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Abstract In this paper, we introduce a new four-parameter generalized version of the Chen model called the
exponentiated extended Chen distribution. Some results about the reliability characteristics of hazard rate function
as well as some mathematical properties are provided. The maximum likelihood estimators and five approaches
based on the concept of minimum spacing distance estimators are given for estimation of the model parameters
and their performances in estimating of parameters are compared by means of Monte Carlo simulations. Also, a
multiple regression model with the censored data based on proposed distribution is introduced.
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1. Introduction

[13] proposed an extension of the generalized exponential (GE) distribution, which is very flexible,
positively skewed, and has increasing, decreasing, unimodal and bathtub shaped hazard rate functions
(hrf). It includes GE, exponential, generalized Pareto [9], and Pareto distributions. Recently, a
generalization of Chen distribution [3], is introduced in [2] with the following cumulative distribution
function (cdf):

FECh(x) =
(
1− eλ(1−e

xβ
)
)α

, x ≥ 0, α > 0, λ > 0, β > 0. (1)

It is called the exponentiated Chen (ECh) family. For α = 1, the ECh distribution is reduced to the Chen
distribution. Various properties of the ECh distribution and estimation methods for the parameters of this
distributions are studied in [6]. [11] generalized a class of extended-Weibull distributions. According to
Table 1 of their paper, by changing the generator function Φ(x;η), a lot of extension of distributions in the
class of extended-Weibull distributions can be obtained. Based on [11], we introduce the exponentiated
extended Chen (EE-Ch) distribution with support Sx = (0,∞) if γ < 0 and Sx = (0, ψ) if γ > 0 where
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ψ =
[
log( 1

γλ + 1)
] 1

β via the following cdf:

F (x;α, β, λ, γ) =


{
1− [1− γλ(ex

β − 1)]
1
γ

}α
if γ ̸= 0(

1− e−λ(e
xβ

−1)
)α

if γ = 0.
(2)

We denote this distribution as EE-Ch(α, β, λ, γ). This distribution includes some well-known distributions
such as Chen and extended Chen distributions. This new model inherits the necessity of existence of
parameters α, β and λ from ECh model (1). However, one can pay attention to the existence of parameter
γ in model (2). Through Lemma 1 to Lemma 3, it is apparent that the the parameter γ can control the
flexibiliity of the new proposed distribution for both pdf and hrf functions of the model. Also, as it is
seen in our analyzing the real data set in Example (5), our proposed model with reasonable value of the
parameter γ provides a better fit than the other rival models in fitting to the left skewed data set in this
real example. So, it is not correct to ignor the effects made by this parameter in fitting the model EE-Ch
to some real data sets. One can see that this distribution has a lot of flexibility to fit to real data sets
rather than the other competing models. In the real data section, we show that the EE-Ch has a better
fit than the other considered models for fitting to strengths of glass fibers and modeling a medical data
known as myelogenous leukemia data. So, this model can be fitted to various fields of science such as
engineering and medicine. As we mentioned earlier in the paper, for a good reference to this work, one
can see the paper of [11]. Also, some researches related to this work were considered in the litreture such
as [13] and [10]. For estimating the parameters of model, we use the method which is known as minimum
spacing distance (MSDE) as well as the traditional maximum likelihood estimation (MLE). MSDE was
introduced by [17] and followed in some researches such as [20] and [18] and so on.
The paper is organized as follows: In Section 2, we provide some properties of the pdf, hazard rate
function (hrf), rth non-central moment and moment generating function (mgf) of the EE-Ch distribution.
Furthermore, in this section, we derive the quantile measure and provide some asymptotes for cdf, pdf and
hrf functions of the proposed distribution. Section 3 presents various characterizations of the proposed
distribution. In Section 4, we discuss maximum likelihood estimation (MLE) of the EE-Ch parameters
from one observed sample. Application of the this new model using a real data set is considered in Section
5. In Section 6, we introduce a multiple regression model where the error term of the model follows
the shifted-log-EE-Ch distribution (SLEE-Ch) and we illustrate how this new model can be applied to
myelogenous leukemia data. Finally, we conclude the paper in Section 7.

2. Some properties of EE-Ch distribution

This section provides some properties of the pdf and hrf and presents the quantile measure of the proposed
model. Further, we obtain some general features of EE-Ch distribution such as raw moments and moment
generating function(mgf). Also the asymptotic properties of the pdf, cdf and hrf of the new distribution
at 0 and ∞ are considered. The pdf of EE-Ch distribution is

f(x;α, β, λ, γ) =

 αβλxβ−1ex
β

(1− γw)
1
γ −1

[
1− (1− γw)

1
γ

]α−1

if γ ̸= 0

αβλxβ−1ex
β

e−w (1− e−w)
α−1

if γ = 0,
(3)

where w = λ
(
ex

β − 1
)

.
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Lemma 1
Let f(x) be the pdf of the EE-Ch(α, β, λ, γ). Then we have

lim
x→0+

f (x) =

 0 if (α = 1, β > 1) or (α > 1, β ≥ 1)
∞ if (α = 1, β < 1) or (α < 1, β ≤ 1)
λ if α = 1, β = 1

lim
x→c−

f (x) =

{
0 if γ < 1
∞ if γ > 1,

where c = ψ for γ > 0, and c = ∞ for γ ≤ 0.
The hazard rate function of the EE-Ch(α, γ, λ, β) distribution has the following form:

h (x) =


αβλxβ−1ex

β
(1−γw)

1
γ

−1
[
1−(1−γw)

1
γ

]α−1

1−
[
1−(1−γw)

1
γ

]α if γ ̸= 0

αβλxβ−1ex
β
e−w(1−e−w)

α−1

1−(1−e−w)α if γ = 0.

