− n1)τα
.

It is clear that C1 tends to be a finite number and C2 tends to∞ as α approaches 0. By applying l’Hospital’s rule,
we readily have

limα→0( rα − n2C2) = limα→0( rA2−n2αB2

αA2
)

=∞,

which implies that ϕ(α) moves to ∞ when α gets 0. On using the facts τ ≥ ti:n, i = 1, 2, ..., n1 and that
tr:n ≥ ti:n > τ, i = n1 + 1, ..., r, it follows that:

limα→∞ C1(α, n1, τ) = ln τ, and limα→∞ C2(α, n1, τ) = ln tr:n.

This turns out that ϕ(α) reaches to a negative real value as α moves away to∞. That is,

limα→∞ ϕ(α) =
r∑
i=1

ln ti:n − n1 ln τ − n2 ln tr:n < 0.

Since

ϕ′(α) = − r

α2
− λ1[

n1∑
i=1

tαi:n(ln ti:n)2 + (n− n1)τα(ln τ)2]

− λ2[

r∑
i=n1+1

tαi:n(ln ti:n)2 + (n− r)tαr:n(ln tr:n)2 − (n− n1)τα(ln τ)2] < 0,

we conclude that ϕ(α) is a continuous function on (0,∞) and it is decreasing monotonically from∞ to negative
values. The required result then follows.
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3. Prediction for Simple Step-Stress Model

Suppose a sample of n experimental units is placed on a simple step-stress life test. As described in the previous
section, the test continues until required r failures. Let us consider Case II in (2.3) where 0 < n1 < r. Our purpose
is to discuss how to predict the unobserved value of Y = Ts:n, s = r + 1, ..., n, of all (n− r) censored units based
on the observed data t = (t1:n, . . . , tn1:n, tn1+1:n, . . . , tr:n).
Using the Markovian property of censored-order statistics, it is well-known that the conditional distribution of
Y = Ts:n given T = t is just the distribution of Y = Ts:n given Tr:n = tr:n. This implies that the density of Y
given T = t is the same as the density of the (s− r)− th order statistic out of (n− r) units from the population
with density g(y)

1−G(tr:n)
(left truncated density at tr:n, where G(y) is given in Eq. (2.4). Precisely,

gTs:n|T(y|θ, data) =
(n− r)!

(s− r − 1)!(n− s)!
αλ2y

α−1(1− e−λ2(y
α−tαr:n))s−r−1

× e−λ2(n−s+1)(yα−tαr:n), y > tr:n.

(3.1)

3.1. Maximum Likelihood Predictor

The maximum likelihood predictor (MLP) was proposed by Kaminsky and Rhodin [12]. This method involves
prediction of future order statistics and also estimation of the parameters in the model. The predictive likelihood
function (PLF) of Y = Ts:n is given by

L(y, θ|t) = L = gTs:n|T(y|t, θ).gT(t, θ)

= gTs:n|Tr:n(y|tr:n, θ).gT(t, θ),
(3.2)

where gTs:n|Tr:n(y|tr:n, θ) is the conditional density of Y = Ts:n given the observed value of T = t, as in Eq. (
3.1), and gT(t, θ) is the density of T. Therefore, Eq. (3.2) can be written as

L ∝
n1∏
i=1

g1(ti:n)

r∏
i=n1+1

g2(ti:n)[G2(y)−G2(tr:n)]s−r−1g2(y)[1−G2(y)]n−s,

0 ≤ n1 ≤ r, r + 1 ≤ s ≤ n.

(3.3)

Here, if we take n1 = 0, we get Case I in (2.3), and if we take n1 = r, we get Case III, so considering Case II in
(2.3), i.e. 1 ≤ n1 < r ≤ n, we obtain

L ∝λ2αyα−1e−λ2(y
α−τα)−λ1τ

α

.e−(n−s)[λ2(y
α−τα)+λ1τ

α]

n1∏
i=1

αλ1t
α−1
i:n e−λ1t

α
i:n

×
r∏

i=n1+1

αλ2t
α−1
i:n e−λ2(t

α
i:n−τ

α)−λ1τ
α

[e−λ2(t
α
i:n−τ

α)−λ1τ
α

− e−λ2(y
α−τα)−λ1τ

α

]s−r−1,

(3.4)

which can be simplified to:

L ∝(y

r∏
i=1

ti:n)α−1λn1
1 λn2+1

2 αr+1e−λ1[
∑n1
i=1 t

α
i:n+(n−n1)τ

α].[e−λ2(t
α
i:n−τ

α) − e−λ2(y
α−τα)]s−r−1

× e−λ2[
∑r
i=n1+1(t

α
i:n−τ

α)+(n−s+1)(yα−τα)].

(3.5)
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Consequently, the log PLF is expressed as

lnL ∝(r + 1) lnα+ n1 lnλ1 + (n2 + 1) lnλ2 + (α− 1)(ln y +

r∑
i=1

ln ti:n)

− λ1[

n1∑
i=1

tαi:n + (n− n1)τα]− λ2[

r∑
i=n1+1

(tαi:n − τα) + (n− s+ 1)(yα − τα)]

+ (s− r − 1) ln[e−λ2(t
α
r:n−τ

α) − e−λ2(y
α−τα)].

