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Abstract Diffusion processes for modelling, among others, dataset for instance, (macro-) econometrics, mathematical
finance, biology, queueing, and electrical engineering often involve reflecting one or two barriers. In this paper, we investigate
the least squares estimation (LSE) for a one dimensional continuous-time ergodic reflected Ornstein-Uhlenbeck (ROU)
processes that returns continuously and immediately to the interior of the state space when it attains one and/or two-sided
barriers. Both the estimates based on continuously observed processes and discretely observed processes are considered.
So, we derive explicit formulas for the estimates, and then we establish their consistency and asymptotic normality (CAN ).
We also illustrate the CAN properties of the estimates through a Monte Carlo simulation and comparing with respect to
maximum likelihood estimation (LME) as benchmark method showing the performance of the proposed estimators with
moderate sample sizes. The method is valid irrespective of the length of the time intervals between consecutive observations.
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1. Introduction

In recent years, diffusions with one or two reflecting barriers have been widely used to model different phenomena
in various fields such as queueing systems, financial engineering, mathematical biology, insurance, and so on.
Indeed, from point of view application, among economics and finance applications, we mention the currency
exchange rate target-zone models pioneered by Krugman [19] (see also Svensson [27], Bertolla et al. [4], de Jong
[10], and Ball et al. [3]), in which the currency exchange rate is allowed to float within a target zone with two
barriers enforced by the monetary authority, asset pricing models with price caps and/or price supports (e.g., price
supports for agricultural commodities) (see Hanson et al. [15]), interest rate models with targeting by the monetary
authority (e.g., Farnsworth et al. [11]), interest rate models with reflection at zero interest rate (e.g., Goldstein
et al. [12] and Gorovoi et al. [13]), and stochastic volatility models (e.g., Schobel et al. [26] ). References to
further applications in economics can be found in Veestraeten [29]. Harrison [14] and Bo et al. [5] model the
exchange rates in the European monetary system by an ROU model, Krugman [19] has proposed a ROU process
with two reflecting barriers target to model the currency exchange rate dynamics in a target zone. In the field of
mathematical biology, the application of the ROU process is discussed by Ricciardi et al. [25] and in ecology by
Ricciardi [24]. Bo et al. [7, 6] have presented the ROU process for modelling the so-called regulated financial
market. We refer the interested reader to Harrison [14] and Whitt [32] for more details on reflected processes and
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their broad applications. From point of view theoretical, the ROU diffusion occupy a central place in literature due
to its flexibility and by the fact that ROU processes behave like the standard OU processes in the interior of its
domain, so it becomes an appealing tool for approximating Markovian queue models (that can be characterized as
birth-death continuous-time Markov chains) when reneging is present, more precisely, Ward et al. [30] who showed
that a queueing system with reneging can be approximated via an appropriate Markovian ROU process. Harrison
[14], Abate et al. [1] have shown that the reflected Brownian motion has long played a key role in queueing models.
However, the statistical inference for the ROU process has been considered by several authors and some methods
were proposed in order to estimate the parameters involved in such models. A shortten rewiew of their estimation
is discussed below.

1.1. Literature review

Fundamental properties on the statistical inference of the diffusion processes can be found in Prakasa Rao [22]. In
particular, Bo et al. [8] have studied the asymptotic properties of the maximum likelihood estimator (MLE), Lee
et al. [20] studied the sequential MLE for the drift parameter based on the continuous time observations. Hu et
al. [17] studied the MLE for ROU processes with discrete observations under the assumption that only the state
process itself (not the local time process) is observed. Valdivieso et al. [28] investigated the MLE for the OU type
processes driven by the Lévy process. More recently, Zhu [35] studied the asymptotic properties of the MLE for
the ROU model with two−sided barriers. Recently, Yuecaia et al. [33, 34] have proposed a linear and nonlinear
LSE for estimation the ROU process.
In the present paper, we focused on the problem of parameter estimation involved in the ROU process using LES
for more general cases in which a multiple parameters are present in one and two-sided barriers. So, this paper
offers some extensive study of the properties of the ROU process and our body of results expands what is known
about the ROU process, both qualitatively and quantitatively. The main scope of our paper is articulated on the
following methodology:

1.2. Motivations

In the case of diffusion processes driven by Brownian motions, a popular method is the MLE based on the
Girsanov density. It is asymptotically equivalent to LSE. The CAN properties of LSE are widely studied in
above references. For the reflected diffusion (in particular ROU processes), we don’t know much about its CAN
properties. This finding constitute the major motivation of our paper. The parameters estimation problem in ROU
with one barrier has gained much attention in recent years due to its increased applications in broad fields, in our
paper beside one-side barrier we consider the case of two barriers which constitute the second motivation. The
third motivation, raised on the discretization scheme of ROU process with two barriers is also useful to study.

1.3. Contribution

The parameters which characterize the ROU process should be estimated via the data in many real-world
applications. As far as we know, that the MLE for the drift parameter is studied in Bo et al. [8]. They studied
the CAN properties without any results concerning the asymptotic variance of such estimates. However, there is
only limited literature on LSE for the parameters of a ROU process. So, in this paper,we propose two types of
LSE′s for the parameters involved in ROU process. Specifically, our contributions are as follows:

1. The LSE method is firstly based on continuously observed processes and secondly based on discrete observed
processes. The two methods are treated for one and/or two barriers.