(4)

In Figure 1, we plot the pdf and hrf of EE-Ch distribution for some different values of model parameters.

Lemma 2
For γ < 0, the hrf of EE-Ch distribution cannot be bathtub shaped or increasing when α ≥ 1 and β ≥ 1.

Proof
The limiting behaviour of hrf is

lim
x→0+

h (x) =

{
λ if α = 1, β = 1
0 if α ≥ 1, β ≥ 1.

Also, limx→∞ h (x) = 0. Therefore, the proof is completed.

Lemma 3
For γ > 0, the hrf of EE-Ch distribution cannot be upside-down bathtub shaped or decreasing when α ≥ 1
and β ≥ 1.

Proof
The limiting behavior of hrf at ψ is limx→ψ− h (x) = ∞. Therefore, the proof is completed.

The pth percentile of EE-Ch(α, β, λ, γ) is

xp =


[
log

(
1−(1− α

√
p)

γ

γλ + 1

)] 1
β

if γ ̸= 0[
log

(
− log(1− α

√
p)

λ + 1

)] 1
β

if γ = 0.

(5)

Using integral transformation theorem one can generate data from an EE-Ch(α, β, λ, γ) distribution by
applying the above percentile function.
Lemma 4
For γ > 0, the rth non-central moment, µ(r), of an EE-Ch(α, β, λ, γ) distribution is

µ(r) = ψr −
∞∑

n1=0

∞∑
n2=0

n2∑
n3=0

(−1)
n1+n2+n3

(
α

n1

)(
n1

γ

n2

)(
n2
n3

)
(γλ)n2I{(n2−n3),β/r,ψr}, (6)

where I{n,t,y} =
∫ y
0
enx

t

dx =
∑∞

j=0
nj yt j+1

j! (t j+1) .
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Figure 1. pdf and hrf of EE-Ch distribution for some different values of model parameters.

Proof
Since γ > 0, we can easily show that

∣∣∣∣(1− γλ
(
ex

β − 1
))1/β

∣∣∣∣ < 1 for all x ∈ (0, ψ). Therefore, by using

the binomial series expansion we can compute µ(r) as follows:

µ(r) =

∫ ψr

0

(
1−

{
1−

[
1− γλ

(
ex

β/r

− 1
)] 1

γ

}α)
dx

= ψr −
∞∑

n1=0

∞∑
n2=0

n2∑
n3=0

(−1)
n1+n2+n3

(
α

n1

)(
n1

γ

n2

)(
n2
n3

)
(γλ)

n2
∫ ψr

0

e(n2−n3)x
β/r

dx,

and the proof is completed.
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Lemma 5
For γ > 0, the moment generating function M(s) of EE-Ch distribution is

M(s) = esψ −
∞∑
n=0

∞∑
n1=0

∞∑
n2=0

n2∑
n3=0

sn

n!
(−1)

n1+n2+n3
(
α

n1

)(
n1

γ

n2

)(
n2
n3

)
(γλ)n2I{(n2−n3),β/n,ψn}. (7)

Proof
Based on the Maclaurin series expansion of the moment generating function M(s) =

∑∞
n=0

sn

n! µ
(n), and

using Lemma 4, the proof is completed.

Proposition 1
The asymptotic of cdf, pdf and hrf of EE-Ch (α, γ, λ, β) distribution as x→ 0 are given by

F (x) ∼ λα xαβ , f(x) ∼ αβλα xαβ−1, h(x) ∼ αβλα xαβ−1.

Proposition 2
The asymptotic of cdf, pdf and hrf of EE-Ch (α, γ, λ, β) distribution as x→ ∞ are given by

1− F (x) ∼ αλe xβ

, f(x) ∼ αβλαxβ −1e xβ

, h(x) ∼ β xβ −1.

3. Characterizations results

In this section, we characterize the EE-Ch distribution in the following directions: (i) based on the ratio
of two truncated moments and (ii) in terms of the hazard function. We present our characterizations (i)
and (ii) in two main subsections, γ = 0 and γ ̸= 0.

3.1. Characterization results, γ = 0

3.1.1. Characterizations based on two truncated moments This sub-subsection is devoted to the
presentation of certain characterizations of EE-Ch distribution, for γ = 0, based on a simple relationship
between two truncated moments. Our first characterization employs a theorem due to [8], see Theorem 1
of Appendix A. The result, however, holds also when the interval H is not closed, since the condition of
the Theorem is on the interior of H.

Proposition 3

Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

[
1− e

−λ
(
ex

β
−1

)]1−α
and q2 (x) =

q1 (x) e
−λ

(
ex

β
−1

)
for x > 0. The random variable X has pdf (2.1), for γ = 0, if and only if the function

ξ defined in Theorem 1 is of the form

ξ (x) =
1

2
e
−λ

(
ex

β
−1

)
, x > 0.

