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Abstract Multiresponse surface methodology often involves small data analytics which, statistically, have regression
modelling credibility problems. This is worsened by dataset, model selection and solution methodology uncertainties.lt
is difficult for solution methodologies which select and use single best models per response at simultaneous optimisation
to effectively deal with these problems.This paper exploited the fact that model selection criteria choose differently, in a
flexible hybrid ensemble system, to generate several solutions for integration and comparison.Mean square prediction error,
with bias-variance-covariance decomposition values, were computed and analysed at simultaneous optimisation. Results
suggest that the credibility of the final solution is enhanced when working with multiple models, solution methodologies
and results.However, the results do not show any significance of small sample size correction to model selection criteria
and analysis of bias-variance-covariance decompositions at simultaneous optimisation does not encourage dependence on
theoretical optimality for best results.
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1. Introduction

Multiple response surface methodology (MRSM) involves experimental designing and execution, regression
modelling, model selection, response surface analysis, and optimisation [1, 2, 3, 4]. MRSM often involves small
data analytics. The credibility of working with small sample size datasets is a big issue in statistics [5, 6].
Practitioners face the problem of model uncertainty in MRSM work and classical model selection (MS) and
model averaging (MA) are the common techniques used for attempting to solve this problem [7], though MS
is more common. Over the years, many MS criteria have been developed resulting in the problem of MS criterion
uncertainty as the criteria often make different choices [8]. Moreover, MS has been criticised for its failure to
account for dataset and model uncertainty, model bias and loss of information contained in discarded response
models resulting in overly specified prediction accuracy, and understatement of variance [3, 9, 10]. These problems
compound to solution uncertainty which leaves a question on the credibility of the final result.

Optimisation in MRSM is multi-objective in nature, and is performed after regression modelling and model
selection of single “best” models for each response [3, 4]. Once single “best” models for each response are
available, optimisation is performed to determine optimum or desired working process parameters. The existence
of so many MRSM solution methodologies that often give different results implies the existence of solution
methodology uncertainty which, again, leads to solution uncertainty and lack of solution credibility. A typical
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Table 1. Averaged results for two-factor CCD MRSM conveyor belting experiment

Run | T.(min.) | Ry(mm) | Ave. Hardness | Ave. Adhesion
1 16 7.2 60 10.60
2 30 7.2 63 13.34
3 16 22.8 53 6.20
4 30 22.8 61 12.10
5 23 15 58 11.80
6 23 15 58 12.10
7 13 15 44 6.50
8 33 15 63 13.30
9 23 4 63 13.30
10 23 26 56 3.50
11 23 15 58 12.20
12 23 15 57 12.30
13 23 15 58 12.10
T.(min) Adhesion(T., R¢) > 12Kn/m
Vulcanization Process
R (mm) Hardness(Te, Ry) > 60ShoreA

Figure 1. Conveyor belting vulcanisation process and the desired minimum quality requirements.

Table 2. Showing the tabular form of equation 1 required in work instruction

Ri(mm) | 7 (8|9 10|11 |12 |13 |14 |15|16| 17 | 18|19 | 20
Tc(mm) T7 Tg Tg . . . . . . . . . . TQO

small sample size MRSM dataset problem borrowed from [11] of an experiment done to determine rubber covered
mining conveyor belting optimum cure times (7.(min.)), for different rubber thicknesses (R;(mm)), is shown in
Table 1. The intention was to derive the relationship

CureTime(T,)(min.) = f(Ri(mm)) + error @)

Given the small sample size MRSM experiment dataset in Table 1 and that the component adhesion and cover
hardness are parametric functions of cure time and rubber thickness (see Figure 1), the company wanted to submit
a work instruction to the shop floor with a table of the form in Table 2. Rawlings et al. in [5] defined as small
sample size anything satisfying the relationship n/k < 40 and stated that no MS exercise should be taken seriously
when the sample sizes are as small as (n — k) <= 10, where n is sample size. In this case n/k = 13/6 < 40 and
(n—k)=(13—6) =7 < 10[11]. MRSM literature has many such small sample size examples [3]. To guarantee
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solution credibility, there was obvious need for rigour in the solution methodology working with such a small
sample size MRSM dataset.