(3.6)

By (3.6), the predictive likelihood equations (PLEs) for y, λ1, λ2 and α, are obtained and presented as follows:

∂ lnL

∂y
=
α− 1

y
− λ2(n− s+ 1)αyα−1 +

(s− r − 1)λ2αy
α−1e−λ2(y

α−τα)

e−λ2(tαr:n−τα) − e−λ2(yα−τα)
= 0, (3.7)

∂ lnL

∂λ1
=
n1
λ1
− [

n1∑
i=1

tαi:n + (n− n1)τα] = 0, (3.8)

∂ lnL

∂λ2
=
n2 + 1

λ2
− [

r∑
i=n1+1

(tαi:n − τα) + (n− s+ 1)(yα − τα)]

+ (s− r − 1)
[(yα − τα)e−λ2(y

α−τα) − (tαr:n − τα)e−λ2(t
α
r:n−τ

α)]

e−λ2(tαr:n−τα) − e−λ2(yα−τα)
= 0,

(3.9)

and

∂ lnL

∂α
=
r + 1

α
+ ln y +

r∑
i=1

ln ti:n − λ1

[
n1∑
i=1

tαi:n ln ti:n + (n− n1)τα ln τ

]

− λ2

[
r∑

i=n1+1

(tαi:n ln ti:n − τα ln τ) + (n− s+ 1)(yα ln y − τα ln τ)

]

+ (s− r − 1)λ2
e−λ2(y

α−τα) (yα ln y − τα ln τ)− e−λ2(t
α
r:n−τ

α)(tαr:n ln tr:n − τα ln τ)

e−λ2(tαr:n−τα) − e−λ2(yα−τα)
= 0.

(3.10)

The predictive maximum likelihood estimator (PMLE) of λ1, λ̃1, is obtained immediately from Eq. (3.8), and it is
given by

λ̃1 =
n1

n1∑
i=1

tαi:n + (n− n1)τα
. (3.11)

Eq. (3.9) can be rewritten as follows:

n2+1

λ2
−

[
r∑

i=n1+1

(tαi:n − τα) + (n− s+ 1)(yα − τα)

]

+ (s− r − 1)

[
(yα − τα)

e−λ2(tαr:n−yα) − 1
− (tαr:n − τα)

1− e−λ2(yα−tαr:n)

]
= 0.

(3.12)

Now, it follows from Eq. (3.7), we have

e−λ2(t
α
r:n−y

α) − 1 =
1

n−s+1
s−r−1 −

α−1
αλ2(s−r−1)yα

, (3.13)
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and

1− e−λ2(y
α−tαr:n) =

1
n−s+1
s−r−1 −

α−1
αλ2(s−r−1)yα + 1

. (3.14)

The PMLE of λ2, λ̃2 , can be obtained by substituting Eq.’s (3.13) and (3.14) into (3.12). That is,

λ̃2 =
n2 + 1− (1− 1

α )
[
1−

(
tr:n
y

)α]
r∑

i=n1+1

(tαi:n − τα) + (n− r)(tαr:n − τα)

. (3.15)

Using λ̃1 and λ̃2, Eq.’s (3.7) and (3.10) can be solved simultaneously with respect to y and α. Consequently, we
obtain the MLP of Y , ŶM , and the PMLE of α, α̃. Numerical methods can be used to solve these simultaneous
equations.

3.2. Modified MLP

The modified maximum likelihood predictor (MMLP) can be obtained based on 2-stage procedure. First, we obtain
the MLEs of α, λ1and λ2 based on the observed data discussed in Section 2. In the second stage, we substitute these
MLEs, α̂, λ̂2 of α and λ2 into (3.7). As a result of that the MMLP of Y = Ts:n can be obtained by solving Eq. (3.7)
for Y , which can be written as the following simplified equation:

e−λ̂2(y
α̂−tα̂r:n) =

(n− r)λ̂2yα̂ − (1− 1
α̂ )

(n− s+ 1)λ̂2yα̂ − (1− 1
α̂ )
, y > tr:n. (3.16)

Since Eq. (3.16) can’t be solved analytically, a numerical method is needed to compute the MMLP of Y , say,
ŶMML. For the special case when s = r + 1, it can be easily checked that ŶMML = tr:n. The existence and
uniqueness of the solution of (3.16) are shown in Theorem 2 below.

Theorem 2
Let {ti:n : 1 ≤ i ≤ r} be observed Weibull lifetimes to failure under simple SSALT with K-H model. Then, the
MMLP of Y = Ts:n is unique real value.

Proof
To show the result, we need to check the variabilities of the functions h1(y) and h2(y), where h1(y) and h2(y) are
the left hand and right hand sides of Eq. (3.16), respectively. That is,

h1(y) =
ayα̂ − b
cyα̂ − b

,

and

h2(y) = eλ2(y
α̂−tα̂r:n), (3.17)

where a = (n− r) λ̂2,b = 1− 1
α̂ and c = (n− s+ 1) λ̂2, with a > c. Thus, we can obtain the derivative of h1(y)

as follows:

h′1(y) =
α̂b(c− a)yα̂−1

(cyα̂ − b)2
. (3.18)

It follows from Eq. (3.18) that h1(y) is increasing, decreasing and constant for α̂ < 1, α̂ > 1, α̂ = 1, respectively.
It can be easily noticed that h1(y) starts from h1(tr:n) =

atα̂r:n−b
ctα̂r:n−b

> 1 and reaches a
c > 1, when y moves away
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to ∞. Note that if α̂ < 1 (b < 0), 1 < h1(tr:n) < a
c and if α̂ > 1 (b > 0), 1 < a

c < h1(tr:n). For the case when
α̂ = 1 (b = 0), h1(tr:n) = a

c . It is evident that h2(y) is non-decreasing function and going faster than h1(y) as
y approaches ∞, with h2(tr:n) = 1 and h2(∞) =∞. This shows that the difference between the two functions,
h1(y)− h2(y), intersects the original horizontal line y = 0, in exactly one point. Therefore, the required result
follows.