Proof
Suppose the random variable X has pdf (2.1), for γ = 0, then

(1− F (x))E [q1 (X) | X ≥ x] = αe
−λ

(
ex

β
−1

)
, x > 0,

and
(1− F (x))E [q2 (X) | X ≥ x] =

α

2
e
−2λ

(
ex

β
−1

)
, x > 0.
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Further,
ξ (x) q1 (x)− q2 (x) = −q1 (x)

2
e
−λ

(
ex

β
−1

)
< 0, for x > 0.

Conversely, if ξ is of the above form, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
= λβxβ−1ex

β

, x > 0,

and consequently
s (x) = λ(ex

β

− 1), x > 0.

Now, in view of Theorem 1, X has pdf (2.1) , for γ = 0.

Corollary 1
Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 1. The random
variable X has pdf (2.1), for γ = 0, if and only if there exist functions q2 and ξ defined in Theorem 1
satisfying the following differential equation

ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
= λβxβ−1ex

β

, x > 0.

Corollary 2
The general solution of the differential equation in Corollary 1 is

ξ (x) = e
λ
(
ex

β
−1

) [
−
∫
λβxβ−1ex

β

e
−λ

(
ex

β
−1

)
(q1 (x))

−1
q2 (x) dx+D

]
,

where D is a constant. We like to point out that one set of functions satisfying the above differential
equation is given in Proposition 1 with D = 0. Clearly, there are other triplets (q1, q2, ξ) which satisfy
conditions of Theorem 1.

3.1.2. Characterization in terms of hazard function The hazard function, hF , of a twice differentiable
distribution function, F , satisfies the following first order differential equation

f ′(x)

f(x)
=
h′F (x)

hF (x)
− hF (x).

It should be mentioned that for many univariate continuous distributions, the above equation is the
only differential equation available in terms of the hazard function. In this sub-subsection, we present a
non-trivial characterization of EE-Ch distribution, for γ = 0, α = 1, in terms of the hazard function.

Proposition 4
Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pdf (2.1), for γ = 0, α =
1, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x)− βxβ−1hF (x) = αβ (β − 1)λxβ−2ex
β

, x > 0.

Proof
The proof is straightforward and hence omitted.

3.2. Characterization results, γ ̸= 0

In this subsection, we assume γ < 0 and characterize the EE-Ch distribution in the directions (i) and (ii)
mentioned before. The characterizations for the case γ > 0, will be similar and hence omitted.
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3.2.1. Characterization based on two truncated moments In this sub-subsection, we assume that γ < 0
and will characterize the EE-Ch distribution based on a simple relationship between two truncated
moments.

Proposition 5

Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) =

{
1−

[
1− γλ

(
ex

β − 1
)]1/γ}1−α

and q2 (x) = q1 (x)
[
1− γλ

(
ex

β − 1
)]

for x > 0. The random variable X has pdf (2.1), for γ < 0, if and
only if the function ξ defined in Theorem 1 is of the form

ξ (x) =
γ

γ + 1

[
1− γλ

(
ex

β

− 1
)]
, x > 0.

Proof
Suppose the random variable X has pdf (2.1), for γ < 0, then

(1− F (x))E [q1 (X) | X ≥ x] = α
[
1− γλ

(
ex

β

− 1
)]1/γ

, x > 0,

and
(1− F (x))E [q2 (X) | X ≥ x] =

α

2

[
1− γλ

(
ex

β

− 1
)] 1

γ +1

, x > 0.

Further,
ξ (x) q1 (x)− q2 (x) = − 1

γ + 1
q1 (x)

[
1− γλ

(
ex

β

− 1
)]

< 0, for x > 0.

Conversely, if ξ is of the above form, then

s′ (x) =
ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
=

γ2βλxβ−1ex
β

1− γλ
(
exβ − 1

) , x > 0,

and consequently
s (x) = −γ log

[
1− γλ

(
ex

β

− 1
)]
, x > 0.

Now, in view of Theorem 1, X has pdf (2.1) , for γ < 0.

Corollary 3
Let X : Ω → (0,∞) be a continuous random variable and let q1 (x) be as in Proposition 3. The random
variable X has pdf (2.1), for γ < 0, if and only if there exist functions q2 and ξ defined in Theorem 1
satisfying the following differential equation

ξ′ (x) q1 (x)

ξ (x) q1 (x)− q2 (x)
=

γ2βλxβ−1ex
β

1− γλ
(
exβ − 1

) , x > 0.

Corollary 4
The general solution of the differential equation in Corollary 3 is

ξ (x) =
{
1− γλ

(
ex

β

− 1
)}−1

[
−
∫
γ2βλxβ−1ex

β

(q1 (x))
−1
q2 (x) dx+D

]
,

where D is a constant. We like to point out that one set of functions satisfying the above differential
equation is given in Proposition 3 with D = 0. Clearly, there are other triplets (q1, q2, ξ) which satisfy
conditions of Theorem 1.
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3.2.2. Characterization in terms of hazard function In this sub-subsection, we present a non-trivial
characterization of EE-Ch distribution for γ < 0, α = 1, in terms of the hazard function.
Proposition 6
Let X : Ω → (0,∞) be a continuous random variable. The random variable X has pdf (2.1), for γ < 0, α =
1, if and only if its hazard function hF (x) satisfies the following differential equation

h′F (x)− βxβ−1hF (x) = αβex
β d

dx

{
xβ−1

1− γλ
(
exβ − 1

)} , x > 0.