The rest of this paper is organised as follows: Section 2 describes the solution methodology, while Section 3
presents the empirical example investigation results, Section 4 is discussion and conclusion.

2. Solution Methodology

Zhang in [12] suggested that for the practitioner who is less concerned with theoretical optimality, it is more
important to have available methods that are simple but flexible enough to be used in a variety of practical situations.
Burnham and Anderson in [9] proposed multi-model inference (M-MI). An ensemble is defined as a system that is
constructed with several individual models/algorithms working in parallel and whose outputs are combined with a
suitable decision fusion strategy to produce a single answer for a given problem [14] as shown in Figure 2.

Modell Resultl
M odel2 Result2

Dataset Fusion Strategy —{ Final Result
Modelk Resultk

Figure 2. A general ensemble system architecture.

A bias-variance decomposition of a single regression model is shown in equation (2):
EIF; — E(f:)]* = E(F;) = E(f)” + E[F; - E(F))” &)

where Fj is the fitted value and E(f) is the expected value of the function f [13].
This decomposition can be reduced to

MSE(f) = (bias(f))* + var(f) (3

Krogh and Vedelsby in [15] derived that
Eens = Eave - D7 (4)

where F,.,. is the average error of the base models, and D is the diversity term estimating the amount of variability
among the base models. F.,s < E,,. since D is non-negative. This implies that

M
1
< E .
MSE.,s < M(i:1 MSE;), (&)
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where M SFE; is the mean square error of each base model in the ensemble.
Ueda and Nakano in [16] then produced the bias-variance-covariance decomposition of the generalisation of
ensemble estimators. In this decomposition it is assumed that:

1 E
fens: E;[Fl(X)L (6)
then
2 5  Var. 1
E[fens E(f)} = Bias® + i + (1 — %)COU(IT’. 7)
1k
Bias = - ;(F — E(f)) ®)
and
1 k k
Covar. = ————> Y E[F; - E(F)|[F; — E(F))]. )

This shows that if we are able to design an ensemble with both low bias, variance and uncorrelated individual
solution methodologies, we can expect improved generalisation performance.

Unlike the MRSM approach which is based on selecting single “best” models for each response before
simultaneous optimisation, the ensemble system integrates several accurate results after simultaneous optimisation
and is thus less risky, more credible and can be more accurate than any of its base members if they are both
accurate and diverse [17, 18, 19, 20, 21, 22]. The ensemble approach is popular for solving complex problems
including small sample size dataset problems [23, 24, 25, 26, 27]. The following flexible hybrid ensemble solution
methodology was, therefore, employed:

All possible regression

!

Perform response surface analysis

l

Design hybrid ensemble system

I

Perform simultaneous optimisations

!

Integrate solutions

!

Analyse results

Figure 3. The flexible hybrid ensemble solution methodology.
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3. Application of Solution Methodology

3.1. Application of the hybrid ensemble methodology

Hybrid ensembles are heterogeneous mixtures of base models, base methodologies and ensemble systems [28, 29].
Hybrid ensemble systems have been demonstrated to perform better than homogeneous systems [30, 31]. Figure 3
is a hybrid ensemble of five solution methodologies used to obtain five solutions which were then integrated into
two before a final credible solution was selected.Figure 4: Presents the diagrammatic flow of the hybrid ensemble.

All possible regression modelling was carried out on the small sample size MRSM dataset of Table 1 for both
the hardness and adhesion responses. Response surface conformance analysis (RSCA) was done on the two
sets of twenty-five OLS adhesion and hardness response models. The hardness response had only one model
with a conforming response surface, hardness response model [T, Ry, T..R¢,T.2] [11]. The hybrid ensemble
base methodologies, therefore, focused on selecting candidate sets of adhesion response models for simultaneous
optimisation with the single hardness response model to generate accurate and diverse results for integration.

Table Al, in Appendix, shows the fifteen MS criteria used to assess the twenty-five adhesion response models.
Table A2, in Appendix, shows the adhesion response models selected as best in red by each MS criterion. The
fifteen MS criteria were then split into three groups of five which are (i) MS criteria not corrected for small sample
size inefficiency (Table 3), (ii) MS criteria corrected for small sample size inefficiency (Table 4), and (iii) prediction
MS criteria (Table 5). Tables 3 to 5 show the MS criteria, their values and the models they selected. The Votes
column shows the number of times a particular response model was selected, for example model [T..R;, R7] was
selected four times by MS criteria AIC, BIC, KIC and TIC. These three groups were used to construct the first three
base ensembles in the hybrid ensemble.Table 7 shows the implications of comparisons of results from various base
ensembles of Figure 4.