2. The CAN properties is studied and more asymptotic results are given.

3. To provide a rigorous proof of the formula for its steady-state distribution; see Theorems 2 and 3.

4. Some new statistical methodology, derived from a discrete approximation procedure, is discussed.

5. The simulation studies is carried out showing the performance of LSE when compared with MLE method.

Stat., Optim. Inf. Comput. Vol. 13, February 2025



F. MERAHI, A. BIBI 809

1.4. Content

The remainder of the paper is organized as follows. In the next section, we give some preliminary results related
to the model with one barrier and the asymptotic properties of its LSE estimates for ROU processes. In section 3
we extend LSE to two-barriers case. Section 4 is devoted to highlighting the theoretical results with some Monte
Carlo simulations. The last section concludes the paper.

2. Reflected OU with one-sided barrier

In this section, we first recommend the ROU process with one sided barrier briefly. Given a process X = (X(t))t≥0

be a diffusion process, with infinitesimal variance β2 and infinitesimal drift µ− αx (the parameter α carries the
physical meaning of customer reneging (or balking) rate from the system). We first deal with ROU with one-
sided barrier bL. According to Ward et al. [31], the process X defined on an usual filtered probability space(
Ω,ℑ, (ℑt)t≥0 , P

)
is called a ROU process if X is the strong solution of the following stochastic differential

equation (SDE), almost surely (a.s) for t ≥ 0,

dX(t) = (−αX(t) + µ)dt+ βdW (t) + dL(t) with X(t) ≥ bL, and X(0) = X0, (1)

where µ,bL ∈ R, α, β ∈ (0,∞) and W = (W (t))t≥0 is a one-dimensional standard Brownian motion defined
on the same filtered probability space, L = (L(t))t≥0 is the minimal continuous increasing processes

(which makes X(t) ≥ bL for all t ≥ 0) and satisfies L(0) = 0,
∞∫
0

1{X(t)>bL}dL(t) = 0,
t∫
0

1{X(s)=bL}dL(s) =

L(t) and where 1∆ denotes the indicator function (see Harrison [14], Ata et al. [2] for more
discussion). Sometimes L is called the regulator of the point bL, and has an explicit expression

as L(t) = max

{
0, sup

u∈[0,t]

(
−X0 + α

u∫
0

X(s)ds− µu− βw(u)

)}
= max

{
0, supu∈[0,t](L(u)−X(u))

}
and the

ROU process (1) can be constructed via a Markovian approximation procedure (see e.g., Bo et al. [9]). Starting
from initial position X0 which is assumed to be not dependent on W , then, a formal Itô solution of (1) is given by

X(t) = e−αt

X0 −
µ

α

(
eαt − 1

)
+

t∫
0

eαsdL(s) + β

t∫
0

eαsdW (s)

 . (2)

It is easily verified that the process (Xt)t≥0 as defined by (2) satisfies (1) for any α, µ, β and choice of X(0), it is
the unique, strong Markovian solution to (1) ensured by a careful extension of the results of Lions et al. [16] and
Ward et al. [31]. The stochastic integral in (2) is well defined and satisfies the properties outlined in Protter [23],

for example. Moreover, the process, M (t) =

t∫
0

eαsdW (s) is a zero-mean martingale with respect to the natural

filtration of (W (t))t.

Remark 1

1. The assumption α > 0 and β > 0, ensure that the equation (1) provide the stationary solution with invariant
density is given by Lemma 1 below.

2. When α = 0 (balking case), the corresponding ROU process X reduces to the so-called reflected Brownian
motion (RBM) process and we refer to Harrison [14] for a rigorous definition of such processes and their
properties of interest.

3. In case bL = 0, we refer to Linetsky [16], Ward et al. [31].
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In the sequel, we shall note ϕ(u) =
1√
2π

exp

{
−u2

2

}
and Φ(y) =

y∫
−∞

ϕ(u)du is the density and the distribution

function associated with N (0, 1). The following lemma is due to Hu et al. [17] which states an ergodic theorem
will be used frequently.

Lemma 1 (Hu et al. [17])
Consider the ROU process X defined by (1), suppose that bL = 0, then for any x ≥ 0.

1. The process X has a unique ergodic and stationary distribution π with associated invariant density p(x) =√
2α

β2

ϕ (x)

1− Φ
(
0
) where x =

√
2α

β2

(
x− µ

α

)
.

2. For any integrable function f the following mean ergodic theorem holds lim
T→+∞

1
T

∫ T

0
f (X(s)) ds =∫∞

0
f(x)p(x)dx a.s. Moreover, we have

E
{
Xk
}
=


µ

α
+

ϕ
(
0
)

1− Φ
(
0
)√β2

2α
, k = 1,

β2

2α
+

µ2

α2
+

ϕ
(
0
)

1− Φ
(
0
)√β2

2α

µ

α
, k = 2.

Proof
See Hu et al. [17].

Remark 2

If bL ̸= 0, the unique invariant density can be rewritten as p(x) =

√
2α

β2

ϕ (x)

1− Φ
(
b
L
) , x ∈ [bL,∞) and hence the

first and the second−order moments are

E
{
Xk
}
=



µ

α
+

ϕ
(
b
L
)

1−Φ
(
b
L
)√β2

2α
, k = 1,

β2

2α
+

µ2

α2
+ 2

ϕ
(
b
L
)

1−Φ
(
b
L
)√β2

2α

µ

α
+

ϕ
(
b
L
)
b
L

1−Φ
(
b
L
) , k = 2.