4. Estimation

Let X1, . . . , Xn be a random sample from the EE-Ch (α, β, λ, γ) with the associated observed values
x1, . . . , xn. In this section, we pay attention to estimating the unknown parameters of EE-Ch model.
First, the MLEs of the parameters and their properties are discussed. Then, five approaches based on the
concept of minimum spacing distance estimator (MSDE) and the method of percentile estimation (MPE)
are proposed. We let θ = (α, β, λ, γ)

T and wi = λ(ex
β
i − 1).

4.1. The maximum likelihood estimators
For γ ̸= 0, the log-likelihood function of the EE-Ch model can be written as

ℓ (θ) = nlog (αλβ) + (β − 1)

n∑
i=1

log (xi) +

n∑
i=1

xβi +

(
1

γ
− 1

) n∑
i=1

log (1− γwi)

+ (α− 1)

n∑
i=1

log
[
1− (1− γwi)

1
γ

]
.

Therefore, the components of the score vector can be obtained by taking the first derivative of ℓ (θ)
with respect to each parameter and equating them to zero. Unfortunately, the MLEs of the parameters do
not have closed forms, but they can be approximated using a numerical method like the Newton method.
Under the regularity conditions that are fulfilled for case γ ≤ 0, the asymptotic distribution of the MLE
of vector parameter θ is multivariate normal distribution, i.e.,

√
n
(
θ̂ − θ

)
d−→ N4

(
0, I (θ)

−1
)
,

where I (θ) is the Fisher information matrix. For γ > 0, the regularity conditions are not satisfied because
the support of the distribution depends on unknown parameters. In this case, we refer the readers to [10]
for the asymptotic distributions of the MLEs of the parameters.

4.2. Minimum spacing distance estimators
Here, the parameters of the EE-Ch distribution are estimated using the minimum spacing distance method
introduced by [17]. Let h(x, y) be an appropriate distance function. For the ordered statistics Y1, . . . , Yn
associated with the random sample X1, . . . , Xn. Define

Di (θ) = Fθ (Yi)− Fθ (Yi−1) , i = 1, . . . , n+ 1, (8)

where Fθ (Y0) = 0 and Fθ (Yn+1) = 1. The minimum spacing distance estimators (MSDEs) for the
parameters can be obtained by minimizing the following function

T (θ) =

n+1∑
i=1

h (Di (θ) , 1/ (n+ 1)) . (9)
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Table 1. The biases and MSEs of the methods for θ = (0.5, 0.5, 4,−1.5).

n

10 30 50 70 90 200 500
Parameters Methods Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

α MLE 0.807 4.485 0.224 0.501 0.130 0.128 0.102 0.085 0.086 0.054 0.044 0.035 0.032 0.029
MSDE1 1.007 8.280 0.616 3.847 0.333 1.337 0.238 0.550 0.235 0.541 0.139 0.110 0.112 0.042
MSDE2 1.188 8.788 0.336 0.878 0.210 0.296 0.163 0.142 0.154 0.110 0.108 0.047 0.093 0.033
MSDE3 0.218 0.776 0.092 0.231 0.041 0.085 0.031 0.042 0.022 0.026 0.014 0.011 0.016 0.007
MSDE4 0.309 1.582 0.139 0.362 0.085 0.136 0.078 0.072 0.079 0.061 0.064 0.030 0.069 0.022
MSDE5 1.005 8.274 0.607 3.765 0.332 1.340 0.236 0.550 0.233 0.535 0.138 0.110 0.108 0.041

λ MLE 2.462 21.87 0.797 5.721 0.361 1.754 0.232 0.813 0.148 0.303 0.062 0.162 0.034 0.022
MSDE1 1.657 14.47 0.847 6.353 0.511 3.472 0.341 1.794 0.293 1.357 0.115 0.223 0.069 0.033
MSDE2 1.720 13.80 0.711 4.640 0.318 1.412 0.222 0.738 0.165 0.244 0.076 0.052 0.053 0.021
MSDE3 0.804 5.099 0.387 2.134 0.264 1.418 0.163 0.554 0.113 0.290 0.045 0.063 0.026 0.021
MSDE4 0.940 6.941 0.411 2.443 0.256 1.231 0.160 0.488 0.130 0.254 0.060 0.054 0.046 0.022
MSDE5 1.665 14.57 0.849 6.385 0.516 3.529 0.343 1.834 0.295 1.391 0.115 0.225 0.067 0.033