Table 3. Showing adhesion response models selected as best by five small sample size uncorrected MS criteria

Models AIC [ BIC [ HQ [ KIC | TIC | Votes
(T., Ry, To. Ry, T2, R7] | 11.7 [ 15.1 [ 0.5 [ 207 | 13.7 | 1
[T.,T..R:, T, R7] 98 | 126 | 05 [ 17.8 ] 11.8| 3
[T..R;, R}] 98 [ 11.5] 42 [ 158 11.8 | 4

Table 4. Showing adhesion response models selected as best by five small sample size corrected MS criteria

Models AICc | SBC | HQc | KICc | MKIC | VOTES
[T.,R;,T..R;,T>,R?] | 202 | 1.9 | 1.1 | 873 | 182 1
[T.,T..Ry, T2, R}] 148 | 1.7 | 1.1 | 644 | 120 2
[T..R;, R?] 110 | 48 | 45 | 38.1 5.4 3

The fourth base ensemble methodology utilised the first five “best” AIC. adhesion models as base models for
simultaneous optimisation as proposed by Burnham and Anderson in [9] in their multi-model inference system (M-
MI). Table 6 shows the five adhesion response models and their AIC, values and the computed smoothed AIC.,
(S — AIC.) weights.The formula for S — AIC, is,

o((—AICe;)/2)

S el(=ArCe)/2)]

(10)
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MRSM Small Sample Size Dataset

I
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L
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Uncontrolled MS Criteria
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/
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l
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Figure 4. The diagrammatic flow of the hybrid ensemble.

where one calculates the weighted average B = Z u; B; from the 7 estimators of B, a regression parameter in the

k

i=1

response model, and Z u; = 1.

i=1
The fifth and last methodology combined the adhesion response models of the M-MI ensemble system using
their S-AICc weights, as shown in Table 7, to come up with an averaged model estimator for simultaneous

Stat., Optim. Inf. Comput.

Vol. 12, March 2024




316

SOLVING A TYPICAL SMALL SAMPLE SIZE MRSM DATASET PROBLEM

Table 5. Showing adhesion response models selected as best by Prediction MS criteria.

Model R>..q. | Adeq.Prec. | C, — k | PRESS | APC, | Votes
[T.,T..R;,,T>,RY] | 515 4.1 0.1 59.3 2.4 1
[R:, T..R;, R? 49.9 5.7 0.0 81.3 2.6 1
[T..R:, R?] 65.6 1.8 0.0 42.1 2.9 3
[T., R:, R?] 49.4 11.9 2.1 62.2 2.9 1
[R:, T..R:] 52.0 54 0.0 58.6 4.0 1

Table 6. Showing adhesion response models selected as best by the AICc MS criterion.

Model AIC, Value | S — AIC, Weight
[T..R:, R?] 11.0 0.566078
[T, T..R:, RY] 13.9 0.132785
[Ri, Te. Ry, R 14.3 0.108715
[T..R:,T?, R7] 14.4 0.103413
[T., R?] 14.7 0.089009

Table 7. Showing the computation of the frequentist model averaged estimator (M-MI CBFMA).

Model AICc Wt. | Intercept | T, Ry |T.R;| T? R?

[T..Rq, RY] 0.566 10.497 0 0 [0020] 0 [-0.026
[T..R:,T?,R7] | 0.133 10.390 0 0 0.019 | 0.001 | -0.025
[T.,T..R:, R?] 0.109 9.140 | 0.091 0 [0016] 0 [-0022
[T., R}] 0.103 6.180 [ 0324 0 0 0 |-0011
[R:,T..R:,RZ] | 0.089 11.080 0 |-0098 0021 0 [-0.023
M-MI CBFMA | 9.941 [ 0.043 | -0.009 | 0.018 | 0.000 | -0.024