Moreover, from the above expressions, it can be seen that the parameter β2 can be expressed in term of α, µ,E {X}
and the second−order moments as follow

β2 = 2α

(
E
{
X2
}
− µ2

α2
−
(
bL +

µ

α

)(
E {X} − µ

α

))
. (3)

2.1. LSE for the ROU processes with one-sided barrier

2.1.1. Continuously observed processes In this subsection, we investigate firstly the estimation of the unknown
parameters, α, µ and β of the ROU process (1) from continuous observations, i.e., we suppose that the
ROU process X = (X(t))T≥t≥0 is observed and T → ∞. For this purpose, we assume that β is known since
the process can be observed continuously (see, e.g., Prakasa Rao [22], p. 15). So, we mainly focus on the
estimation of the parameters α and µ gathered in vector θ = (α, µ)

′ its true value is denoted by θ0. The
least squares estimator θ̂T of θ0 is defined as any measurable θ̂T of θ̂T = Argminθ QT (θ) where QT (θ) =
T∫
0

(
X(1)(s) + αX(s)− µ− L(1)(s)

)2
ds, in which the superscript (j) denotes j−fold differentiation with respect

to t. Rewriting QT (θ) as
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T∫
0

(
X(1)(s) + αX(s)− µ− L(1)(s)

)2
ds

=

T∫
0

(
X(1)(s)− L(1)(s)

)((
X(1)(s)− L(1)(s)

)
+ 2αX(s)− 2µ

)
ds+ α2Tm̂2 − 2αµTm̂1 + µ2T ,

where m̂k = 1
T

T∫
0

Xk(s)ds. It is easy to see that the minimum is attained when α is given by

α̂T =

(X(T )− L(T ))Tm̂1 + T
T∫
0

X(s)dL(s)− T
T∫
0

X(1)(s)X(s)ds

T σ̂2
T

(4)

=

(X(T )− L(T ))Tm̂1 + TbLL(T )− T
T∫
0

X(s)dX(s)

T σ̂2
T

,

where σ̂2
T = T

(
m̂2 − (m̂1)

2
)

. An estimate of the parameter µ is given by µ̂T = 1
T (X(T )− L(T )) + α̂T m̂1.

Now, we can use the expression (3) to estimate β2 as follows

β̂2
T = 2α̂T

(
m̂2 −

µ̂2
T

α̂2
T

−
(
bL +

µ̂T

α̂T

)(
m̂1 −

µ̂T

α̂T

))
. (5)

We are now in a position to state the main results concerning the asymptotic properties of the estimates α̂T , µ̂T ,β̂2
T .

Theorem 1
The estimators α̂T and µ̂T are strongly consistent estimators of α and µ i.e., lim

T→∞
α̂T = α and lim

T→∞
µ̂T = µ. a.s.

Proof
To show the least squares estimator α̂T converges to α we rewrite the expression (4) as α̂T = α−
β

σ̂2
T

T∫
0

X(s)dW (s). Since
T∫
0

X(s)dW (s) is a martingale with bracket Tm̂2 and when T → ∞,
T∫
0

X(s)dW (s) is

the order of Tm̂2. Moreover, as T → ∞, m̂k converges to E
{
Xk
}

(this is an immediate consequence of the

ergodic theorem in Lemma 1 by setting f(x) = xn, n = 1, 2). Thus
1

σ̂2
T

T∫
0

X(s)dW (s) converges to 0 with the

order O(
1√
T
). To prove the strong consistent of µ̂T , we can see that µ̂T can be rewrite as follows µ̂T − µ =

(α̂T − α) m̂1 +
β
T W (T ). The convergence of µ̂T to µ follows immediately from the above expression and the fact

that α̂T → α and 1
T

T∫
0

X(s)ds → E {X} by the Lemma 1 .

Theorem 2

The estimator α̂T of α is asymptotically normal i.e., σ̂2
T

(
α− α̂T

β

)
(Tm̂2)

−1/2
; N (0, 1) as T → ∞.

Proof

It is no difficult to see that σ̂2
T

(
α− α̂T

β

)
=

T∫
0

X(s)dW (s), and the fact that E

{
T∫
0

X(s)dW (s)

}
= 0,
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E

{(
T∫
0

X(s)dW (s)

)2
}

= TE {m̂1}. Then applying the Central Limit Theorem (Theorem B.10, p. 313 of

Prakasa Rao [22]), the result follows.

The following theorem shows the strong consistency of the estimator β̂2
T .

Theorem 3
The estimator β̂2

T of β2 is strong consistency i.e., a.s. lim
T→∞

β̂2
T = β2 as T → ∞.

Proof
The strong consistency of the estimator β̂2

T follows immediately from the expression (3) and the Theorem 1 where
we prove that both estimators α̂T and µ̂T are strong consistency for α and µ respectively and the strong convergence
of m̂j for j = 1, 2 by the ergodic theorem (see Lemma 1 ).

2.1.2. Discretized observed processes In this subsection, we investigate secondly the estimation of the unknown
parameters, α, µ and β of the ROU process (1) from discrete observations , i.e., when the processes is observed at
the discrete time instants {tk = kh, k = 0; ..., n}, h → 0 and nh → +∞. Some elementary computations yield the
following expressions for the stationary moments of the invariant measure with µ ≥ 0.