β MLE 0.077 4.850 -0.378 3.683 -0.400 3.807 -0.330 3.603 -0.433 3.594 0.361 2.047 0.154 1.365
MSDE1 -1.127 8.558 -1.517 8.628 -1.453 7.677 -1.384 6.958 -1.402 6.806 -1.350 5.625 -1.238 4.573
MSDE2 -1.177 8.551 -1.287 6.894 -1.337 6.665 -1.182 5.913 -1.225 5.782 -1.076 4.757 -0.998 4.159
MSDE3 -0.140 0.523 -0.154 0.485 -0.106 0.360 -0.097 0.351 -0.126 0.406 -0.123 0.391 -0.068 0.579
MSDE4 -0.424 1.584 -0.572 2.055 -0.568 2.164 -0.609 2.331 -0.697 2.606 -0.708 2.474 -0.801 2.817
MSDE5 -1.109 8.429 -1.501 8.575 -1.443 7.598 -1.369 6.892 -1.388 6.726 -1.343 5.581 -1.202 4.394

γ MLE -0.391 1.616 -0.184 1.016 -0.139 0.753 -0.089 0.620 -0.109 0.542 0.015 0.427 0.094 0.018
MSDE1 0.196 5.253 -0.155 1.744 -0.222 1.281 -0.201 1.026 -0.226 0.873 -0.297 0.651 -0.313 0.498
MSDE2 -0.387 1.975 -0.329 1.084 -0.339 0.934 -0.290 0.790 -0.302 0.694 -0.285 0.563 -0.276 0.462
MSDE3 0.156 1.091 0.052 0.376 0.044 0.298 0.043 0.220 0.035 0.189 0.004 0.111 -0.032 0.089
MSDE4 0.096 1.118 -0.026 0.460 -0.065 0.386 -0.098 0.341 -0.118 0.324 -0.170 0.290 -0.222 0.315
MSDE5 0.230 5.497 -0.145 1.758 -0.218 1.281 -0.198 1.028 -0.221 0.869 -0.295 0.646 -0.303 0.479

Five well-known distance functions are defined as h (x, y) = (x− y)2 (square distance), h (x, y) = (log x−
log y)2 (square - log distance), h (x, y) = |x− y| (absolute distance), h (x, y) = |log x− log y| (absolute -
log distance), and h (x, y) = exp(x− y)− (x− y)− 1 (linex distance). Simulation results show that the
MSDE performs well for estimating the parameters of presented model in this paper (see the results in
Subsection 4.3).

4.3. Simulation study
In this section, we assess the behavior of the proposed estimators given in Section 4 for the parameters of
EE-Ch distribution. To verify the validity of these estimators, the bias and the mean square error (MSE)
of them have been checked. We consider the sample sizes n = 10, 30, . . . , 90. The nlminb function in R
software has been used to estimate the model parameters for all proposed estimators. We replicate this
experiment 5000 times to compare the biases and MSEs of six approaches: MLE and five MSDE methods
(denoted by MSDE1,…, MSDE5). The biases and MSEs are computed as

Bias(θ̂j) =
1

r

r∑
i=1

(θ̂ji − θj) and MSE(θ̂j) =
1

r

r∑
i=1

(θ̂ji − θj)2,

where r = 50000, and θ̂ji is the estimation of the parameter θj , the jth element of the vector parameter
θ = (α, λ, β, γ) in the ith replication. The results for θ = (0.5, 0.5, 4,−1.5) and θ = (2, 0.5, 1, 0.5) are given
in Tables 1 and 2, respectively. We can conclude that
1. The biases and MSEs of all methods decrease as the sample size increases.
2. When γ < 0, the MSDE3 and MLE methods perform better than the other methods.
3. When γ > 0, the MSDE3, MSDE4, and MLE methods perform better than the other methods.
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Table 2. The biases and MSEs of the methods for θ = (2, 0.5, 1, 0.5).

n

10 30 50 70 90 200 500
Parameters Methods Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

α MLE 0.625 0.327 0.562 0.755 0.527 0.889 0.531 0.903 0.464 0.861 0.421 0.688 0.071 0.561
MSDE1 3.086 27.45 2.028 20.38 1.797 18.47 1.626 16.55 1.647 15.96 0.359 4.51 0.071 1.49
MSDE2 3.169 28.15 2.390 22.75 2.097 19.97 1.931 18.37 1.753 16.07 0.352 2.475 0.193 1.157
MSDE3 0.306 1.913 0.052 0.504 -0.010 0.232 0.017 0.378 -0.015 0.285 0.140 0.274 0.031 0.266
MSDE4 0.426 2.715 0.082 0.954 0.014 0.788 -0.013 0.772 -0.018 0.607 0.063 0.582 0.012 0.532
MSDE5 3.023 27.07 2.022 20.29 1.791 18.36 1.621 16.51 1.658 16.07 0.363 4.526 0.070 1.483

λ MLE 0.029 0.055 0.012 0.023 0.011 0.018 0.002 0.016 0.007 0.014 0.008 0.010 0.005 0.001
MSDE1 0.081 0.269 -0.013 0.114 -0.044 0.071 -0.044 0.054 -0.030 0.047 0.027 0.040 0.030 0.027
MSDE2 0.114 0.262 -0.005 0.075 -0.026 0.050 -0.030 0.045 -0.022 0.037 0.052 0.031 0.032 0.026
MSDE3 0.072 0.067 0.020 0.021 0.008 0.012 0.004 0.010 -0.004 0.007 0.003 0.006 0.000 0.001
MSDE4 0.049 0.070 0.007 0.028 -0.007 0.018 -0.015 0.016 -0.017 0.015 0.010 0.012 0.008 0.008
MSDE5 0.078 0.267 -0.013 0.114 -0.043 0.071 -0.045 0.053 -0.029 0.047 0.025 0.044 0.015 0.037

