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Abstract A new family of distributions called the Kumaraswamy Rayleigh family is defied and studied. Some of its
relevant statistical properties are derived. Many new bivariate type G families using the of Farlie-Gumbel-Morgenstern,
modified Farlie-Gumbel-Morgenstern copula, Clayton copula and Renyi’s entropy copula are derived. The method of the
maximum likelihood estimation is used. Some special models based on log-logistic, exponential, Weibull, Rayleigh, Pareto
type II and Burr type X, Lindley distributions are presented and studied. Three dimensional skewness and kurtosis plots
are presented. A graphical assessment is performed. Two real life applications to illustrate the flexibility, potentiality and
importance of the new family is proposed.

Keywords Kumaraswamy Family, Rayleigh family, Clayton Copula Farlie Gumbel, Morgenstern Family, Simulation;
Modeling.

AMS 2010 subject classifications 60E05, 62G05, 62N05, 62P30

DOI:10.19139/50ic-2310-5070-1130

1. Introduction and motivation

Recently, there has been an exceptional eagerness for growing more flexible families of distributions by extending
the classical cumulative distribution functions (CDFs). Many generalized families of distributions have been
defied and studied for modeling different lifetime data in many applied areas such as insurance, engineering,
economics, environmental sciences, medical sciences, biological studies and finance. So, several G classes of
continuous probability distributions have been constructed by expanding the common families of distributions.
These generalized distributions give more flexibility by to the baseline family. The well-known continuous
probability distributions such as Weibull, Burr type X, gamma, normal, beta, Burr XII, beta, Kumaraswamy, Log-
Logistic, Topp-Leone and Lindley are widely used because of theirs simple forms. Recently, many statisticians have
focused on the more complex and flexible continuous probability distributions for increasing the applicable ability
of these well-known models via adding one or more shape parameters. The well-known family of distributions
can be cited as follows: Marshall and Olkin [42] (Marshall and Olkin family), Zografos and Balakrishnan [63]
(gamma family), Cordeiro and de Castro [13] (Kumaraswamy family), Yousof et al. [57] (Burr type X family),
Cordeiro et al.[12] (Burr type XII family), Merovci et al.[43] (exponentiated transmuted family), Aryal and
Yousof [8] (exponentiated generalized-G Poisson family), Brito et al. [10] (Topp-Leone odd log-logistic family),
Korkmaz et al. [33] (generalized odd Weibull generated family), Korkmaz et al. [35] (exponential Lindley odd
log-logistic family), Korkmaz et al. [36] (Marshall-Olkin generalized-G Poisson family), Nascimento et al. [46]
(Nadarajah-Haghighi family), Merovci et al. [44] (Poisson Topp Leone family), Karamikabir et al. [32] (Weibull
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Topp-Leone generated family), Korkmaz et al. [34] (Hjorth family), Alizadeh et al. [4] (flexible Weibull generated
family), Alizadeh et al. [5] (transmuted odd log-logistic family) and El-Morshedy et al. [16] (Poisson generalized
exponential family)

Consider a baseline CDF Gy (z) with parameter vector ¥ where ¥ = (¥, ) = (¥, ¥, ...) . Then due to Yousof
et al. [57], the survival function (SF) of the R-G family of distributions is defined as

— 1
H,w(2) =1-How(z) =exp {—Uw?p(z)} | 6>0,2€R5 (1

where
1

Gg'(:) ~ 1] i

and Gy (2) =1 — Gg(z) is the SF of the baseline model. In this paper, we define and study a new family of
distributions by adding two extra shape parameters to (1) to provide more flexibility to the new generated family.
Using the Kumaraswamy-G (K-G) family (Cordeiro and de Castro [13]), we construct a new family called the
Kumaraswamy Rayleigh-G (KR-G) family. For an arbitrary baseline CDF H,, ¢ (2), the K-G family by the CDF

7
givenby Fy(z) =1 — [1 - Hgg (z)} |(v=¢,~,0,%)- Following Cordeiro and de Castro [13], the SF of the KR-G
family can be expressed as

w(2) =

FV(Z) =1- FCKY&(Z) = (1 - hZ;,C,a&)’y |a,c,we]R+ and z€R> 2)

1 <
hacow = {1 — exp {—gwi\y(z)] } .

The probability density function (PDF) corresponding to (2) can be derived as

where

22Cv9% (2) G (2) hai 0w
fX(z) - U — = ESLAL 1—~ |C,WER+ and z€R» (3)

ng (2) exp [%oﬂg(z)} (1 — hz;@g,g)

Aycow(2)

where gy (z) refer to the baseline PDF with parameter vector ¥. We are motivated to define and study the KR-G
family for the following reasons:

1. The PDF of the KR-G family can be "symmetric”, “heavy tailed right skewed” and "right skewed” with many
useful shapes. The failure rate of the KR-G family can be “increasing”, ”bathtub”, ” J-shape”, ’decreasing”,
“decreasing-constant”, “increasing-constant” and “constant” .