E
{
Xk
}
=



µ

α
+

β

2α

ϕ
(√

2µ
β

)
1−Φ

(
−

√
2µ
β

) , k = 1,

β2

2α
+

µ2

α2
+

µ

α
β√
2α

ϕ
(√

2µ
β

)
1−Φ

(
−

√
2µ
β

) , k = 2.

The discrete-type LSE is motivated by minimizing the following contrast function
∑n

k=0(X (tk+1)−X (tk)−
(µ− αX (k))h −∆kL)

2 where ∆kL = L (tk+1)− L (tk). The minimum is achieved when

θ̂n =

(
1

nh

n−1∑
t=0

X (tk)X (tk)
′

)−1

1

nh

n−1∑
t=0

y (tk)X (tk) , (6)

where X (t) = (1, X (t))
′, y (tk) = ∆kX −∆kL. According to independent increments of (W (t))t≥0, then

∆kW ⋍
√
hek+1 where ek ; N (0, 1), and β2 will be treated as nuisance parameters, otherwise, a possible

consistent estimator of β2 is given by (5) . Thus we shall focus on the parameter θ = (µ,−α). The following
theorem proves the CAN properties of the discrete version of LSE.

Theorem 4
Suppose that 0 < α < 1, The estimator θ̂n of θ admits the asymptotic properties, i.e.,

1. θ̂n → θ a.s., as n → +∞.

2.
√
hn
(
θ̂n-θ

)
; N(0, β2Σ−1

(1) (θ0)), as n → +∞ where Σ(1) (θ0) = E
{
X (t)X ′ (t)

}
.

Proof

1. The first assertion holds true upon the observation that by (6) we have an alternative expressions of θ̂n

θ̂n − θ = h−1S−1
n

1

nh

n−1∑
k=0

X (tk)

 tk+1∫
tk

θ (X (t)−X (tk)) dt+ β∆kW

 , (7)

Stat., Optim. Inf. Comput. Vol. 13, February 2025



F. MERAHI, A. BIBI 813

where Sn = 1
nh

n−1∑
t=0

X (tk)X (tk)
′. We first consider the estimate of sup

tk≤t≤tk+1

∥X (t)−X (tk)∥ for any norm

∥.∥. Indeed, since X (t)−X (tk) = (0, X (t)−X (tk))
′, then we have for any t ∈ ∆(k) = [tktk+1],

|X (t)−X (tk)| =

∣∣∣∣∣∣µ (t− tk)− α

t∫
tk

(X(s)−X(tk))ds− αX(tk) (t− tk) + (L(t)− L(tk)) + β (W (t)−W (tk))

∣∣∣∣∣∣
≤ |µ|h+ α

t∫
tk

|(X(s)−X(tk))| ds+ α |X(tk)|h+ sup
t

(|(L(t)− L(tk))|+ |β (W (t)−W (tk))|) .

By Gronwall′s inequality,

|X (t)−X (tk)| ≤ |µ|h+

(
α |X(tk)|h+ sup

t
(|(L(t)− L(tk))|+ |β (W (t)−W (tk))|)

)
eα(t−tk).

So, sup
t∈∆(k)

|X (t)−X (tk)| ≤ |µ|h+

(
α |X(tk)|h+ sup

t∈∆(k)

(|(L(t)− L(tk))|+ |β (W (t)−W (tk))|)

)
eαh.

From the properties of the process (L(t))t and γ−Hölder continuity (see Yuecaia et al. [33]), we obtain
sup

t∈∆(k)

|X (t)−X (tk)| ≤ |µ|h+ Chγeαh = O(hγ), where 0 < γ < 1/2 and C is some positive constant.

Then

1

nh

n−1∑
k=0

∥∥∥∥∥∥X (tk)

tk+1∫
tk

θ (X (t)−X (tk)) dt

∥∥∥∥∥∥ ≤ α

nh

n−1∑
k=0

∥X (tk)∥ sup
t

(|X (t)−X (tk)|)h = O(hγ),

which tends to 0 as h → 0. Next, let ϕ
k
(t) = X (tk) I∆(k) (t), then lim

n→∞

n−1∑
k=0

X(tk)∆kW =

lim
n→∞

n−1∑
k=0

nh∫
0

ϕ
k
(t)dW (t), so as above we obtain lim

n→∞
1
nh

n−1∑
k=0

X(tk)β∆kW = 0.

2. From (7), we have

√
nh
(
θ̂n − θ

)
= h−1S−1

n

1√
nh

n−1∑
k=0

X (tk)

 tk+1∫
tk

θ (X (t)−X (tk)) dt+ β∆kW

 ,

and 1√
nh

n−1∑
k=0

X (tk)
tk+1∫
tk

θ (X (t)−X (tk)) dt ≤ O(
√
nh1+2γ which goes to 0 an n → +∞. So by standard

central limit theorem and Slutsky’s theorem, the results follows.

Remark 3
It is worth noting that the matrix Σ (θ0) may be estimate by replacing its entries by their corresponding sample

approximations i.e., E {X} by 1
n

n−1∑
k=0

X (tk) and E
{
X2
}

by 1
n

n−1∑
k=0

X2 (tk).