β MLE 0.171 0.402 0.142 0.371 0.068 0.409 0.058 0.358 0.038 0.337 0.009 0.128 0.005 0.036
MSDE1 0.315 1.127 0.309 1.134 0.325 1.085 0.290 0.916 0.232 0.810 0.179 0.244 0.111 0.104
MSDE2 0.278 1.664 0.333 1.187 0.292 1.037 0.283 0.961 0.222 0.797 0.107 0.150 0.056 0.088
MSDE3 0.001 0.096 0.045 0.095 0.041 0.085 0.053 0.100 0.053 0.101 0.032 0.036 0.026 0.026
MSDE4 -0.034 0.288 0.106 0.270 0.125 0.265 0.157 0.268 0.144 0.265 0.064 0.061 0.052 0.048
MSDE5 0.023 1.138 0.304 1.120 0.322 1.074 0.288 0.915 0.232 0.809 0.178 0.242 0.111 0.103

γ MLE 0.363 0.277 0.191 0.148 0.109 0.096 0.075 0.065 0.062 0.054 0.058 0.055 0.035 0.010
MSDE1 0.333 1.101 -0.063 0.226 -0.087 0.151 -0.089 0.124 -0.084 0.105 0.075 0.092 0.072 0.032
MSDE2 0.037 0.428 -0.093 0.169 -0.083 0.131 -0.082 0.108 -0.070 0.088 0.056 0.083 0.050 0.076
MSDE3 -0.034 0.080 -0.028 0.050 -0.018 0.038 -0.023 0.032 -0.017 0.027 0.014 0.051 0.010 0.008
MSDE4 0.036 0.148 -0.045 0.069 -0.048 0.054 -0.061 0.049 -0.053 0.041 0.059 0.044 0.042 0.045
MSDE5 0.339 1.131 -0.060 0.227 -0.085 0.151 -0.087 0.124 -0.084 0.105 0.071 0.074 0.061 0.041

5. Real data set

The following data set is given in [16] which represents the strengths of 1.5 cm glass fibers, measured at
the National Physical Laboratory, England.
0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2,0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59,
1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81,
1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67,
1.7, 1.78, 1.89

The mean and standard deviation are 1.50 and 0.32, respectively. Since the coefficient of skewness is
-0.87 which indicates that the data is left skewed. In this example we illustrate how the EE-Ch distribution
can be used to model such a left skewed data. Beside the EE-Ch distribution, we also consider the following
distributions as the competing models:
i. Chen (Ch) distribution [3]

FCh (x) = 1− exp
{
−λ

[
exp

(
xβ

)
− 1

]}
.

ii. Exponentiated Chen (ECh) distribution [2]

FECh (x) = [FCh (x)]
α
.

iii. Transmuted-Chen (TCh) distribution [12]

FTCh (x) = (1 + α) [FCh (x)]− α[FCh (x)]
2
.

iv. Beta-Chen (BCh) distribution

FBCh (x) = FB (FCh (x) , α, γ) ,

where FB (., α, γ) is the cdf of beta distribution with parameters α and γ.

Stat., Optim. Inf. Comput. Vol. 10, June 2022



720 EXPONENTIATED EXTENDED CHEN DISTRIBUTION: REGRESSION MODEL AND ESTIMATIONS

v. Kumaraswamy Chen (KwCh) distribution [4]

FKwCh (x) = FKw (FCh (x) , α, γ) ,

where FKw (., α, γ) is the cdf of Kumaraswamy distribution with parameters α and γ.
vi. Gamma-Chen (GCh) distribution

FGaCh (x) = FGa (− log(1− FCh (x)), α, γ) ,

where FGa (., α, γ) is the cdf of gamma distribution with parameters α and γ.
The MLEs of parameters of the above candidate models as well as the goodness of fit statistics

such as minus of log-likelihood function (−log (L) ), Anderson-Darling (AD), Cramér-von Mises (CVM),
Kolmogorov-Smirnov (K-S) statistic with its p-value, Akaike information criterion (AIC), Akaike
information criterion corrected (AICC), and Bayesian information criterion (BIC), are given in Table
3.

Table 3. MLEs of the model parameters and the goodness of fit statistics for data set.