2. In modeling real-life data, the new family proved its superiority against the special generalized mixture-G
family, odd log-logistic-G family, Burr-Hatke-G family transmuted Topp-Leone-G family, gamma-G family,
Kumaraswamy-G family, beta-G family and Exponentiated-G family.

3. In modeling the bimodal real-life, the new family provides better fits in modeling the bimodal right skewed

and bimodal right skewed data sets.

The rest of the paper is outlined as follows. In Section 2, some general mathematical properties of the proposed
KR-G family are derived. In Section 3, Simple type copula using Farlie Gumbel Morgenstern (FGM) copula,
modified FGM copula, Clayton copula and Renyi’s entropy are presented. Maximum likelihood estimation of
the model parameters is investigated in Section 4. Nine special models of this family are presented in Section 5
corresponding to the baseline Log-Logistic, Exponential, Weibull, Rayleigh, Pareto type—II and Burr X, Lindley
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750 A NEW FAMILY OF CONTINUOUS DISTRIBUTIONS

distributions. Section 6 provides a graphical simulation study for testing the performance of the maximum
likelihood method in estimating the parameters of the Kumaraswamy Rayleigh Pareto type—II model as a
special case. Section 7 provides two applications to real data sets to illustrate the potentiality of the new KR-G
family and the Kumaraswamy Rayleigh Pareto type—II is compared with the special generalized mixture Pareto
type—II, Odd log-logistic Pareto type—II, Reduced Odd log-logistic Pareto type—II, Reduced Burr-Hatke Pareto
type—II, Transmuted Topp-Leone Pareto type—II, Reduced Transmuted Topp-Leone Pareto type—II, Gamma
Pareto type—II, Kumaraswamy Pareto type—II, Beta Pareto type—II, Exponentiated Pareto type—II, standard
Pareto type—II and Proportional reversed hazard rate Pareto type—II models. Finally, some concluding remarks
are presented in Section 8.

2. Statistical properties

2.1. Useful expansions

Consider the following series

T3 s i J1
M (—1)71F(1 +7T3) 1
1=y = m et 4
< 7T2) jlz_:o jl'F(l Ty __71) T |773>0and|%|<1 ( )
[ee] K K1
1 (—1) ! (ﬂ'l)
oxp(—) =S AL (M) 5
p( ’/T2> MZ:OF(1+/<;1) Uuw) ()
and
—T73 o0 K2
T F(?Tg —I—Hg) T
1 JE— = E _— —_— 1 . 6
( 7T2) = re!l(ms) <7T2> |ﬂ3>0’|5|<1 ©

Applying (4) to A, ¢ - w (2), equation (3) reduces to

e j1 ¢(1+j1)—-1
— 732<Fygg(z) Cu (2) (_ql)j F(W) {1 — exp [-%«%(z)” . (7
G (2) ex [ ()] 2 210 1) .
Bjy,¢,0(2)
By expanding Bj, ¢ - w (2) again using (4), equation (7) becoms
20y (DT T()E (L + 1)) 9w (2) G (2) { 1 ]
- = = —(1+4+j2) = . 8
el = 0, S G U - Ga () 0L TR ®
Cjy 2w (2)
Applying (5) to Cj, w (z) where
Cj, w(z) = exp [— (1+ j2) iwﬁ,(z)] 9)
we get
_ N DR G + DMI()PE( + )
fole) = jl,n%—o Jilgel kil (y = )T (C(L + j1) — j2)
x2(vg9w (2) Gw (2)™ " Gy ()7 7*10 (D
D (z)
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Finally expanding D, & () using (6), equation (7) can be expressed as

fv(z) = Z Cri ko Tre (2) o =25 +ra425 (11)

Kl,ngzo

where 7, (2) = K°gw (2) Gg(2)" ' denotes the PDF of the exponentiated G (ExG) densities with power
parameter x* and

C _ QCvl i (=179 (G + )M ()L (L + 1)) T (261 + 3 + K2)
o o o=y Dilplmlee!l(y - JOT(C(A+ 1) — j2) T' (261 + 3) K*

Similarly, the CDF of the KR-G family can be expressed as

FX(Z) = Z Cﬁl,ﬁz 1. (SZZ)v

K,l,ﬁ@2=0

where Tl (2) = G (2)"" denotes the PDF of the exponentiated G (ExG) densities with power parameter «°.
Henceforward, we will consider the scale parameter o = 1 for obtaining more simple family with less number of
parameters.