3.3. Best Unbiased Predictor

A predictor Ŷ of Y = Ts:n is called a best unbiased predictor (BUP) of Y, if the prediction error Ŷ − Y has a mean
zero and its prediction error variance, V ar(Ŷ − Y ) is less than or equal to that of any other unbiased predictor of
Y . Based on the conditional density of Y given T = t, as in Eq. ( 3.1), the BUP of Y is given by

ŶBUP = E(Y |T) =

∞∫
tr:n

ygTs:n|T(y|α, λ1, λ2, data)dy. (3.19)

Using the binomial expansion:[
1− e−λ2(y

α−tαr:n)
]s−r−1

=

s−r−1∑
k=0

(
s− r − 1

k

)
(−1)

s−r−1−k
e−(s−r−k−1)λ2(y

α−tαr:n),

we obtain

ŶBUP = (s− r)
(
n− r
s− r

)
λ
− 1
α

2

×
s−r−1∑
k=0

(
s−r−1
k

)
(−1)

s−r−1−k
.e−(n−r−k−1)λ2t

α
r:n .γ( 1

α + 1; (n− r − k)λ2t
α
r:n)

(n− r − k)
1
α+1

,

(3.20)

where

γ(a; t) =

∫ ∞
t

ua−1e−udu,

is the incomplete gamma function for a > 0. Since the parameters α and λ2 are unknown, the BUP of Y can be
approximated by replacing α and λ2 by their corresponding MLEs.

3.4. Conditional Median Predictor

The conditional median predictor (CMP) was first suggested by Raqab and Nagaraja [19]. A predictor Ŷ is called
the CMP of Y , if it is the median of the conditional distribution of Y given T = t, that is

Pθ(Y ≤ Ŷ |T = t) =Pθ(Y ≥ Ŷ |T = t). (3.21)

Based on the conditional distribution of Y given T = t, we can obtain

Pθ(Y ≤ Ŷ |T = t) =Pθ(1− e−λ2(y
α−tαr:n) ≥ 1− e−λ2(Ŷ

α−tαr:n)|T = t). (3.22)

It can be shown that, given T = t, the distribution of 1− e−λ2(y
α−tαr:n) is a Beta distribution with parameters s− r

and n− s+ 1, denoted by Beta(s− r, n− s+ 1). So, we can obtain the CMP of Y as

ŶCMP =

[
tαr:n −

1

λ2
ln (1−MedB)

] 1
α

, (3.23)

where B is a random Beta(s− r, n− s+ 1), and MedB represents the median of B. We compute an approximate
CMP of Y by replacing α and λ2 by their corresponding MLEs.
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4. Prediction Intervals

Another aspect of prediction problem is to predict the future censored lifetimes by establishing prediction intervals
(PIs) for Y = Ts:n,s = r + 1, . . . , n based on the Type II censored sample T = (T1:n, T2:n, . . . , Tr:n).

4.1. Pivotal Method

Let us consider the random variable

Z = 1− e−λ2(y
α−tαr:n), Y > tr:n. (4.1)

The distribution of Z given T = t, is a Beta distribution with parameters s− r and n− s+ 1. So, Z can be
considered as a pivotal quantity to obtain the PI of Y . Taking (1− γ) as prediction coefficient and using (4.1), we
obtain

P (B γ
2
< Z < B1− 1

γ
) = 1− γ,

where Bγ is the 100γ − th percentile of the distribution Beta(s− r, n− s+ 1). Therefore, a (1− γ)100% PI of Y
is (L1(T), U1(T)), where

L1(T) =

[
tαr:n −

1

λ2
ln
(
1−B γ

2

)] 1
α

,

U1(T) =

[
tαr:n −

1

λ2
ln
(
1−B1− γ2

)] 1
α

. (4.2)

Since α and λ2 are unknown, the MLEs of the parameters can be used to obtain approximation of the prediction
limits, L1(T) and U1(T).

4.2. Highest Conditional Density Method

Here we consider the conditional distribution of Z = 1− e−λ2(y
α−tαr:n) given T = t. Its density takes the form

g(z|t, θ) =
(n− r)!