Distribution
Ch TCh ECh EECh BCh KwCh GaCh

α̂ - -0.9427 1.9489 0.5635 0.1539 0.0904 0.1743
(S.E.) (-) (0.2536) (0.6635) (0.1467) (0.2068) (0.1322) (1.8832)
λ̂ 0.0720 0.1678 0.1725 0.0056 1.9690 2.1187 2.0513

(S.E.) (0.0162) (0.0513) (0.0760) (0.0053) (0.7109) (0.9938) (0.7900)
β̂ 1.9604 1.6979 1.6831 3.3212 1.1818 4.3307 1.5349

(S.E.) (0.0939) (0.1459) (0.1771) (0.3409) (2.1489) (15.718) (16.6107)
γ̂ - - - 1.6769 1.6699 1.4905 1.6084

(S.E.) (-) (-) (-) (0.8202) (0.2278) (0.5427) (0.2204)
−log(L) 16.4613 14.2487 14.2732 11.1176 14.2685 14.1277 14.3669

CVM 0.2335 0.1576 0.1646 0.0474 0.1647 0.1600 0.1692
AD 1.3195 0.8859 0.9324 0.3085 0.9323 0.9068 0.9519
K-S 0.1376 0.1302 0.1334 0.0808 0.1336 0.1331 0.1350

p-value (K-S) 0.1835 0.2354 0.2120 0.8049 0.2104 0.2138 0.2009
AIC 36.9226 34.4975 34.5465 30.2353 36.5370 36.2555 36.7338

AICC 37.1226 34.9043 34.9533 30.9249 37.2267 36.9451 37.4235
BIC 41.2089 40.9269 40.9759 38.8078 45.1096 44.8280 45.3064

From Table 3, based on the p-values of the K-S statistic, we can conclude that all considered
distributions can be fitted to this data set. Also, the new proposed model has the smallest −log (L) ,
AIC, AICC, and BIC values among other models. Also, from AD and CVM criterion, it is seen that the
EE-Ch model is the best candidate for this real data set. Therefore, the EE-Ch distribution provides a
better fit than the other considered models.

In Figure 2, we plot the histogram, empirical distribution and empirical hrf of the data and the estimated
pdf, cdfs and hrfs of all considered models. Also, the P-P plots of all models are provided in Figure 3.
Furthermore, It is clear from this figure that the EE-Ch distribution yields a better fit than the other
competing models. From the above discussion, we recommend to use EE-Ch for modeling this data set.
Table 4 provides the MSDEs for parameters of considered distributions.
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Figure 2. Fitting estimated pdfs, cdfs and hrfs of underlying models to the histogram, empirical distribution and
empirical hrf of the data set.
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Figure 3. The P-P plots of all considered models.

6. Shifted log EE-Ch regression model

Let X be a random variable with the EE− Ch (α, β, λ, γ) distribution. Now, define Y = log (X) + µ. Then,
taking β = 1/σ, the pdf of the random variable Y is

fY (y) =
αλ

σ
(d+ 1) log (d+ 1) q

1
γ −1

(
1− q

1
γ

)α−1

,
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Table 4. The estimations of the parameters of the models based on the five MSDE approaches.

Distribution
Method Ch TCh ECh EECh B-Ch KwCh GaCh
MSDE1 α̂ - -0.2841 0.6432 0.3642 0.6323 0.6123 0.6320

λ̂ 0.0592 0.0803 0.0219 0.0011 0.0020 0.1287 0.0177
β̂ 2.1598 2.0621 2.5198 3.6154 2.5488 2.3959 2.5493
γ̂ - - - 2.5167 8.8309 0.2697 0.9832

MSDE2 α̂ - -0.9909 2.0919 0.7838 2.1129 2.3473 2.2298
λ̂ 0.0978 0.2416 0.2570 0.0392 0.2329 0.1220 0.2627
β̂ 1.7100 1.4259 1.4029 2.6877 1.3906 1.1687 -1.3245
γ̂ - - - 1.3629 1.1587 6.0495 1.5785

MSDE3 α̂ - -0.5467 1.0224 0.5880 1.0163 1.0205 0.9952
λ̂ 0.0548 0.1005 0.0591 0.0083 0.0580 0.0597 0.0554
β̂ 2.3034 2.0754 2.2781 3.2370 2.2849 2.2801 2.3119
γ̂ - - - 1.4501 0.9982 0.9838 0.9635

MSDE4 α̂ - -0.8930 2.0672 0.6603 2.0821 2.4708 2.1432
λ̂ 0.0804 0.1931 0.2407 0.0119 0.2301 0.1298 0.2486
β̂ 1.8274 1.6202 1.4572 3.2464 1.4510 1.2122 1.3827
γ̂ - - - 1.9754 1.0732 5.5928 1.5119

MSDE5 α̂ - -0.2828 0.6415 0.3636 0.6306 0.6077 0.6304
λ̂ 0.0591 0.0800 0.0217 0.0011 0.0022 0.1420 0.0176
β̂ 2.1604 2.0634 2.5211 3.6153 2.5501 2.3898 2.5507
γ̂ - - - 2.5154 7.8703 0.2490 1.4534

where q = 1− γλd, d = exp [exp (z)]− 1 and z = (y − µ)/σ. We call the corresponding distribution shifted
log-EE-Ch (SLEE-Ch) distribution with parameters α, λ, γ, µ and σ, where µ is the location parameter
and σ is the scale parameter. It is denoted by SLEE− Ch (α, γ, λ, µ, σ). We consider the following multiple
linear regression for dependent variable yi and independent variables xi1, . . . , xip as yi = β0 + β1xi1 +
· · ·+ βpxip + εi, i = 1, 2, . . . , n, where (β0, β1, . . . , βp) is the vector of unknown parameters and εi has
SLEE−Ch (α, γ, λ, 0, σ) distribution. Assuming non-informative censoring min {yi, ci}, one might want to
perform a linear regression model linking yi and explanatory variables xi1, . . . , xip. Let L and C be the
sets of individual for which yi is the lifetime or censoring, respectively. As we know the log-likelihood
function for this case can be written as