2.2. Quantile function

Quantile functions are used in theoretical aspects, statistical applications and Monte Carlo methods. Monte-Carlo
simulations employ quantile functions to produce simulated random variables for classical and new continuous
distributions. The KR quantile function , say z = Q(u) can be obtained by inverting (2) , we have

1

1
F'u) = Qg(u) =G |:_2CIU*7"/7C/ (1 - 2Qu*,%€>:| |(u*=1—u)> (12)

1
where ¢, 4,¢c = log [1 — (1 — u*%> C} . We can easily generate z by taking u as a uniform random variable in

(0,1).

2.3. Moments

Let Z , be arandom variable having the ExG with density 7o (2) | ;e =2, +1,-+2 an dpower parameter x°. The r*”
moment of KR-G family can be obtained from (11) as

trz =E(Z)= 3 Crpu E(Z7). (13)

K1 ,K2=O
and
E(Z5) = 5% 2" g9 (2) Gu(2)" " xeso
where E (Z7,) can be calculated numerically in terms of the baseline quantile function, i.e., Qg (u) = G~!(u) as
E(Z%.) = k8 ~1Qg (u)" du.
2.4. Incomplete momemts
The s** incomplete moment of Z is given by
t
mezn) = [ 1) (14)
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752 A NEW FAMILY OF CONTINUOUS DISTRIBUTIONS

Using (11), the st incomplete moment of KR-G family is m z(t) = Y.  Ch, x, M e (y) Where mg o (t) =

Nl,lizzo
fOG(t) Q% (u) u =1 du. The m . (t) can be calculated numerically by using the software such as Matlab, R,
Mathematica etc.

2.5. Moment generating function

Now we introduce two formulae for the moment generating function. The first formula
MZ( ) Etz = Z Ciﬂ K2 Mo )7
K1,K2= =0

where M, (t) is the moment generating function of Z , . Consequently, we can be easily determined Mz () from
the ExG generating function. The secone formula

Mz(t) =E(e') = > Cu,n, Mus(t)
K1,/m2=0
where M. (t) is the mgf of random variable Z,. given by
Mo ()| gos0 = £° . exp (t2) gw (2) G (2)" 1 = k3'u" " exp [tQq (u)] du
which can be calculated numerically from the baseline quantile function , i.e., Qg (u) = G~*(u). For the KRPTII

model
e K3 —T
S DD DT ] (N = P

K1,k2,7=0 k3= 0

3. Copulas

We derive some new bivariate type KR (Biv-KR) model using FGM copula, modified FGM copula, Clayton copula
and Renyi’s entropy. The Multivariate KR (MVKR) type is also presented. However, future works may be allocated
to study these new models.

3.1. Biv-KR type via FGM copula

Consider the joint CDF of the FGM family s(u,w) = uw (1 + du*w*), where the marginal function u = Fi,
w = Fy, 6 € (—1,1) is adependence parameter and for every u, w € (0, 1), (u,0) = (0, w) = 0 which is ”grounded
minimum” and (u,1) =w and (1,w) =w which is ”grounded maximum”, (uy,w;) + (ug,ws) — (uy,ws) —
(ug,w1) > 0 (see Gumbel [27] and Gumbel [28]). A copula is continuous in u and w; actually, it satisfies the
stronger Lipschitz condition, where

| (ug, w2) — (ur,w1) | < |ug —ur| + |wz — wi.
For0 <wu; <us <land0 < w; <wsy <1, we have
Pr(u; U <ug,w; W < wyp) = (ug,wr) + (ug, w2) — (u1, ws) — (ug,wy) > 0.

Then, setting ut = (1 - hzl;Cl »E)Wl IuE[O,l] and w* = (1 - h22;§2,2)72 ‘wE[O,l]a we get

(F17F2) = F(ZbZ?) = [1 - (1 - th;ChE)%] [1 - (1 - hzz;Cz,E)w]
X A1+ 6 [(1=hayeow) ™ (1= hoyeow) ]}
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The joint PDF can then derived from

pé(uv ’U)) =1+ 6U’*w*|(u*:172u and w* =1-2w)

or from
f(z1,22) = p (F1, F2) f1fa.

3.2. BvOBGR type via modified FGM copula
Due to Rodriguez-Lallena and Ubeda-Flores [52]), the modified version of the bivariate FGM copula is defined as
5(u, w) = ww [1+ 69 (u) w (w)] [se(-1,1)

or
s(u, w) = uw + 004 Wy lse(—1,1)

where 9, = ud (u), and ¢, = ww (w). Where

Let
o .
T = 1nf{19u : %ﬂuel} < 0,72 = sup {ﬁu au19u|€1} <0,
& =infw Ww| > 0,8 =supw iw| >0
1 — w a w|€en y62 — P w a w|€en )
Then,
1 < min (1172, &162) < 0o,
where 9 9
— 9 (u) = 0y — ¥
€1 = {’U, Tu € (0,1) I%ﬁu exisls}’
and