(s− r − 1)!(n− s)!
zs−r−1(1− z)n−s, 0 < z < 1. (4.3)

The density in (4.3) is unimodal function. An interval (d1, d2) is called highest conditional density (HCD) PI of
content 1− γ if (d1, d2) = {d : d ∈ [0, 1], f(d) ≥ k} ⊆ [0, 1], where∫ d2

d1

f(u)du = 1− γ,

for some k > 0. Now, if r + 1 < s < n, then g(z|t, θ) is a unimodal function in z, and it attains its maximum value
at δ = (s−r−1)

n−r−1 ∈ (0, 1). So, the HCD PI can be obtained by finding two points d1 = 100(γ2 )− th percentile, and
d1 = 100(1− γ

2 )− th percentile, with d1 ≤ δ ≤ d2, satisfying∫ d2

d1

g(z|t, θ)dz = 1− γ, (4.4)

and

g(d1|t, θ) = g(d2|t, θ), (4.5)
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(see Casella and Berger [8], 441- 442). Eq.’s (4.4) and (4.5) can be simplified as

Bd2(s− r, n− s+ 1)−Bd1(s− r, n− s+ 1) = 1− γ, (4.6)

and (
1− d2
1− d1

)n−s
=

(
d1
d2

)s−r−1
, (4.7)

where, Bν(a, b) is the incomplete beta function

Bν(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ ν

0

ua−1(1− u)b−1du.

Consequently, a (1− γ)100% HCD PI of Y is given by (L2(T), U2(T)), with

L2(T) =

[
tαr:n −

1

λ2
ln (1− d1)

] 1
α

,

U2(T) =

[
tαr:n −

1

λ2
ln (1− d2)

] 1
α

. (4.8)

For the special case when s = n and s > r + 1, the density g(z|t, θ) is increasing function with g(0|t, θ) = 0 and
g(1|t, θ) = (n− r). Therefore, we choose the PI for Y of the form (d1, 1) such that∫ 1

d1

g(z|t, θ)dz = 1− γ,

which implies that

d1 = γ
1

n−r .

So, a (1− γ)100% HCD PI of Y is given by

L2(T) =

[
tαr:n −

1

λ2
ln
(

1− γ
1

n−r

)] 1
α

, U2(T) =∞.

When s = r + 1 and s < n, g(z|t, θ) is decreasing function starting from (n− r) at z = 0 to 0 at z = 1. In this
case, the PI for Y is of the form (0, d2) such that d2 = 1− γ

1
n−r . This in turns implies that

L2(T) = tr:n, U2(T) =

[
tαr:n −

1

λ2(n− r)
ln γ

] 1
α

.

Finally, for s = r + 1 and s = n, g(z|t, θ) is uniform U(0, 1). Here d1 and d2 are taken such that d1 = γ
2 and

d2 = 1− γ
2 . Therefore,

L2(T) =

[
tαr:n −

1

λ2
ln
(

1− γ

2

)] 1
α

, and U2(T) =

[
tαr:n −

1

λ2
ln
(γ

2

)] 1
α

.

4.3. Shortest-Length based Method

Using the fact that given T = t the distribution of Z = 1− e−λ2(y
α−tαr:n)is a Beta(s− r, n− s+ 1), we choose

the constants c and d satisfying:

P (c < 1− e−λ2(y
α−tαr:n) < d) = 1− γ,
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which is equivalent to:

P ([tαr:n −
1

λ2
ln (1− c)] 1

α < Y < [tαr:n −
1

λ2
ln (1− d)]

1
α ) = 1− γ.

Therefore, a(1− γ)100% PI of Y is given by (L3(T), U3(T)), such that

L3(T) =

[
tαr:n −

1

λ2
ln(1− c)

] 1
α

,

U3(T) =

[
tαr:n −

1

λ2
ln(1− d)

] 1
α

. (4.9)

Now, the best choices for c and d are those that minimize the PI length U3(T)− L3(T). The optimization problem
for obtaining the shortest-length (SL) (1− γ)100% PI can be stated as

Minimize Length = U3(T)− L3(T)
Subject to

Bd(s− r, n− s+ 1)−Bc(s− r, n− s+ 1) = 1− γ.

The SL (1− γ)100% PI can be obtained by minimizing the Lagrangian function:

R(c, d, ω) =

[
tαr:n −

1

λ2
ln(1− d)

] 1
α

−
[
tαr:n −

1

λ2
ln(1− c)

] 1
α

− ω [{Bd(s− r, n− s+ 1)−Bc(s− r, n− s+ 1)} − (1− γ)] ,

where, ω is the Lagrange multiplier. By differentiating R with respect to c, d and ω, respectively, we obtain:

∂R

∂c
= − 1

αλ2(1− c)

[
tαr:n −

1

λ2
ln(1− c)

] 1
α

+ ωp(c, s− r, n− s+ 1) = 0,

∂R

∂d
= − 1

αλ2(1− d)

[
tαr:n −

1

λ2
ln(1− d)

] 1
α

− ωp(d, s− r, n− s+ 1) = 0,

∂R

∂ω
= [{Bd(s− r, n− s+ 1)−Bc(s− r, n− s+ 1)} − (1− γ)] = 0,

where p(x, a, b) represents the PDF of Beta(a, b). The above equations are equivalent to the following equations:

(
1− c
1− d

)[
tαr:n − 1

λ2
ln(1− d)

tαr:n − 1
λ2

ln(1− c)

] 1
α−1

=
p(d, s− r, n− s+ 1)

p(c, s− r, n− s+ 1)
, (4.10)

and

Bd(s− r, n− s+ 1)−Bc(s− r, n− s+ 1) = 1− γ. (4.11)

Constructing the SL PI can be obtained by solving (4.10) and (4.11) numerically, and then substituting the results
in (4.9). For s = r + 1 and s = n, the density of Z given T = t is decreasing and increasing, respectively. In these
cases, the PIs for Y are of the forms; (0, d1) and (0, d2), where d1 = 1− γ

1
n−r and d2 = (1− γ)

1
n−r . So, the SL
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PIs of Tr+1:n and Tn:n are respectively, obtained to be

L3(T) = tr:n, U3(T) =

[
tαr:n −

1

λ2(n− r)
ln γ

] 1
α

,

and

L3(T) = tr:n, U3(T) =

[
tαr:n −

1

λ2
ln(1− γ)

1
(n−r)

] 1
α

.