3. Reflected OU processes with two-sided barriers

Following the motivations by Ward and Glynn [31] for one-sided barrier ROU processes and from the point of view
of queuing system, it is natural to suggest a flexible model with finite buffer capacity. This leads us to consider a
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ROU process (X(t))t≥0 with two-sided barriers bL and bU defined as

dX(t) = (−αX(t) + µ)dt+ βdW (t) + dL(t)− dU(t), X(t) ∈
[
bL, bU

]
, for all t ≥ 0 and X(0) = X0. (8)

By the standard definition in Harrison [14] or Ata et al. [2], the processes L = (L(t))t≥0 is uniquely determined and
associated with the lower barrier bL and the upper barrier bU , respectively. Both processes L and U are minimal
continuous increasing processes which makes X(t) ∈

[
bL, bU

]
for all t ≥ 0 with L0 = U0 = 0 and satisfies

∫ ∞

0

1{X(t)>bL}dL(t) =

∫ ∞

0

1{X(t)<bU}dU(t) = 0. (9)

Actually, the ROU process with two-sided barriers can be constructed via a Markovian approximation procedure
(see,e.g., Bo et al. [9], Ward et al. [30, 31] for details). We can also refer to Linetsky [16] to see that the invariant

density of X is given by p(x) =

√
2α

β2

ϕ (x)

Φ
(
b
U
)
− Φ

(
b
L
) , x ∈

[
bL, bU

]
and for any t ∈ R, the generator function

has the form

E
{
etX
}
=

exp
{

µ
α t+

β2

4α t
2
}(

Φ

(
b
U − t

√
β2

2α

)
− Φ

(
b
L − t

√
β2

2α

))
Φ
(
b
U
)
− Φ

(
b
L
) , (10)

where we have used the identity
∞∫
b

ϕ(z)eazdz = e
a2

2 [1− Φ(b− a)]. Set g(t) = Φ

(
b
U − t

√
β2

2α

)
−

Φ

(
b
L − t

√
β2

2α

)
and f(t) = exp

{
µ
α t+

β2

4α t
2
}

, then we can compute the following quantities which are

used to obtain the moments of the third −order.

f(0) = 1, g(0) = Φ
(
b
U
)
− Φ

(
b
L
)

, f ′(t) =

(
µ

α
+

β2

2α
t

)
f(t ) and f ′(0) =

µ

α
,

g′(t) = −
√

β2

2α

(
ϕ

(
b
U − t

√
β2

2α

)
− ϕ

(
b
L − t

√
β2

2α

))
and g′(0) = −

√
β2

2α

(
ϕ
(
b
U
)
− ϕ

(
b
L
))

,

f ′′(t) =

(
β2

2α
+

(
µ

α
+

β2

2α
t

)2
)
f(t) and f ′′(0) =

β2

2α
+

µ2

α2
,

g′′(t) = −β2

2α

(
b
U − t

√
β2

2α

)
ϕ

(
b
U − t

√
β2

2α

)
+

β2

2α

(
b
L − t

√
β2

2α

)
ϕ

(
b
L − t

√
β2

2α

)
,

g′′(0) =

√
β2

2α

(
−
(
bU − µ

α

)
ϕ
(
b
U
)
+
(
bL − µ

α

)
ϕ
(
b
L
))

,

f ′′′(t) = 2
β2

2α
f ′(t) +

(
µ

α
+

β2

2α
t

)
f ′′(t) and f ′′′(0) =

3β2µ

2α2
+

µ3

α3
,

g′′′(t) =
β2

2α

√
β2

2α
ϕ

(
b
U − t

√
β2

2α

)1−

(
b
U − t

√
β2

2α

)2
− β2

2α

√
β2

2α
ϕ

(
b
L − t

√
β2

2α

)1−

(
b
L − t

√
β2

2α

)2
 ,

g′′′(0) =
β2

2α

√
β2

2α

(
ϕ
(
b
U
)(

1− b
U2
)
− ϕ

(
b
L
)(

1− b
L2
))

.
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Using the relationship between the generator function and the moments we can obtain the third order moments as
follows

E {X} =
µ

α
− 1

g(0)

(
ϕ
(
b
U
)
− ϕ

(
b
L
))√β2

2α
, (11)

E
{
X2
}
=

β2

2α
+

µ2

α2
− 2

g(0)

(
ϕ
(
b
U
)
− ϕ

(
b
L
))√β2

2α

µ

α

− 1

g(0)

((
bU − µ

α

)
ϕ
(
b
U
)
−
(
bL − µ

α

)
ϕ
(
b
L
))√β2

2α
. (12)

E
{
X3
}
=

3β2µ

2α2
+

µ3

α3
− 3

g(0)

(
ϕ
(
b
U
)
− ϕ

(
b
L
))√β2

2α

(
β2

2α
+

µ2

α2

)
− 3

g(0)

((
bU − µ

α

)
ϕ
(
b
U
)
−
(
bL − µ

α

)
ϕ
(
b
L
))√β2

2α

µ

α

+
1

g(0)

(
ϕ
(
b
U
)(

1− b
U2
)
− ϕ

(
b
L
)(

1− b
L2
))√β2

2α

β2

2α
. (13)

From the above expressions, the parameter β2 can be written as

β2 =
2α {M1 (α, µ)−M2 (α, µ)}

M3 (α, µ)
, (14)

where

M1 (α, µ) =

(
E
{
X2
}
− µ2

α2
−
(
E {X} − µ

α

)(
bL +

µ

α

))(
bL + bU +

µ

α

)
,

M2 (α, µ) = E
{
X3
}
− µ3

α3
−
(
E {X} − µ

α

)((
bL +

µ

α

)2
− bL

µ

α

)
,

M3 (α, µ) = bL + bU +
µ

α
− µ

2α2
− E {X}

α
,

which depends on α, µ, bU , bL and on E
{
Xk
}

, k = 1, 2, 3.