€2 = {w Twe (0’ 1) |0i<bw exists} .

dw

3.2.1. Biv-KR-FGM (Type-I) model Here, we consider the following functional form for both ¥ (u) and w (w).
Then considering s(u, w) = uw + 60wy |5e(—1,1), We get

6(u,w) - 519ud)w + { [1 - (1 - hUi,{l,E)’Yl} [1 - (1 - hw;C%E)W} } s

Y2

where 9, = u (1 — {1 - exp [~we(u)] }Q)% and &, = w (1 — {1 - exp [~we(w)] }CZ)

3.2.2. Biv-KR-FGM (Type-II) model Let ¥ (u) and w (w) be two functional form for satisfy all the conditions
stated earlier where

9 ()" 3,50 = 1’ (1= )"~ and w (w)" (5,50 = w* (1= w)' ™.
The corresponding Biv-KR-FGM (Type-II) can be derived from

5,010,05 (Us w) = uw [1+ 69 (u)" w (w)"] .
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3.2.3. Biv-KR-FGM (Type-III) model Let U (u) = u [log (1 + u*)] and & (w) = w [log (1 4+ w*)] for all ¥ (u) and
w (w) which satisfies all the conditions stated earlier. In this case, one can also derive a closed form expression for

the associated CDF of the Biv-KR-FGM (Type-III) from ~ (u, w) = uw (1 + 00 (u) & (w)) .

3.2.4. Biv-KR-FGM (Type-1V) model According to Ghosh and Ray [26] the CDF of the Biv-KR-FGM (Type-1V)
model can be derived from

s(u,w) = uF~Hw) + wF (u) — F~ Y u)F~ Y (w),

Then,
1 1
— 5 Cy* — = Cp
F_l(u) _ G—l (1 Qlu ,C1,71 > ,F_l(w) _ G—l <1 211) ,$2,72 ) 7
— 3Cu*,C1m — 3Cv* (2,72
where
Cux c1 oy = lOg [1 - V1 - W
and
Co* (oys = lOG [1 - Cf/ 1— ®ov*|.

3.3. Biv-KR type via Clayton copula

The Clayton copula can be considered as

(wiyw2) = (L))" + (1/w2)" = 1] 7 frepo

S

Let us assume that 7' ~KR (1,71, ¥) and Z ~KR ({2, 72, ¥). Then, setting
w; = w (t) = [1 — (1 — ht;chg)‘h] ,

and
we =w(2) = [1 - (1 - hz;cl,g)w] ,

Then, the Biv-KR type distribution can be derived as

S=

_ _ (1= (= huce)]) "
7Z F ’F z - )
(t ) ( (t) ( )) +([1— (1—hz;41,2)72]) T_l

3.4. Biv-KR type via Renyi’s entropy copula
Consider theorem of Pougaza and Djafari [47] where

R(u, w) = zou + 21w — 2122.
Then, the associated Biv-KR will be

R(z1,22) = R(F(z1),F (22)) = —z129
tz [1= (1= hayerw) ']
+21 [1 — (1 — hZQ;Cz)E)’Yz] .
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3.5. MvKR extention via Clayton copula

The MvKR (m-dimensional extension) from the above can be derived from (w;) = [Y 0" w; ¥ +1—m| .

1=
Then, the MvKR extention can expressed as

1
T

(I (- heew) ] o
B )

where Z = 21,20, -+ , Zm.

4. Maximum likelihood estimation
The MLESs enjoy desirable properties and can be used when constructing confidence intervals and regions and also
in test statistics. We determine the maximum likelihood estimates (MLEs) of the parameters of the KR-G family

of distributions from complete samples only. Let 21, 25, ..., 2,, be a random sample of size n from the KR-G family.
The log-likelihood function for V is given by

+(C-1) Zlog{l—exp w‘pzl Zw\pzl

=0
y=1)> log (1= hepcw) - 321@%‘52 (i)
=0 =0

The components of the score function U, (V) = (U, (¢),U,(y),U,(¥)). Setting the nonlinear system of
equations U, (¢), U, (v), U,(¥) equal to zero and solving the equations simultaneously yields the maximum
likelihood estimation (MLE) of V, say V , where these equations cannot be solved analytically, so, we use any
statistical software to solve these equations.