ι (η) =
∑
i∈L

ιi (η) +
∑
i∈C

ι
(c)
i (η),

where η = (β0, β1, . . . , βp, α, γ, λ, σ), ι(c)i (η) = log [S (yi)] and S (yi) is the survival function of the SLEE-
Ch distribution which has the form S (y) = 1−

[
1− (1− γλd)

1/γ
]α
. So, the log-likelihood function can
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be written as

ι (η) = nLlog

(
αλ

σ

)
+
∑
i∈L

(yi − µi
σ

)
+
∑
i∈L

log (di+1) +

(
1

γ
− 1

)∑
i∈L

log (qi)

+ (α− 1)
∑
i∈L

log
(
1− q

1/γ
i

)
+ (α− 1)

∑
i∈L

log
(
1− q

1/γ
i

)
+
∑
i∈C

log
[
1−

(
1− q

1/γ
i

)α]
,

where nL is the number of uncensored observations, qi = 1− γλdi, di = exp
[
exp

(
yi−µi

σ

)]
− 1 and µi =

β0 + β1xi1 + · · ·+ βpxip. For this regression equation, the model parameters need to be estimated. We
use maximum likelihood approach to estimate the model parameters by maximizing the log-likelihood
function with respect to parameters η. The optim package in R software can be used to obtain the MLEs
of the parameters in the regression model.
Here, we illustrate how to fit the SLEE-Ch multiple linear regression to a real data set. Consider the
data set known as myelogenous leukemia data that is presented in [7]. There are two groups of patients
based on the presence or absence of a morphologic characteristic of white cells. Presence of Auer rods
and/or significant granulative of the leukemic cells in the bone marrow at diagnosis indicates AG positive
and absence of these factors indicates AG negative. There are 33 patients of whom 17 have AG positive
and 16 have AG negative. We would like to fit the following model, yi = β0 + β1xi1 + β2xi2 + εi, where
εi follows SLEE− Ch (α, γ, λ, 0, σ), and the variables are, yi: logarithm of survival time as the response
variable, xi1: white blood count and xi2: presence or absence of AG (0 = AG positive, 1 = AG negative).
Recently, [1] fitted log-odd log-logistic exponentiated Weibull (LOLLEW) regression model to this data
set based on the above multiple regression model. They showed that their model fits better than log-beta
generalized half-normal geometric [15], log-beta generalized half-normal [14], and log-generalized half-
normal [5] regression models. Therefore, we consider LOLLEW introduced in [1] as a competing model
to compare our proposed regression model (SLEE-Ch). The selection criteria for the best model is based
on the AIC, AICC, and BIC. In Table 5, the MLEs of parameters, and values of AIC, AICC, and BIC
are given for the models. We can claim that our proposed model is one of the better candidate adopted
to the data. Further, we use the likelihood ratio statistic for testing H0 : βl = 0 against H1 : βl ̸= 0. From
the p-values of likelihood ratio test (LRT), it can be concluded that the null hypothesis H0 is rejected for
all three cases at 1% significant level. Therefore, we conclude that there is a significant difference between
patients with AG positive and AG negative. This result is also stated in [1].

Table 5. The MLEs of parameters (p-value of LRT) and the AIC, CAIC and BIC statistics.

MLE
Model β0 β1 β2 α γ λ σ AIC AICC BIC

SLEE-Ch 3.984 −10−5 -0.826 1.000 7.648 30.442 0.410 109.2 112.5 118.2
(0.002) (0.002) (< 0.001)

LOLLEW 3.666 - 0.005 0.712 – 0.817 0.210 0.240 115.5 118.8 123.9
(< 0.001) (0.001) (< 0.001)

7. Conclusion

In this paper, we introduce a new family of continuous distributions called the exponentiated extended
Chen (EE-Ch) family. Some mathematical properties of the proposed family are obtained. We also discuss
the maximum likelihood estimation of the EE-Ch parameters from one observed sample. One application
to a real data set is given to illustrate empirically the flexibility of the proposed model. A new shifted
log EE-Ch regression model is introduced based on the new generated lifetime distribution. Empirical
findings show that the proposed models provide better fits than other competitive models.
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Appendix A

Theorem 1
Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for some d < b
(a = −∞, b = ∞ might as well be allowed) . Let X : Ω → H be a continuous random variable with the
distribution function F and let q1 and q2 be two real functions defined on H such that E [q2 (X) | X ≥ x] =
E [q1 (X) | X ≥ x] ξ (x) , x ∈ H, is defined with some real function η. Assume that q1, q2 ∈ C1 (H), ξ ∈
C2 (H) and F is twice continuously differentiable and strictly monotone function on the set H. Finally,
assume that the equation ξq1 = q2 has no real solution in the interior of H. Then F is uniquely determined
by the functions q1, q2 and ξ, particularly

F (x) =

∫ x

a

C

∣∣∣∣ ξ′ (u)

ξ (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,
where the function s is a solution of the differential equation s′ = ξ′ q1

ξq1−q2 and C is the normalization
constant, such that

∫
H
dF = 1.
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