optimisation with the hardness response model. The difference between the M-MI ensemble and the M-MI CBFMA
methodology was that, whilst M-MI combined results after simultaneous optimisation, M-MI CBFMA combined
the five models using MA before simultaneous optimisation. After simultaneous optimisation of the adhesion
response base models with the single hardness response model with a conforming response surface, results from
the individual solution methodologies were compared and integrated using arithmetic averaging (Ave.) and majority
vote (M. Vote). Majority vote meant selecting the cure time with the highest frequency of occurrence for a given
rubber thickness. Equation (5) of Krogh and Vedelsby in [15] suggested that the mean square prediction error
(MSPE) of the hybrid ensemble would be better than or equal to the average of the base methodologies. Table 8
shows the expected implications of analysing results from different base ensembles.

3.2. Bias-variance-covariance decomposition

Computations of the bias-variance decomposition of base models and bias-variance-covariance decomposition
of base ensemble estimators at simultaneous optimisation were done using equations (2) to (7). The formula for
MSPE for a sample size n with Y; the i*h estimated response value at simultaneous optimisation and Y7 the targeted
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Table 8. Showing the implications of comparisons of results from different base ensembles.

No. | COMPARISONS/ANALYSIS IMPLICATIONS
1 | Sample size inefficiency uncorrected vs. corrected MS criteria | Effect of inefficiency correction
2 | Uncorrected + corrected criteria vs. Prediction MS criteria Error of optimism
3 | M-MI ensemble vs. M-MI CBFMA ensemble Effect of model averaging
4 | All eight results Solution uncertainty/credibility

response value is given as:

1 1 _
MSPE = ﬁ(;:l(Yi —Yr)?) = ﬁ(;:1 e_i? (11)
and
NS I
Bias = E(;ﬂ Y:)) - Yr (12)

Table 9 shows the simultaneous optimisation and determination of the various components of the bias-variance
decomposition of the adhesion-hardness response model pair [T..R;, R?] — [T., Ry, T..R;, T?] using Excel. The
T.(min.) column is the estimated cure time for each rubber thickness R;(mm). The value ¢? is the square of the
residual, the difference between the targeted value and the fitted value. Var. is the variance (ref. equation (3)).

Table 9. The simultaneous optimisation of adhesion-hardness response model pair [T¢.R¢, R7] — [Te, Re, Te.Rt, T using
Excel.

T. R; | Adhesion | T..R;, R? ) Hardness | T., Ry, T.. Ry, T~ .
(min) | (mm) Yr Estimate e? Yr Estimate e?
21 7 12 12.217 0.047 60 60.13 0.017
22 8 12 12.419 0.175 60 60.36 0.131
22 9 12 12.427 0.182 60 60.15 0.022
23 10 12 12.586 0.343 60 60.35 0.125
23 11 12 12.511 0.261 60 60.17 0.030
24 12 12 12..628 0.395 60 60.35 0.125
24 13 12 12.470 0.221 60 60.21 0.042
24 14 12 12.261 0.068 60 60.06 0.003
25 15 12 12.305 0.093 60 60.24 0.059
25 16 12 12.012 0.000 60 60.13 0.016
26 17 12 12.013 0.000 60 60.29 0.082
27 18 12 12.004 0.000 60 60.39 0.150
29 19 12 12.369 0.136 60 60.40 0.163
30 20 12 12.357 0.127 60 60.30 0.090
12.327 MSPE:0.146 . 60.25 MSPE:0.076
Bias: 0.327 | Var.:0.039 . Bias:0.250 Var.:0.012

Following adhesion-hardness model pair [TC.Rt,RtQ} — [TC,Rt,TC.Rt,Tf}, simultaneous optimisations and
computations of bias-variance decomposition for the rest of the base models of all base methodologies were
done and contributed to the bias-variance-covariance decomposition of the ensembles in Tables 10, 11, 12 and
13, respectively.
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Table 10. Bias-variance-covariance decomposition of the Uncorrected MS ensemble.

Model MSPE | Bias Var. | Covar. | MSPE | Bias Var. | Covar.
[T..R;:, R7] 0.146 | 0.327 | 0.039 . 0.076 | 0.250 | 0.012
[T.,R:,T..R:, T, R?] | 0.516 | 0.616 | 0.137 . 0.065 | 0.220 | 0.018

[T.,T.. R, T2, R7] 0.495 | 0.619 | 0.113 . 0.076 | 0.250 | 0.012 .
AVE. 0.323 | 0472 | 0.079 | 0.112 | 0.074 | 0.246 | 0.013 | 0.014

Table 11. Bias-variance-covariance decomposition of the Corrected MS ensemble.