5. Numerical Experiments and Data Analysis

Here, we perform a simulation study to assess the methods of predictions developed in the previous sections and
analyze one real data set for illustrative purposes.

5.1. Numerical Experiments

In this subsection, we present a simulation study to assess the performance of the proposed predictors; which were
presented in Section 3. The performances are measured in terms of the biases and their mean square prediction
errors (MSPEs) of the predictors. We also compare the PIs, that are discussed in Section 4, in terms of their
estimated average lengths (ALs) and coverage probabilities (CPs).
For this, a Monte Carlo (MC) simulation is performed based on different sample sizes and censoring schemes from
the Weibull distribution under Simple SSALT. For particular values of n, r and s, we generate Type II censored
samples from this model according to the following schemes:

Scheme 1: α = 0.75, λ1 = 0.25, λ2 = 1 and τ = 1.5.
Scheme 2: α = 1.1, λ1 = 0.25, λ2 = 1 and τ = 1.5.
Scheme 3:α = 0.75, λ1 = 0.75, λ2 = 1.25 and τ = 0.4.
Scheme 4: α = 1.5, λ1 = 0.75, λ2 = 2 and τ = 0.7.

In each case, we compute the value of the point predictors; MLP, MMLP, CMP and BUP. We also compute 95%
PIs based on pivotal quantity, HCD and SL methods. Type-II censored samples from Weibull distribution were
randomly generated under these four different schemes and the simulation process is repeated 2000 times. Using
these randomly samples, prediction biases and MSPEs of the predictors are computed. The ALs and CPs of PIs are
also reported. The so obtained results are presented in Tables 1 and 2. In Tables 3 and 4, we have reported the ALs
and CPs of the PIs.

From Tables 1 and 2, we notice that the BUP is the best point predictor in the sense of the prediction bias. The
biases of the CMP are smaller than those of the MLP for all of the considered cases. By considering the MSPE as
an optimality criterion, it is observed that, the CMP performs better than the MLP and BUP if α is larger than 1. In
this case, both predictors coincide when s gets close to r. While the MLP competes the CMP when α is smaller than
1, the MSPEs of CMP are smaller than those of the BUP. Clearly, one can easily check that the MMLP obtained
by substituting the MLEs of the parameters into the PLEs, behaves well and it is computationally attractive when
compared to the MLP. It is also observed that, for fixed values of n and r, the MSPEs increase as s increases for all
point predictors.

It follows from Tables 3 and 4 that the SL method is more efficient than other methods for obtaining PIs by
considering the AL criterion. Its performance tends to be higher when s gets large. For comparing the HCD and
pivot methods, it is observed that the HCD PIs are superior to the pivot CIs in the sense of ALs when s tends to be
close to r. As s approaches n, the pivot PIs behave well. By considering the CP criterion, the HCD PIs outperform
the PIs obtained by SL and pivot methods. The CPs of SL and pivot PIs are very close. It is evident that the CPs
of all PIs obtained by SL, HCD and pivot methods increase when s increases. In this sense, the worse CP occurs
when the variable to be predicted is the right after the last observed lifetime.
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Summing up, the CMP and MMLP are the best point predictors as they are computationally attractive and have
good performances in terms of the MSPE criterion. For prediction interval aspect, the HCD method produces
efficient PIs over other methods by considering the AL and CP criteria.

Table 1: Biases and MSPEs of the point predictors for the censored lifetimes under Schemes 1 and 2.

Scheme 1: α = 0.75, λ1 = 0.25, λ2 = 1 and τ = 1.5.

MLP MMLP CMP BUP

(n, r) s Bias MSPE Bias MSPE Bias MSPE Bias MSPE

22 -0.2068 0.2566 -0.1553 0.2783 -0.0563 0.3158 0.0051 0.3388

24 -0.2687 0.4293 -0.2461 0.4403 -0.0562 0.5097 0.0218 0.5544

(30, 20) 26 -0.4897 0.8165 -0.3674 0.8575 -0.1611 0.9159 -0.0538 0.9942

28 -0.8862 1.8699 -0.5333 1.8587 -0.1919 2.1054 -0.0076 2.3867

30 -2.4077 8.8250 -1.7954 8.3601 -0.6468 9.4091 0.0209 12.7207

27 -0.1311 0.1414 -0.1305 0.1555 -0.0265 0.1611 0.0127 0.1702

30 -0.1899 0.2550 -0.1660 0.2683 -0.0701 0.2871 -0.0216 0.3010

(40, 25) 35 -0.4285 0.7296 -0.2623 0.7365 -0.1131 0.8399 -0.0262 0.8982

38 -0.9314 2.1653 -0.564 2.2726 -0.2297 2.5386 -0.0488 2.8209

40 -2.3733 9.4321 -1.7064 8.7592 -0.5383 9.6898 0.1357 12.7214

32 -0.0862 0.0996 -0.0788 0.1036 -0.0201 0.1074 0.0082 0.1120

35 -0.1725 0.1563 -0.1191 0.1659 -0.0520 0.1701 -0.0185 0.1760

(50, 30) 40 -0.2316 0.3160 -0.1344 0.3431 -0.0405 0.3652 0.0071 0.3844

45 -0.4070 0.8845 -0.2358 0.9802 -0.1029 1.0144 -0.0175 1.0803

50 -2.2592 8.9856 -1.7275 8.5519 -0.4771 9.0405 0.1838 11.5634

Scheme 2: α = 1.1, λ1 = 0.25, λ2 = 1 and τ = 1.5.