5. Special models

This section presents some special KR models based on Log-Logistic (LL), Exponential (E), Weibull (W), Rayleigh
(R), Pareto type—II (PTII) and Burr X (BrX), Lindley (Li) distributions. Table 1 below presents some new
submodels based on the new KR-G family. Figure 1 gives PDF and HRF plots of the Kumaraswamy Rayleigh
Weibull (KRW) model. Figure 2 gives PDF and HRF plots of the Kumaraswamy Rayleigh Pareto type—II (KRPTII)
model. Based on Figure 1 (right panel), the PDF of the KRPTII can be "symmetric” and “’right skewed” with many
useful shapes. Based on Figure | (left panel), the HRF of the KRPTII can be increasing”, “bathtub”, ” J-shape”,
“decreasing”, “decreasing-constant” and “increasing-constant”. Based on Figure 1 (right panel), the PDF of the
KRPTII can be ”symmetric” and "heavy tailed right skewed” with many useful shapes. Based on Figure 2 (left
panel), the HRF of the KRPTII can be “increasing”, ’bathtub”, ”decreasing”, “constant” and ~ J-shape”. Figure
3 and 5 gives the three dimensional skewness plots for KRW and KRPTII models respectively. Figure 4 and 6
provides the three dimensional kurtosis plots for KRW and KRPTII models respectively.
For the KRPTII model, we have

/ K®,r K3 —T
:u’r,Z = Z Z C/(-cl ;-cz)rc;; ( b + ]-) ‘b>ra

K1,K2= =0 K3= 0
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Figure 1. PDF plots and HRF plots of the KRW model.

and
K®,s o R3S
ms,Z(t) = Z Z C'(fl”i2)7'€3 Bt (K/ s b + 1) |b>’r‘7
51,/@2:() H3=0
where

K®,r _ . K r
C.‘(Ql,.‘ig),lig - CKIJCQ K (71) ? (/{3)’

B(wy,ws) =5 t“17H (1 — ) dt

is the complete beta function and
By (wr,wa) =4 £ (1= 1)t

is the incomplete beta function.

Table 1. New submodels based on the new KR-G family.

No. Baseline model The new model wy (2) Suport

1 LL KRLL (L2)% ¢y a,b e RY
2 E KRE [exp (az) — 1] ¢,v,a € RT
3 w KRW {exp [(az)b} — 1}2 ¢,v,a,be Rt
4 w KRW [exp (z) _ 1} ¢,v,beRY
5 R KRR {exp [(az)z} — 1}2 ¢,v,a € R
6 R KRR [exp (z) - 1} ¢,y eRT

7 PTII KRPTII [(1 + ) - 1] ’ ¢y, beR*
8 BrX KRBrX <{1 — exp [— (azﬂ }71) - 1> B ¢,7,a,b € RT
9 Li KRLi [(Hﬁ%)’l exp (az) — 11 ’ C.v,a € R+
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Figure 2. PDF plots and HRF plots of the KRPTII model.

Skewness|b=0.25 Skewness|b=0.55 Skewness|b=1.55

Skewness|b=2.55 Skewness|b=3.55 Skewness|b=7.55

Figure 3. Three dimensional skewness plots (KRW model).

6. Simulations

To assess of the finite sample behavior of the MLEs, we will consider and apply the following algorithm:

}‘}) v1l -1
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Kurtosis|b=0.25 Kurtosis|b=0.55 Kurtosis|b=1.55

Kurtosis|b=2.55 Kurtosis|b=3.55 Kurtosis|b=7.55

Figure 4. Three dimensional kurtosis plots (KRW model).

Skewness|b=1.5 Skewness|b=3 Skewness|b=6

Skewness|b=11 Skewness|b=25 Skewness|b=150

Figure 5. Three dimensional skewness plots (KRPTII model).
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Kurtosis|b=1.5 Kurtosis|b=3 Kurtosis|b=6

Kurtosis|b=11 Kurtosis|b=25 Kurtosis|b=35

Figure 6. Three dimensional kurtosis plots (KRPTII model).

to generate 1000 samples of size n from the KRPTII distribution;
2. Calculate the MLEs for the 1000 samples, say

3. Calculate the SEs of the MLEs for the 1000 samples, say

(5@75@,5@.) l(i=1,2,...,1000)-

4. Calculate the biases (Bx) and mean squared errors (MSEs) given for i = (, 8,b. We repeated these steps
for n =50, 60,...,500 with ( =1,2,...,100,yv =1,2,...,100,b = 1,2, ...,100 so computing biases, mean
squared errors (MSEy(n)) for a, b, ¢ and n = 50,60, . .., 500 where

1 1000 N 1000 1 1000 =
B, = — (i—>,B = S Fi =) By = —— (bi—b).
¢~ 1000 2 (7€) P8 = 4500 2 (i =) Bo = 155 Z
1 1000 R 2 1 1000 ) 1 1000 = 9
MSE, = —— (ﬁ),ME:— 3, — )2 MSE, = —— (bﬁb)
SE¢ = 1000 £ G—=¢ S 1000;@ )" MSEs = 1555 £

Figure 7 (left panels) shows how the biases vary with respect to n. Figure 7 (right panels) shows how the
MSEs vary with respect to n. From Figure 7 (left panels), the biases for each parameter decrease to zero as
n — oo. From Figure 7 (right panels), the MSEs decrease to zero as n — oo. Based on this assessment, the
maximum likelihood method performs well and can be used in estimating the model parameters.
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Figure 7. Bias (left panel) and MSE (right panel).