Model MSPE Bias Var. Covar. | MSPE Bias Var. Covar.
[T..R;, R7] 0.1464 | 0.3270 | 0.0394 . 0.0755 | 0.2500 | 0.0117
[T.,R:,T..R;, T, R?] | 0.5161 | 0.6155 | 0.1373 . 0.0651 | 0.2200 | 0.0177
[T.,T..R;, T2, R?] 0.4951 | 0.6186 | 0.1125 . 0.0755 | 0.2500 | 0.0117 .
AVE. 0.3234 | 0.4724 | 0.0791 | 0.1108 | 0.0742 | 0.2463 | 0.0125 | 0.0141

Table 12. Bias-variance-covariance decomposition of the the Prediction MS ensemble.

Model MSPE | Bias Var. | Covar. | MSPE | Bias Var. | Covar.
[T..R;, R7] 0.146 | 0.327 | 0.039 . 0.076 | 0.250 | 0.012

[R:, Te.Ry, RY] 0.151 | 0.370 | 0.014 . 0.096 | 0.285 | 0.014
[T.,T..R;,T? R7] | 0.495 | 0.617 | 0.113 . 0.076 | 0.250 | 0.012

[T., R¢, R7] 0.112 | 0.288 | 0.029 . 0.105 | 0.289 | 0.020

[Re, T..Ry) 0.142 | 0.285 | 0.061 . 0.184 | 0.402 | 0.023 .
AVE. 0.191 | 0.363 | 0.048 | 0.062 | 0.098 | 0.282 | 0.015 | 0.019

Table 13. Bias-variance-covariance decomposition of the M-MI ensemble.

Model MSPE | Bias Var. | Covar. | MSPE | Bias Var. | Covar.
[T..R;, R?] 0.146 | 0.327 | 0.039 . 0.076 | 0.250 | 0.012
[T.,T..R;, R?] | 0.142 | 0354 | 0.016 . 0.096 | 0.285 | 0.014

[R;, Te.R, RZ] | 0.151 [ 0370 | 0.014 . 0.096 | 0.285 | 0.014

[T. Rt,TQ R?]'| 0.105 | 0.301 | 0.015 . 0.096 | 0.285 | 0.014

[T., R7] 0.103 | 0.237 | 0.047 . 0.097 | 0.279 | 0.019 .
AVE. 0.138 | 0.325 [ 0.032 | 0.033 | 0.084 | 0.265 [ 0.013 | 0.015

Tables 10, 11, 12 and 13 show that a response model with the best MSPE and bias on the adhesion side normally
has the worst MSPE and bias at the hardness response model side at simultaneous optimisation, and the reverse is
true. This suggests an MSPE (adhesion) — MSPE (hardness) trade-off that could be reminiscent of the popular bias-
variance trade-off in statistics and machine learning. Khuri and Conlon in [32] called this simultaneous optimisation
compromise.
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3.3. Integration of ensembles

Tables 14, 15, 16 and 17 show the integrations of individual base model cure time estimates for each of the four
ensemble systems with bias-variance-covariance computations shown in Tables 10, 11, 12 and 13, respectively. The
weights used to compute the weighted averages (W. AVE) in Tables 14, 15 and 16 were from the VOTES column
of Tables 3, 4 and 5. Table 16 used the S-AICc weights of Table 6. The weights of response models in Tables 14
- 16 were computed from the votes shown in Tables 3, 4 and 5. The yellow shading in Tables 14 -18 shows where
the cure time estimates of each base model agreed with the weighted average (W. AVE) values in the last column.
The formula for relative accuracy of base models and methodologies relative to the weighted average or hybrid
ensemble results is shown in equation (15).

Numberof BaseM odelsor EnsembleCorrect Predictions

13)

Relative A =
catredceuracy Total Numbero f Instances

Table 14. Results integration for Uncorrected MS criteria ensemble cure time estimates.