22 -0.1128 0.0660 -0.0985 0.0639 -0.0451 0.0617 -0.0177 0.0639

24 -0.1564 0.1090 -0.1245 0.0991 -0.0525 0.0884 -0.0212 0.0917

(30, 20) 26 -0.2145 0.1788 -0.1570 0.1811 -0.0778 0.1687 -0.0397 0.1753

28 -0.3211 0.3190 -0.2124 0.3068 -0.0941 0.2895 -0.0384 0.3066

30 -0.8245 1.1847 -0.5035 1.0812 -0.3216 0.9782 -0.1571 1.0747

27 -0.0511 0.0367 -0.0594 0.0381 -0.0220 0.0354 -0.0039 0.0366

30 -0.0976 0.0694 -0.0675 0.0653 -0.0228 0.0564 -0.0019 0.0586

(40, 25) 35 -0.2005 0.1618 -0.1187 0.1652 -0.0709 0.1526 -0.0407 0.1574

38 -0.3256 0.3479 -0.2092 0.3606 -0.0997 0.3390 -0.0463 0.3566

40 -0.7654 1.1447 -0.5696 1.0177 -0.2807 1.0149 -0.1168 1.1203

32 -0.0488 0.0266 -0.0522 0.0278 -0.0267 0.0241 -0.0132 0.0245

35 -0.0511 0.0417 -0.0560 0.0406 -0.0140 0.0371 0.0011 0.0384

(50, 30) 40 -0.1002 0.0809 -0.0715 0.0775 -0.0458 0.0753 -0.0277 0.0767

45 -0.1971 0.2003 -0.0807 0.1887 -0.0636 0.1815 -0.0355 0.1868

50 -0.7124 1.0672 -0.5199 1.0163 -0.2310 0.8875 -0.0715 0.9749
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Table 2: Biases and MSPEs of the point predictors for the censored lifetimes under Schemes 3 and 4.

Scheme 3: α = 0.75, λ1 = 0.75, λ2 = 1.25 and τ = 0.4.

MLP MMLP CMP BUP

(n, r) s Bias MSPE Bias MSPE Bias MSPE Bias MSPE

22 -0.1371 0.1085 -0.1290 0.1095 -0.0632 0.1344 -0.0240 0.1434

24 -0.2019 0.1925 -0.1593 0.1951 -0.0557 0.2166 -0.0022 0.2404

(30, 20) 26 -0.3218 0.3794 -0.2258 0.4053 -0.0753 0.4688 0.0044 0.5319

28 -0.6555 0.9557 -0.4474 0.9365 -0.2036 1.0860 -0.0692 1.2665

30 -1.8073 4.9728 -1.2696 4.2856 -0.4824 5.4263 0.0288 7.7144

27 -0.0832 0.0593 -0.0859 0.0612 -0.0229 0.0661 0.0021 0.0702

30 -0.1233 0.1083 -0.1237 0.1138 -0.0493 0.1162 -0.0161 0.1228

(40, 25) 35 -0.2973 0.3750 -0.2063 0.4077 -0.0868 0.4618 -0.0242 0.5089

38 -0.6455 1.1907 -0.3345 1.2405 -0.0808 1.4943 0.0581 1.7230

40 -1.9936 5.7270 -1.2361 5.1217 -0.4268 6.8673 0.0937 9.7026

32 -0.0577 0.0411 -0.0593 0.0449 -0.0219 0.0466 -0.0037 0.0486

35 -0.1030 0.0663 -0.0808 0.0656 -0.0274 0.0723 -0.0046 0.0759

(50, 30) 40 -0.1775 0.1569 -0.1157 0.1638 -0.0503 0.1761 -0.0169 0.1869

45 -0.3929 0.4901 -0.2813 0.5321 -0.1439 0.5703 -0.0835 0.6073

50 -1.8672 5.5728 -1.1010 5.0204 -0.2777 6.5882 0.2476 8.9555

Scheme 4: α = 1.5, λ1 = 0.75, λ2 = 2 and τ = 0.7.