7. Applications and comparing models

In this section, we provide two real life applications to two real data sets to illustrate the importance and flexibility
of the KRPTII model. We compare the fit of the KRPTII with some well-known competitive models (see Table 2).
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Other relevant models can be used in the comparison, see Gad et al. [21], Tahir et al. [56] and Yousof et al. [58] for
more details.
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Figure 8. Box plot, Q-Q plot, TTT plot and KDE for failure times data.

Table 2. Competitive models.

N. Model Abbreviation Author

1 Special generalized mixture PTII SGMPTII Chesneau and Yousof [11]
2 Odd log-logistic PTII OLLPTII Altun et al. [6]

3 Reduced OLLPTII ROLLPTII Altun et al. [6]

4 Reduced Burr-Hatke PTII RBHPTII Yousof et al. [61]

5 Transmuted Topp-Leone PTII TTLPTII Yousof et al. [60]

6 Reduced TTLPTII RTTLPTII Yousof et al. [60]

7 Gamma PTII GamPTII Cordeiro et al. [14]

8 Kumaraswamy PTII KumPTII Lemonte and Cordeiro [37]
9 Beta PTII BPTII Lemonte and Cordeiro [37]
10 Exponentiated PTII ExpPTII Gupta et al. [25]

11 PTI PTI Lomax [38]

12 Proportional reversed hazard rate PTII  PRHRPTII New
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Figure 9. Box plot, Q-Q plot, TTT plot and KDE for service times data.

Data set I (84 Aircraft Windshield): Failure times: The first real data set represents the data on failure times
of 84 aircraft windshield given in Murthy et al. [45]. The data are: 0.0400, 3.7790,1.248, 4.121, 1.3030, 2.089,
2.902, 4.167, 1.4320, 2.154, 2.9640, 4.278, 4.449, 1.866, 2.0850, 2.890, 2.097, 2.934, 4.2400, 0.943, 1.9120,
2.632, 3.5950, 1.0700, 1.914, 2.6460, 2.4810, 3.467, 0.309, 1.8990, 1.2810, 2.038,2.224, 3.1170, 1.506, 3.699,
2.610, 3.4780, 0.557, 2.1940, 3.103, 1.9110, 1.6190, 2.0100, 2.688, 3.9240, 1.480, 2.135, 2.962, 4.2550, 1.505,
2.625,3.5780, 1.615, 2.2230, 3.114, 4.485, 1.652, 2.2290, 1.981, 2.661, 2.190, 3.000, 4.3050, 1.568, 1.1240, 4.376,
2.3850, 3.443, 0.3010, 1.876, 2.820, 3, 4.035, 1.281, 3.166, 4.570, 1.652, 2.3000, 3.344, 4.602, 1.7570, 2.324,
3.3760, 4.663.

Data set II (63 Aircraft Windshield): Service times: The second real data set represents the data on service
times of 63 aircraft windshield given in Murthy et al. (2004). The data are: 0.046, 0.622, 1.978, 3.0030, 0.9000,
2.053, 0.2800, 1.794, 3.483, 1.492, 2.600, 0.150, 3.3040, 0.9960, 3.1020, 0.952, 2.065, 0.487, 2.2400, 4.015, 1.183,
2.3410,2.717, 2.819, 0.3130, 1.915, 2.820, 0.389, 1.9200, 2.878, 1.580, 2.670, 0.248, 1.7190, 1.092, 2.183, 3.695,
1.1520, 3.6220, 1.085, 2.163, 3.6650, 4.628, 1.0030, 2.137, 3.500, 1.0100, 2.141, 1.9630, 2.950, 2.117, 1.436,
2.592, 0.140, 1.2440, 2.435, 4.806, 1.249, 2.4640, 4.881, 1.262, 2.5430, 5.140. Many other useful real life data
sets can be found in Aryal et al. [9], Yousof et al. [62], Elbiely and Yousof [15], Gad et al. [21], Altun et al. [7],
Refaie ([48],[49],[50],[51]),Yadav et al.[55], Mansour et al. [41] and Ibrahim and Yousof [19]. For exploring the
outliers, the box plot is plotted in Figures 8(a) and 9(a). Based on Figures 8(a) and 9(a), we note that no outliers
were found. For checking the data normality, the Quantile-Quantile (Q-Q) plot is sketched in Figures 8(b) and 9(b).
Based on Figures 8(b) and 9(b), we note that the normality is nearly exists. For exploring the shape of the shape of
the HRF for the used real data, the total time test (TTT) plot (Aarset [1]) is provided (see Figures 8(c) and 9(c)).
Based on Figures 8(c) and 9(c), we note that the HRF is “increasing monotonically” for the two data sets. For
exploring the initial shape of real data nonparametrically, kernel density estimation (KDE) is provided in Figures
8(d) and 9(d). Figures 10 and 11 give the estemated Kaplan—Meier survival (EKMS) plot, estemated PDF (EPDF),
Probability-Probability (P-P) plot and estemated HRF (EHRF) for data set I and II respectively. The following
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Figure 10. EKMS plot, P-P plot, EPDF plot and EHRF for data set I.