3.1. LSE for the ROU processes with two-sided barriers

3.1.1. Continuously observed processes In this subsection, we intend to estimate the parameters of the ROU
process (8) from continuous observations,i.e., we suppose that the ROU process (X(t))T≥t≥0 is observed and
T → ∞. For this purpose, we assume that β is known since the process can be observed continuously (see, e.g.,
Prakasa Rao [22], p. 15). So we mainly focus on the estimation of the parameters α and µ. The LSE of α, µ is
obtained by minimizing the quadratic function

T∫
0

(
X(1)(s) + αX(s)− µ− L(1)(s) + U (1)(s)

)2
ds =

T∫
0

(
X(1) − L(1)(s) + U (1)(s)

)2
ds

+2α
T∫
0

X(s)
(
X(1)(s)− L(1)(s) + U (1)(s)

)
ds+ α2

T∫
0

X2(s)ds

−2µ
T∫
0

(
X(1)(s)− L(1)(s) + U (1)(s)

)
ds− 2αµ

T∫
0

X(s)ds+ µ2T.

(15)
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It is easy to see that the minimum is attained when α is given by

α̂T =

(X(T )− L(T ) + U(T ))
T∫
0

X(s)ds+ T
T∫
0

X(s)dL(s)− T
T∫
0

X(s)dU(s)− T
T∫
0

X(1)(s)X(s)ds

T σ̂2
T

=

(X(T )− L(T ) + U(T ))Tm̂1 + TbLL(t)− TbUU(t)− T
T∫
0

X(s)dX(s)

T σ̂2
T

, (16)

and hence the parameter µ is estimate by µ̂T = 1
T (X(T )− L(T ) + U(T )) + α̂T m̂1 where the equality (16) follows

from (9). Now, we can use the expression (14) to estimate the parameter β2 as follow

β̂2
T =

2α̂T {M1 (α̂T , µ̂T )−M2 (α̂T , µ̂T )}
M3 (α̂T , µ̂T )

. (17)

We now state the main results concerning the consistency and the asymptotic normality of the LSE of µ̂T and α̂T .

Theorem 5
The estimator (α̂T , µ̂T )

′ of (α, µ)′ is strong consistency, i.e., lim
T→∞

α̂T = α , a.s and lim
T→∞

µ̂T = µ, a.s.

Proof
The proof follows essentially the same arguments as in the proof of theorem 1.

Theorem 6

The estimators α̂T of α is asymptotically normal i.e.,
√
T

(
α̂T − α

β

)
; N (0, σα) , as T → ∞, where σα =

E
{
X2
}(

(E {X})2 − E {X2}
)2 .

Proof

It is not difficult to see that
(
α− α̂T

β

)
T−1σ̂2

T =
T∫
0

X(s)dW (s), and the fact that E

{
T∫
0

X(s)dW (s)

}
= 0,

E

{(
T∫
0

X(s)dW (s)

)2
}

= TE {m̂1}. Then applying the Central Limit Theorem ( Theorem B.10, p. 313 of

Prakasa Rao [22]), we obtain
√
T

(
α− α̂T

β

)
T−1σ̂2

T√
m̂2

; N (0, 1) as T → ∞. Now, we use the continuous-time

ergodic theorem (Theorem 9.8, page 161, Kallenberg [18]) to see that lim
T→∞

T−1σ̂2
T√

m̂2

=
E
{
X2
}
− (E {X})2√
E {X2}

a.s where

E {X} and E
{
X2
}

are given respectively by the expressions (11) and (12), so, it follows that
√
T

(
α̂T − α

β

)
;

N (0, σα) , as T → ∞, with σα =
E
{
X2
}[

(E {X})2 − E {X2}
]2 .

The following theorem shows the strong consistency of the estimator β̂2
T of β2.

Theorem 7
The estimator β̂2

T is strong consistency, i.e., almost surely lim
T→∞

β̂2
T = β2.
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Proof
The strong consistency of the estimator β̂2

T follows immediately from the expression (17) and the Theorem 5 where
we have proved that both estimators α̂T , µ̂T are strongly consistent to α, µ respectively and the strong convergence
of m̂j for j = 1, 2, 3 by the ergodic theorem (Theorem 9.8, page 161, Kallenberg [18]).

3.1.2. Discretized observed processes When the processes is observed at the discrete time instants
{tk = kh, k = 0; ..., n}, the discrete-type LSE for ROU with two barriers is motivated by minimizing the
following contrast function

∑n
k=0(X (tk+1)−X (tk)− (µ− αX (k))h−∆kL+∆kU)2. As in subsection 2.1.2,

the minimum is achieved when

θ̂n =

(
1

nh

n−1∑
t=0

X (tk)X (tk)
′

)−1

1

nh

n−1∑
t=0

z (tk)X (tk) , (18)

where z (tk) = ∆kX −∆kL+∆kU. The following theorem proves the CAN properties of the discrete LSE for
ROU with two-sided barriers.

Theorem 8
The estimator θ̂n of θ admits the asymptotic properties, i.e.,

1. θ̂n → θ a.s., as n → +∞.
2.

√
nh
(
θ̂n-θ

)
; N(0, β2Σ−1

(2) (θ0)), as n → +∞ where the entries of the matrix Σ(2) (θ0) are given by (11)

and (12).

Proof
The CAN properties follow the same arguments as the proof of Theorem 4 using the statistics θ̂n given by (18).