22 -0.0294 0.0102 -0.0352 0.0099 -0.0064 0.0098 0.0038 0.0103

24 -0.0458 0.0155 -0.0426 0.0154 -0.0122 0.0143 -0.0012 0.0149

(30, 20) 26 -0.071 0.0249 -0.0554 0.0233 -0.0301 0.0231 -0.0177 0.0236

28 -0.1118 0.0443 -0.1288 0.0486 -0.0380 0.0392 -0.0212 0.0407

30 -0.2514 0.1287 -0.1601 0.1152 -0.0988 0.1053 -0.0554 0.1111

27 -0.0315 0.0067 -0.0274 0.0062 -0.0119 0.0061 -0.0048 0.0062

30 -0.0395 0.0101 -0.0252 0.0105 -0.0142 0.0094 -0.0068 0.0096

(40, 25) 35 -0.0642 0.0246 -0.0684 0.0249 -0.0348 0.0219 -0.0255 0.0223

38 -0.1144 0.0518 -0.1192 0.0494 -0.0387 0.0475 -0.0234 0.0490

40 -0.2038 0.1109 -0.0933 0.1150 -0.0636 0.1088 -0.0213 0.1175

32 -0.0247 0.0048 -0.0253 0.0045 -0.0135 0.0043 -0.0081 0.0044

35 -0.0252 0.0068 -0.0271 0.0063 -0.0114 0.0061 -0.0058 0.0062

(50, 30) 40 -0.0430 0.0119 -0.0272 0.0124 -0.0141 0.0110 -0.0079 0.0112

45 -0.0772 0.0281 -0.0376 0.0277 -0.0140 0.0249 -0.0054 0.0255

50 -0.2261 0.1235 -0.1985 0.1102 -0.0604 0.1089 -0.0191 0.1164
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Table 3: ALs and CPs of 95% PIs of the censored lifetimes under Schemes 1 and 2.

Scheme 1: α = 0.75, λ1 = 0.25, λ2 = 1 and τ = 1.5.

Pivotal Method HCD Method SL Method

(n, r) s AL CP AL CP AL CP

22 1.386 0.670 1.248 0.659 1.247 0.650

24 2.262 0.828 2.165 0.822 2.120 0.821

(30, 20) 26 3.528 0.900 3.593 0.903 3.349 0.876

28 5.866 0.909 6.938 0.933 5.554 0.899

30 17.272 0.945 - 0.982 16.750 0.903

27 0.854 0.616 0.771 0.602 0.770 0.591

30 1.607 0.810 1.545 0.801 1.526 0.802

(40, 25) 35 3.413 0.905 3.541 0.916 3.292 0.893

38 6.399 0.919 7.866 0.950 6.121 0.904

40 17.556 0.946 - 0.983 16.519 0.914

32 0.638 0.585 0.577 0.563 0.576 0.560

35 1.120 0.801 1.072 0.790 1.066 0.787

(50, 30) 40 2.035 0.877 2.027 0.879 1.974 0.875

45 3.772 0.896 3.995 0.919 3.664 0.897

50 17.653 0.955 - 0.981 18.119 0.934

Scheme 2: α = 1.1, λ1 = 0.25, λ2 = 1 and τ = 1.5.

22 0.624 0.701 0.567 0.667 0.566 0.669

24 0.997 0.843 0.959 0.836 0.944 0.808

(30, 20) 26 1.432 0.883 1.455 0.886 1.378 0.872

28 2.201 0.928 2.525 0.953 2.121 0.913

30 5.181 0.940 - 0.974 5.365 0.941

27 0.421 0.618 0.382 0.587 0.381 0.588

30 0.739 0.814 0.714 0.824 0.707 0.819

(40, 25) 35 1.402 0.896 1.446 0.905 1.367 0.887

38 2.344 0.934 2.782 0.957 2.277 0.917

40 5.086 0.936 - 0.973 5.540 0.940

32 0.314 0.582 0.285 0.552 0.284 0.552

35 0.533 0.771 0.513 0.771 0.510 0.769

(50, 30) 40 0.917 0.855 0.914 0.865 0.896 0.852

45 1.497 0.916 1.571 0.931 1.469 0.908

50 5.201 0.955 - 0.976 5.833 0.942
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Table 4: ALs and CPs of 95% PIs of the censored lifetimes under Schemes 3 and 4.

Scheme 3: α = 0.75, λ1 = 0.75, λ2 = 1.25 and τ = 0.4.

Pivotal Method HCD Method SL Method

(n, r) s AL CP AL CP AL CP

22 1.366 0.706 1.231 0.680 1.229 0.681

24 1.497 0.824 1.429 0.826 1.396 0.820

(30, 20) 26 2.476 0.862 2.526 0.865 2.334 0.854

28 4.143 0.875 4.952 0.907 3.896 0.848

30 13.410 0.904 - 0.960 12.629 0.863

27 0.561 0.649 0.505 0.627 0.504 0.628

30 1.031 0.802 0.990 0.800 0.976 0.796

(40, 25) 35 2.319 0.854 2.411 0.860 2.227 0.836

38 4.702 0.887 5.844 0.909 4.472 0.874

40 12.207 0.915 - 0.973 12.007 0.869

32 0.400 0.576 0.361 0.564 0.360 0.560

35 0.721 0.785 0.689 0.775 0.684 0.772

(50, 30) 40 1.360 0.848 1.355 0.848 1.316 0.838

45 2.481 0.856 2.635 0.870 2.403 0.845

50 13.160 0.924 - 0.964 13.246 0.901

Scheme 4: α = 1.5, λ1 = 0.75, λ2 = 2 and τ = 0.7.