Weight 0.125 0.500 0.375 wid.
R:,(mm) | [T.,R:, T..R;,T?, R?] | [Te.R¢, RZ] | [T.,T..R:, T?, R7] | Ave.
7 21 21 21 21
8 22 22 22 22
9 22 22 22 22
10 23 23 23 23
11 23 23 23 23
12 24 24 24 24
13 24 24 24 24
14 24 24 24 24
15 25 25 25 25
16 25 25 26 25
17 25 26 27 26
18 27 27 28 27
19 28 29 29 29
20 31 30 30 30
Acc. Count 11 14 11
Rel. Acc. 0.79 1.00 0.79

The adhesion base response models selected in both the small sample size inefficiency uncorrected and corrected
criteria ensemble systems were the same. The only difference in Tables 14 and 15 is in the weights as shown in the
VOTES of Tables 3 and 4.

3.4. Integration of the results of the five solutions methodologies

Both the Ave. and the M. Vote fusion methods had the same cure time estimates. The three base methodologies of
Prediction MS, M-MI and M-MI CBFMA agreed on all the cure time estimates. The uncorrected and the corrected
MS information criteria ensembles had the same results, though different from the other three on three rubber
thicknesses.

The bias-variance-covariance decomposition of the hybrid ensemble with the five different solution
methodologies is shown in Table 18.

The small sample size uncorrected and corrected MS information criteria ensembles comparatively had the worst
MSPE and bias values on the adhesion response side, but the best on the hardness side. M-MI and M-MI CBFMA,
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Table 15. Results integration for Corrected MS ensemble.

Weight 0.1667 0.5000 0.3333 Witd.
Ry, (mm) | [T., Ry, Te.Ry, T2, RY] | [Te-Ry, R7] | [T.,T..R:, T2, R7] | Ave.
7 21 21 21 21
8 22 22 22 22
9 22 22 22 22
10 23 23 23 23
11 23 23 23 23
12 24 24 24 24
13 24 24 24 24
14 24 24 24 24
15 25 25 25 25
16 25 25 26 25
17 25 26 27 26
18 27 27 28 27
19 28 29 29 29
20 31 30 30 30
Acc. Count 11 14 11
Rel. Acc. 0.79 1.00 0.79

Table 16. Results integration for Prediction MS criteria ensemble.

Weight 0.4286 0.1429 0.1429 0.1429 0.1429 | Wtd.
Ry, (mm) | [T..R,RY] | [Te, Te-Re, T2, R;] | [Te, Re, R7] | [Re, Te-Re, RY] | [Re, TeRy] | Ave.
7 21 21 21 21 21 21
8 22 22 22 22 22 22
9 22 22 22 22 22 22
10 23 23 23 23 23 23
11 23 23 23 23 24 23
12 24 24 24 24 25 24
13 24 24 24 24 26 24
14 24 24 24 24 27 24
15 25 25 25 25 28 25
16 25 25 26 26 28 26
17 25 26 27 27 29 27
18 27 27 28 28 29 28
19 28 29 29 29 30 29
20 31 30 30 30 31 30
Acc. Count 11 14 11 14 4
Rel. Acc. 0.79 1.00 0.79 1.00 0.29

on the other hand, had the best MSPE and bias values on the adhesion side. The Prediction MS criteria ensemble
had the worst MSPE and bias values on the hardness side but was middle-of-the-road on the adhesion side. It was
therefore, difficult to select a “best” methodology in this case.
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Table 17. Results integration for M-MI ensemble.