4. Numerical results

As already pointed out in the introduction, the class of birth-death continuous-time Markov chains can be
approximated (in the distribution sense) by an ROU process. For an illustration, consider a birth-death process
(Z (t))t≥0 with birth rate λn = λ (n ≥ 0) and death rate µn = µ+ (n− 1) γ (n ≥ 1) where λ, µ and γ are positive
parameters. The process is described through the following equations

dpn (t)

dt
= − (λn + µn) pn(t) + λn−1pn−1(t) + µn+1pn+1(t), if n ≥ 1,

dp1 (t)

dt
= −λ0p0(t) + µ1p1(t), n = 1 with

∑
n≥0

pn(t) = 1, t ≥ 0,

where pn (t) = P (Z(t) = n) is the probability that the population must be in state n at time t. The approximation
for particular case α = 0.3, µ = 5.5 and β = 1.5 is showed in Figure 1 and their descriptive statistics is summarized
in next Table 1.
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Figure 1. Approximation of birth-death process by ROU with one-sided barrier.

The processes min max mean var Skew Kurt
103×Birth-Death 0.0010 0.1420 0.0747 1.5711 -0.0003 0.0021
103×ROU(one sided barrier) 0.0017 0.1415 0.0861 1.5415 -0.0005 0.0019

Table 1. Some descriptive statistics of ROU compared with Birth-Death.

In order to investigate the finite sample properties of the LSE method developed in the previous section, we shall
examine and compare the performance of our proposed LSE compared with MLE as a benchmark method. So, we
simulate 500 independent trajectories according to a ROU processes with length n ∈ {1000, 2000, 3000}. Since,
in practice, the observations are recorded at discrete times, then we suppose that the data are observed at times
0 = t1 < t2 < ... < tn = T and let ∆i = ti+1 − ti and h = sup

t
∆i. So, for small h, it seems reasonable to estimate

E {X}, E
{
X2
}

and E
{
X3
}

by the numerical integrals respectively m̃1 =
1

T

n−1∑
i=0

x(ti)∆i, m̃2 =
1

T

n−1∑
i=0

x2(ti)∆i

and m̃3 =
1

T

n−1∑
i=0

x3(ti)∆i.
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The results of simulation for estimating the vector θ′ = (α, µ, β) are reported in the tables below in which
we have indicated in the columns Mean corresponds to the average of the parameters estimates over 500
simulations. In order to show the performance of such a method, we have reported (results between brackets) the
root-mean-square errors (RMSE) of each estimate. Hence, we define a discrete form of the LSE by replacing
the approximation of the integrals and the estimators of the first and second moments in the above expressions
(4)− (5) for the case of one-sided barrier and in the expressions (16)− (17) for the case of two-sided barriers, it
follows that the estimators of the parameters α, µ and β2 in discrete form are given by

1. Case of one-sided barrier

α̃T =

(X(tn)− L(tn)) m̃1 + bLL(tn)−
n−1∑
i=0

x(ti) (x(ti)− x(ti−1))

(m̃2 − m̃2
1)

,

µ̃T =
1

T
(X(tn)− L(tn)) + α̃T m̃1,

β̃2
T = 2α̃T

(
m̃2 −

µ̃2
T

α̃2
T

−
(
bL +

µ̃T

α̃T

)(
m̃1 −

µ̃T

α̃T

))
.

2. Case of two-sided barriers

α̃T =

(X(tn)− L(tn) + U(tn)) m̃1 + bLL(tn)− bUU(tn)−
n−1∑
i=0

x(ti) (x(ti)− x(ti−1))

(m̃2 − m̃2
1)

,

µ̃T =
1

T
(X(tn)− L(tn) + U(tn)) + α̃T m̃1,

β̃2
T =

2α̃T {M1 (α̃T , µ̃T )−M2 (α̃T , µ̃T )}
M3 (α̃T , µ̃T )

.

4.1. ROU with one-sided barrier

The results of simulation by the LSE and MLE methods for ROU with one-sided barrier are reported in the Table
2 below.
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The asymptotic distribution of the density of the actual errors
√
T (µ− µ̂T ),

√
T (α− α̂T ) and

√
T
(
β − β̂T

)
associated with LSE compared with those associated with MLE are plotted in three figures in Figure 2 respectively
by using the built-in function ”pltdens” in Matlab.
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Figure 2. The superposition of the asymptotic densities associated to LSE and MLE for ROU with one-sided barrier
according to design(1).

The box plots summary of the estimates α̂T , µ̂T and of β̂T are showed in Figure 3.
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Figure 3. The box plot of LSE (left) and of MLE (right) for ROU with one-sided barrier according to design(1).
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Now, we examine the sensitivity of the LSE estimates α̂n with respect to the changes in µ which we remark that
the percentage changes in the Mean of the estimates is less than those for µ. Table 3 contains some results. The
variance decrease as µ increases. If µ ∈ [0, 10], the empirical RMSE (root mean squared error) of the estimator is
minimized at µ = 10 as shown in Figure 4.

µ 0 1 2 3 4 5 6 7 8 9 10
Mean(α̂T ) 1.9956 1.9974 1.9980 1.9984 1.9987 1.9989 1.9990 1.9991 1.9992 1.9993 1.9994
RMSE(α̂T ) 0.0452 0.0282 0.0209 0.0165 0.0136 0.0116 0.0100 0.0089 0.0079 0.0072 0.0065
Table 3. Mean (α̂) and RMSE (α̂ ) against µ for the ROU process with one-sided barrier,α = 2.0, β = 0.02, and bL = 0.5.
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Figure 4. Mean (α̂T ) and RMSE (α̂T ) against µ for the ROU process with one-sided barrier, α = 2.0, β = 0.02, bL = 0.5.