22 0.238 0.664 0.217 0.651 0.217 0.650

24 0.373 0.822 0.360 0.821 0.355 0.819

(30, 20) 26 0.524 0.872 0.531 0.879 0.507 0.858

28 0.753 0.917 0.851 0.937 0.733 0.902

30 1.563 0.926 - 0.976 1.887 0.937

27 0.166 0.610 0.151 0.597 0.150 0.587

30 0.277 0.819 0.268 0.816 0.266 0.814

(40, 25) 35 0.496 0.879 0.509 0.885 0.486 0.875

38 0.788 0.882 0.917 0.925 0.772 0.874

40 1.543 0.949 - 0.966 1.779 0.933

32 0.127 0.594 0.115 0.566 0.115 0.564

35 0.209 0.776 0.202 0.772 0.200 0.771

(50, 30) 40 0.336 0.867 0.335 0.865 0.330 0.859

45 0.536 0.889 0.560 0.903 0.529 0.887

50 1.527 0.946 - 0.964 1.659 0.916
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5.2. Data Analysis

To illustrate the prediction methods developed in this paper, we conduct a real data analysis. The data has been
considered by Liu [16]. It represents the lifetimes (in seconds) of nanocrystalline embedded high-k device put
under a specific test. Forty devices are put into a step-stress experiment with stress change time τ = 600 seconds.
Thirty-eight failures have been observed before the termination of the experiment. These data have been used
previously by Amleh and Raqab [2]. The data are recorded as follows:

Data on the lifetimes of nanocrystalline embedded high-k device.

Stress level Recorded data

1 8 38 72 97 122 140 163 170 188 198

223 256 257 265 448

2 608 611 614 615 616 620 623 623 624 624

631 636 646 654 660 673 675 680 684 692

693 730 745

It was shown by Liu [16] that Weibull distribution can be used for analyzing this data set. Suppose the life test
ended when the 30-th lifetime is observed, i.e., we observe a Type-II censored sample with n = 40, r = 30. Our
aim is to obtain point predictors of the unobserved life times Y = Ts:n, s = 32, 34, 35, 37, 38, 40 and the associated
PIs. For computational ease we divide all of the values by 1000. It is not going to affect the inference procedure.

First we compute the MLEs of α by solving (2.11) numerically and it is found to be α̂ = 0.7656. From (2.8) and
(2.9), we obtain λ̂1=0.7234 and λ̂2 = 17.4605. For predicting the future censored failures, point predictors as well
as PIs are displayed in Table 5. It can be observed that the values of the MLPs and MMLPs are very close to
each other. In fact, all point predictors are close to the true values of the lifetimes, moreover, the point predictors
obtained are lying within all considered PIs. It can be observed that the CMP has a clear advantage over the other
predictors. It can be observed also that all PIs obtained contain the true values of the future order statistics. The
PIs become wider when s gets large, the reason is that the variation of Y = Ts:n tends to be high as Y moves away
from the observed lifetimes. Although all PIs are close in the sense of AL criterion, the PIs obtained by SL based
method have shortest lengths.

Table 5: Point predictors and PIs for future lifetimes of Y = Ts:n.

Point predictors and PIs of Y = Ts:n
s True value MLP MMLP CMP BUP

32 0.675 0.6667 0.6671 0.6720 0.6744
34 0.684 0.6827 0.6842 0.6899 0.6927
35 0.692 0.6926 0.6948 0.7011 0.7042
37 0.730 0.7186 0.7226 0.7311 0.7355
38 0.745 0.7372 0.7425 0.7534 0.7588
40 —– 0.8084 0.8192 0.8492 0.8665

95% PIs of Y = Ts:n
s True value Pivotal PI HCD PI SL PI

32 0.675 (0.6617, 0.7002) (0.6605, 0.6946) (0.6603, 0.6944)
34 0.684 (0.6688, 0.7326) (0.6677, 0.7289) (0.6657, 0.7256)
35 0.692 (0.6741, 0.7522) (0.6736, 0.7506) (0.6702, 0.7444)
37 0.730 (0.6891, 0.8065) (0.6912, 0.8158) (0.6835, 0.7959)
38 0.745 (0.7001, 0.8494) (0.7044, 0.8756) (0.6929, 0.8357)
40 —– (0.7409, 1.0924) (0.7532,∞) (0.660, 1.0389)
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6. Conclusion

In this paper, we have considered the prediction of future lifetimes of a simple step stress model of Weibull
distribution under K-H model when the data are Type-II censored. Various point predictors are addressed including,
maximum likelihood, modified maximum likelihood, conditional median, and best unbiased predictors. We have
also considered prediction intervals for the future lifetimes. We have compared the performance of the predictors
obtained by extensive Monte Carlo simulation study based on the biases and MSPEs for different parameter values,
stress change time, and future order statistics. Prediction intervals were also compared in terms of the average
lengths and coverage probabilities. It is observed that the BUP has the best performance among all point predictors
in terms of prediction bias, while the MMLP and CMP are very competitive in terms of the MSPE criterion as well
as they are computationally attractive. In the context of interval prediction context, it is also observed that the SL
based method is the most appropriate technique for obtaining PIs of future lifetimes in the sense of AL criterion.
The HCD method is an efficient method for producing PIs by considering the CP criterion. It is worth mentioning
that the results of this paper were mainly obtained for Type-II censored scheme, but our methods can be performed
for other censoring schemes, as Type-I, hybrid or progressive censoring. More work along these directions will be
reported in the near future.
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