goodness-of-fit statistics are used to compare all competitive models: Akaike Information Criterion (C;), Bayesian
Information Criterion (Cs3), Consistent Akaike Information Criterion (C5), Hannan-Quinn Information Criterion
(C4), Anderson-Darling (C5) and Cramér—von Mises (Cg). For data set I: the analysis results of are listed in Tables
3 and 4. Table 3 gives the MLEs and standard errors (SEs) for failure times data. Table 4 gives the —/and goodness-
of-fits statistics for failure times data. For data set II: the analysis results of are listed in Tables 5 and 6. Table 5
gives the MLEs and SEs for service times data. Table 6 give the —/ and goodness-of-fits statistics for the service
times data. Based on Tables 4 and 6, we note that the KRPTII model gives the lowest values for the C;, Cs, C3, Cy4,
Cs5 and Cg among all fitted models. Hence, it could be chosen as the best model under these criteria.

8. Conclusions

Following Cordeiro and de Castro (2011) and Yousof et al. (2016), a new family of distributions called the
Kumaraswamy Rayleigh family is defied and studied. Some of its statistical properties including the quantile
function, moments, incomplete moments are derived. Many new bivariate type G families using the copula of
Farlie-Gumbel-Morgenstern, modified Farlie-Gumbel-Morgenstern, Clayton copula and Renyi’s entropy copula
are derived. The method of the maximum likelihood estimation is used. Some special models based on Log-
Logistic, Exponential, Weibull, Rayleigh, Pareto type—II and Burr X, Lindley distributions are presented and
studied. A graphical assessment is performed. Based on this assessment, the maximum likelihood method performs
well and can be used in estimating the model parameters. Two real life applications to illustrate the flexibility,
potentiality and importance of the new family is proposed. The new family (based on Pareto type—II model)
provided results better than the special generalized mixture Pareto type—II, Odd log-logistic Pareto type—II,
Reduced Odd log-logistic Pareto type—II, Reduced Burr-Hatke Pareto type—II, Transmuted Topp-Leone Pareto
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type—II, Reduced Transmuted Topp-Leone Pareto type—II, Gamma Pareto type—II, Kumaraswamy Pareto type—II,
Beta Pareto type—II, Exponentiated Pareto type—II, standard Pareto type—II and Proportional reversed hazard rate
Pareto type—II distributions in modeling survival and service times.

Table 3. MLEs and SEs for failure times data.

Model Estimates
KRPTII((, v, b) 0.0824 1.05191 1.12451
(0.0091) (0.0162) (0.0025)
KPTII(v, 8, b, a) 2.6150 100.276 527710  78.6774
(0.3822) (120.49) (9.8116)  (186.01)
TTLPTII(y, 8, b,a) —0.8075 2.47663 (15608) (38628)
(0.1396) (0.542) (1602.4)  (123.94)
BPTII(~, 8,0, a) 3.60360 33.639 4.83070 118.837

(0.6187) (63.715)  (9.2382)  (428.93)
PRHRPTII(3,b,a)  3.7x10° 47x1071  4.49x10°

1.01x10°  (0.00001)  37.14684
SGMPTII(v,b,a) —1.04x10"1  9.8x10°  1.18x107

(0.1223) (4843.3)  (501.04)
RTTLPTII(y, 8,a)  —0.8473 5.52057 1.15678

(0.1001) (1.1848)  (0.0959)
OLLPTII(~, b, a) 232636 (7.17x10%)  2.3x10°)

2.1x10°Y)  (1.19x10%)  (2.6x10")

ExpPTII(v, b, a) 3.62610 20074.5  26257.7
(0.6236) (2041.8) (99.74)
GamPTII(v, b, a) 3.58760 520014  37029.7
(0.5133) (7955) (81.16)

ROLLPTII(y,a)  3.890564 0.57316
(0.36524)  (0.0195)
RBHPTII(b,a) 10801754 51367189
(983309)  (232312)

PTII(b, a) 514254 131790

(5933.5) (296.1)

Table 4. —/ and goodness-of-fits statistics for failure times data.