Weight 0.566608 0.13279 0.10872 0.10341 0.08901 | Wtd.
Ry, (mm) | [T..R, R} | [Te,Te-Ry, R7] | [Re, T..R, RY] | [Te-Re, T2, R3] | [T., R7] | Ave.
7 21 21 21 21 21 21
8 22 22 22 22 22 22
9 22 22 22 22 22 22
10 23 23 23 23 23 23
11 23 23 23 23 23 23
12 24 24 24 24 24 24
13 24 24 24 24 24 24
14 24 24 24 24 25 24
15 25 25 25 25 26 25
16 25 26 26 26 27 26
17 26 27 27 27 28 27
18 27 28 28 28 30 28
19 29 29 29 29 30.5 29
20 30 30 30 30 30.5 30
Acc. Count 11 14 14 14 7
Rel. Acc. 0.79 1.00 1.00 1.00 0.50
Table 18. Showing the cure time estimates of the various methods and their integration.
Ri, (mm) | Uncor. MS | Cor. MS | Pred. MS | M-MI | M-MI CBFMA | Average | M. Vote
7 21 21 21 21 21 21 21
8 22 22 22 22 22 22 22
9 22 22 22 22 22 22 22
10 23 23 23 23 23 23 23
11 23 23 23 23 23 23 23
12 24 24 24 24 24 24 24
13 24 24 24 24 24 24 24
14 24 24 24 24 24 24 24
15 25 25 25 25 25 25 25
16 25 25 26 26 26 26 26
17 26 26 27 27 27 27 27
18 27 27 28 28 28 28 28
19 28 29 29 29 29 29 29
20 30 30 30 30 30 30 30
Acc. Count 11 11 14 14 14
Rel. Acc. 0.79 0.79 1.00 1.00 1.00

4. Discussion and Conclusion

321

The discussion of the results is structured around the comparisons/analysis and implications presented in Table 8.
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Table 19. Comparing bias-variance-covariance decomposition results of all methods.

. . Adhesion . . . Hardness . .
Model MSPE Bias Var. | Covar. | MSPE Bias Var. | Covar.
Uncorrected MS | 0.323 0.472 0.079 | 0.111 | 0.074 0.246 0.013 | 0.014
Corrected MS 0.323 0.472 0.079 | 0.111 | 0.074 0.246 0.013 | 0.014
Prediction MS 0.236 0.371 0.043 | 0.112 | 0.113 0.304 0.018 | 0.021

M-MI 0.148 0.344 0.024 | 0.130 | 0.093 0.278 0.016 | 0.016
M-MI CBFMA 0.134 0.343 0.017 . 0.096 0.290 0.014 .
AVE. 0.233 0.400 0.049 | 0.079 | 0.090 0.273 0.015 | 0.018
Result a Result b Result ¢ Result d Result e
INTEGRATIONS
Arithmetic Average Result Majority Vote Result

—

Final Result

Figure 5. Comparison of Results

4.1. Effect of small sample size inefficiency correction

The adhesion models selected by the two sets of five small sample size uncorrected and corrected MS information
criteria were the same. The cure time estimates of the small sample size uncorrected and corrected MS information
criteria ensembles were thus the same. The differences on the MSPE and biases of the two ensembles were
insignificant. This suggests that the effect of small sample size correction on model selection criteria may be
insignificant at multiple model selection criteria level.

4.2. Error of optimism

The cure time estimates of the uncorrected and corrected MS criteria ensembles are different on three rubber
thicknesses from, and the theoretical accuracy values of the ensembles are worse than those of, the prediction MS
criteria and M-MI ensembles. This demonstrates the error of optimism. Response models that have very good fit to
the dataset are not necessarily good at generalisation.

4.3. Effect of CBFMA

The M-MI and M-MI CBFMA ensembles had the same cure time estimates but different theoretical accuracies.
The M-MI CBFMA had a better theoretical accuracy than the M-MI. This agrees with literature.
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4.4. Solution uncertainty/credibility

Six out of eight results (0.75) were in agreement as shown in Figure 5. Based on the principle that the greater the
uncertainty, the lower the credibility, this result had the least uncertainty and hence the highest credibility. In this
particular MRSM example, the hybrid ensemble did not produce a final result that was more accurate than all the
base methodologies, but one more credible than individual base methodologies. The fact that different answers were
obtained by different solution methodologies exposed the risk of depending on a result from a single methodology.
This suggests that a multiple solution methodology approach exposes the problem of solution methodology
uncertainty which is not exposed by the use of a single solution methodology and supports ensembling of results
from different methodologies. Multiple methodologies allow for comparison and justifications on selection of final
result. The accuracy values in the bias-variance-covariance decomposition at simultaneous optimisation do not give
a clear indication of the “best” methodology or “best” response model pair.

Future research areas would look at:

* A simple software that can easily generate solutions from different methodologies for integration using multiple
fusion methodologies and the most logical solution selected.

* A further study on simultaneous optimisation compromise and it’s relationship to prediction accuracy
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