4.1.1. Comments The results reported in Table 2 are in accordance with the asymptotic theory. Indeed, for LSE
(resp. MLE) method’s the RMSE (results in bracket) for the parameter β involved in Designs(i) i = 1, 2, are with
order O(10−4) even for the moderate sample size suggests that β̂n is consistent. For the others parameters, it can be
seen that there are no significant difference between their parameters estimates values in LSE (resp. MLE) despite
an order O

(
10−1

)
for the RMSE. The order O

(
10−3

)
for the bias of µ̂n and α̂n indicates the consistency of such

estimates. Regarding now the Figure 2 which compare the asymptotic distribution of the methods LSE (displayed
in solid line) and MLE (displayed in dashed line). It is clearly observed that these methods are competitive and
there are no substantial difference between them, which confirms the results of Table 2. Moreover, it shows that
µ̂n and α̂n exhibit a sharp distribution with little variation in values equal to or close to their means. In contrast
with the distribution of β̂n which is more flatted than the others with significant variations values far from its mean.
The box plot summary in Figure 3 for the parameters estimates shows a closed similarity between the LSE and
MLE. The outlier values are moderate and approximately the same for LSE and for MLE methods showing their
robustness.

4.2. ROU with two-sided barriers

The results of simulation by the least square estimator for ROU with two-sided barriers are reported in Table 4
below.
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The asymptotic distribution of the actual errors
√
T (µ− µ̂T ),

√
T (α− α̂T ) and

√
T
(
ββ̂T

)
associated with LSE

compared with those associated with MLE are plotted in three in Figure 5.
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Figure 5. The superposition of the asymptotic densities associated to of LSE and MLE for ROU with two-sided barriers
according to design(1).

The box plot of such estimates are shown in Figure 6 bellow
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Figure 6. The box plot of LSE (left) and of MLE (right) for ROU with two-sided barriers according to design(1).

As in first model, the sensitivity of the estimator α̂ for α with respect to the changes in µ exists, where we remark
that the influence of the change of µ on the values of the Mean of α̂, some results are reported in Table 5. For
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example in the interval [0, 10], if µ ∈ [0, 1.78), the empirical RMSE (root mean squared error) of the estimator
decreases as µ increases in that case RMSE is minimized at µ ∈ (1.77, 1.78) but if µ > 1.78, the variance tends to
increase as µ increases which is maximized at 10 as shown in Figure 7.

µ 0 1 1.77 1.78 2 3 4 5 6 7 8 9 10
Mean(α̂T ) 0.9984 0.9989 0.9991 0.9991 0.9989 0.9982 0.9980 0.9979 0.9976 0.9971 0.9968 0.9964 0.9959
RMSE(α̂T ) 0.0163 0.0105 0.008478 0.008485 0.0102 0.0159 0.0203 0.0244 0.0282 0.0318 0.0349 0.0376 0.0398
Table 5. Mean (α̂T ) and RMSE (α̂T ) against µ for the ROU process with two-sided barriers, α = 1, β = 0.01, bL = 0.5, bU = 1.5.
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Figure 7. Mean (α̂) and RMSE (α̂) against µ for the ROU process with two-sided barriers, α = 1, β = 0.01, bL = 0.5 and
bU = 1.5.

Remark 4
Notice that, in the above approach, we cannot estimate α > 0 and β simultaneously. This is because the invariant
density p(x) is a function of α/β2. We can use p(x) to determine only α/β2.

4.2.1. Comments Beside the comments reported in 4.1.1 which rest in general valid here for describing the results
of Table 4. Figure 6 compare the asymptotic distribution of the least squares estimator and its competitor (MLE)
in the case of two-barriers. The distributions of µ̂n and α̂T are more accurate in the MLE case than in the LSE
one in the sense that the variance of MLE estimates for α̂n and µ̂n are loss than of LSE. Moreover, it is clear
these estimates represents more outliers values compared with one-sided barrier. In end regarding the Figures 4, 7
which shows the influence of the values of µ on the estimates values α̂T . It is clear that an observed dissimilarity is
present. Indeed, in one-sided barrier α̂T increase to the true values α proportionally with µ and its RMSE decrease
inversely to 0. This finding is completely the inverse in the case of two-sided barriers.
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5. Conclusion

In this paper, we have considered the ROU processes in both one and two-sided barriers with multiple parameters
case. We conclude that the LSE for the ROU processes based on the continuous and discrete observations provide
to us a new tentative for the estimation of the parameters involved in the ROU processes. More precisely, the
explicit expressions of the moments of the ROU processes are used to obtain an exact formulae of the estimates. So,
the strong consistency and the asymptotic normality (CAN) of the LSE are sufficiently discussed in continuous
and discrete observations. A simulation study on parameter estimation was carried-out for both one and two-
sided barriers and compared with the MLE method. As a conclusion of the comparison shows that there are
no significant difference between the LSE and MLE methods which confirm our proposed method. However,
a reflected non linear diffusion processes as a Pearson processes is interesting to be studied with some adequate
method of estimation. The moments method of estimation the reflected general diffusion processes is also of interest
to be considered. This workstream constitutes our future research.
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