Model 7@ C1 C2 C3 C4 C5 C6
KRPTII  130.06 266.12 26642 273.41 269.05 0.63 0.06
OLLPTII  134.42 27485 275.15 282.14 27778 094 0.10
TTLPTII  135.57 279.14 279.65 288.86 283.05 1.13 0.13

BPTII 138.72 285.44 28594 29521 28937 141 0.17
GamPTII  138.40 282.81 283.11 290.14 28576 1.37 0.16
ExpPTII 141.40 288.80 289.10 296.13 291.75 1.74 0.22

ROLLPTII 142.85 289.69 289.84 29455 291.65 196 0.26
SGMPTII  143.09 292.18 29248 29947 295.11 135 0.16
RTTLPTII 153.98 313.96 314.26 321.25 316.89 3.75 0.56
PRHRPTII 162.88 331.75 332.05 339.05 334.69 1.37 0.16

PTII 164.99 33398 334.12 338.86 33594 139 0.17
RBHPTII 168.60 341.21 34136 346.07 343.16 1.67 0.21
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As a potential future work, we can use and apply many new beneficial goodness-of-fit (GOF) tests for right
censored distributional validation such as the Nikulin-Rao-Robson goodness-of-fit test, Bagdonavicius-Nikulin

Table 5. MLEs and SEs for service times data.

Model Estimates
KRPTII((, v, b) 0.12614 0.43080 1.0561
(0.0161) (0.0065) (0.006)
BPTII(~, 8, b, a) 1.9218 31.2594 4.9684 169.57
(0.3184) (316.84) (50.53) (339.2)
KPTII(v, 8, b, a) 1.6691 60.5673 2.5649 65.064
(0.2570) (86.013) (4.759) (177.6)
TTLPTI(y, 8,b, a) (—0.607) 1.78578 21234 4822.8
(0.2137) (0.4152) (163.9) (200.0)
RTTLPTII(v, 8, a) —-0.6715 2.74496 1.0124
(0.18746) (0.6696) (0.114)
PRHRPTII(3, b, a) 1.59% 106 3.9x107! 1.30x 108

201x10°  0.0004x10~ 0.95x10°
SGMPTII(v,b,a) —1.04x10"1  645x10°  6.33x10°
(4.1x10719)  (3.21x105)  (3.8573)

GamPTII(v, b, a) 1.9073 35842.433  39197.6
(0.321) (6945.07)  (151.65)
OLLPTII(v, b, a) 1.66419 6.340x10°  2.01x10°
(1.79x10-1)  (1.68x10%)  7.22x 106
ExpPTII(7, b, a) 1.9145 22971.15 32882
(0.348) (3209.5) (162.2)
RBHPTII(b, a) 14055522 53203423
(422.01) (28.523)
ROLLPTII(v, a) 2.37233 0.69109
(0.2683) (0.0449)
PTII(b, a) 992700 207019
(11864) (301.24)

Table 6. —¢ and goodness-of-fits statistics for the service times data.

Model —0 G Cs Cs Cy C; G
KRPTII 98.076 202.15 202.56 20858 204.68 0.22 0.03
KPTII 100.87 209.74 210.43 21831 213.11 0.74 0.12
TTLPTI 10245 21290 213.59 22147 21627 094 0.16
GamPTII  102.83 211.67 212.07 218.10 21420 1.11 0.18
SGMPTII 102.89 211.79 21220 21822 21432 1.11 0.18
BPTII 102.96 213.92 214.61 22250 217.29 1.13 0.19
ExpPTIl  103.55 213.10 213.51 219.53 215.63 123 0.20
OLLPTII 10490 215.81 21622 22224 21834 094 0.16
PRHRPTII 109.30 224.60 225.00 231.03 227.13 1.13 0.19
PTII 109.30 222.60 222.80 226.88 22428 1.13 0.19
ROLLPTII 11073 225.46 225.66 229.74 227.14 235 039
RTTLPTII 112.19 23037 230.78 236.80 23290 2.69 0.45
RBHPTII  112.60 22920 229.40 233.49 230.89 140 0.23
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Figure 11. EKMS plot, P-P plot, EPDF plot and EHRF for data set II.

goodness-of-fit test, modified Nikulin-Rao-Robson goodness-of-fit test and modified Bagdonavinius-Nikulin
goodness-of-fit test to the new family as recently performed by Ibrahim et al. [18], Abouelmagd et al. [3], Goual et
al. ([23], [24]), Mansour et al. ([39], [40]), Yadav et al. [54], Salah et al. [53], Ibrahim et al. [20], Yousof et al. [59]
and Goual and Yousof [22], among others. Characterization theorems could be applied for the new Kumaraswamy
Rayleigh family (see Hamedani et al. [29], Hamedani et al. [30] and Hamedani et al. [31]). Following Aboraya et
al. [2] and Ibrahim et al. [17], we can also convert the Kumaraswamy Rayleigh family to a new discrete G family.
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