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Abstract In this work, we propose a new class of lifetime distributions called the odd log-logistic transmuted-
G family. The proposed family of distributions is constructed by compounding the odd log-logistic distribution
with the transmuted distribution. It can provide better fits than some of the known lifetime models and this fact
represents a good characterization of this new family. Some characterizations for the new family are presented as
well as some of its mathematical properties including. The maximum likelihood, Least squares and weighted least
squares, Cramér–von–Mises, Anderson-Darling and right-tailed Anderson-Darlingare and maximum product of
spacings methods are used for estimating the model parameters. The importance and flexibility of the new family
are illustrated by means of an application to a real data set.
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1. Introduction

The statistical literature contains a good number of new families of distributions that extend classical
distributions which are very important for statisticians due to their flexible properties. These new families
have been extensively used in modelling data in several applied areas such as reliability, engineering
and life testing. In recent years there has been an increased interest in developing more flexible
generators for univariate continuous distributions by adding extra shape parameter(s) to the baseline
distribution. Recently, many extensions of odd log-logistic-G families have been developed by Cordeiro et
al. (2016a,b,c), Alizadeh et al. (2015) and Haghbin et al. (2017), among others. On the other hand many
transmuted-G extensions have been developed by Yousof et al. (2015), Merovc et al. (2016), Alizadeh et
al. (2018), Afify et al. (2016a,2016b,2017), Nofal et al. (2017) and Yousof et al. (2017), among others.
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Let G (x;ψ) = G (x) be a baseline cumulative distribution function (cdf) and g (x;ψ) = g (x) be the
associated probability density function (pdf), where ψ = (ψ1, ψ2, . . .) is a parameter vector. Then, the
cdf and pdf of the transmuted-G (T-G) family of distributions are, respectively, given by

FT−G (x;λ, ψ) = G (x;ψ) [1 + λ− λG (x;ψ)] , (1)

and

fT−G (x;λ, ψ) = g (x;ψ) [1 + λ− 2λG (x;ψ)] . (2)

where |λ| ≤ 1. It is noted that the T-G family is a mixture of the baseline and exponentiated-G (exp-G)
distributions, the last one with power parameter equal to two. Further, we obtain the baseline distribution
when λ = 0. For more details about the T-G family, see Shaw and Buckley (2007). The odd log-logistic
(OLL) family of distribution, originally developed by Gleaton and Lynch (2004) and (2006). They called
this family as generalized log-logistic (GLL) family. The cdf of this family is given by

FOLL−G (x;α, ψ) = G(x, ψ)α
[
G(x, ψ)α +G(x, ψ)α

]−1
, (3)

and the pdf given by

fOLL−G (x;α, ψ) = αg(x;ψ)
[
G(x;ψ)G(x;ψ)

]
α−1

[
G(x;ψ)

α
+G(x;ψ)α

]−2, (4)

where α > 0 is a shap parameter. In this paper, we propose and study a new flexible extension of
the T-G family by adding one parameter in equation of HT−G (x;λ, ψ) to provide more flexibility to the
generated family. We construct a new generator called the odd log-logistic transmuted-G (OLLT-G) family
by taking the T-G cdf as the baseline cdf H in the last two equations. Further, we give a comprehensive
description of the mathematical properties of the new family. In fact, the OLLT-G family is motivated
by its important flexibility in applications. By means of an application, we show that the OLLT-G class
provides better fits than at least five other families.

In this work, we generalize the T-G family by incorporating one additional parameter to yield a more
flexible generator. The OLLT-G family is given by the cdf (for x > 0)

F (x) =

{
G (x;ψ)

[
1 + λG (x;ψ)

]}α{
G (x;ψ)

[
1 + λG (x;ψ)

]}α
+
{
G (x;ψ) [1− λG (x;ψ)]

}α , x ∈ R. (5)

The pdf corresponding to (5) is

f(x) =
α g(x;ψ) [1 + λ− 2λG(x;ψ)]

{
G(x;ψ)

[
1 + λ Ḡ(x;ψ)

]}α−1 {
1−G(x;ψ)

[
1 + λ Ḡ(x;ψ)

]}α−1{{
G(x;ψ)

[
1 + λ Ḡ(x;ψ)

]}α
+
{
1−G(x;ψ)

[
1 + λ Ḡ(x;ψ)

]}α}2 . (6)

Henceforth, we denote by X ∼OLLT-G (α, λ, ψ) a random variable having pdf (6). The hazard rate
function (hrf) of X given by

τ(x) =
α g(x;ψ) [1 + λ− 2λG(x;ψ)]

{
G(x;ψ)

[
1 + λ Ḡ(x;ψ)

]}α−1{
1−G(x;ψ)

[
1 + λ Ḡ(x;ψ)

]}{{
G(x;ψ)

[
1 + λ Ḡ(x;ψ)

]}α
+
{
1−G(x;ψ)

[
1 + λ Ḡ(x;ψ)

]}α} . (7)

An interpretation of the OLLT-G family can be given as follows. Let T be a random variable describing a
stochastic system by the cdf G(x). If the random variable X represents the odds, the risk that the system
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following the lifetime T will be not working at time x is given by FOLL−G(x;ψ)/[1− FOLL−G(x;ψ)]. If we
are interested in modeling the randomness of the odds by the exponentiated half-logistic cdf R(t) = tα

1+tα

(for t > 0), the cdf of X is given by

Pr(X ≤ x) = R

[
FOLL−G(x;ψ)

1− FOLL−G(x;ψ)

]
=

{
G (x;ψ)

[
1 + λG (x;ψ)

]}α{
G (x;ψ)

[
1 + λG (x;ψ)

]}α
+
{
G (x;ψ) [1− λG (x;ψ)]

}α .
Let G(.) be identifiable cdf, it is easy to show that T-G and OLL-G are identifiable, then one can prove

easily that OLLT-G is identifiable.
This paper is organized as follows. Some useful characterizations are presented in Section 2. In Section

3, we derive some of the mathematical properties of the new family. Maximum likelihood and other
methods of estimation for the model parameters under uncensored data is addressed in Section 4. In
Section 5, a simulation studies are presented to assess the performance of the estimators in Section 6,
potentiality of the proposed class is illustrated by means of a real data set. Finally, Section 7 provides
some conclusions.

2. Characterizations

In this section we present certain characterizations of OLLT-G distribution. These characterizations are
in terms of: (i) a simple relationship between two truncated moments and (ii) the hazard function. One
of the advantages of characterization (i) is that the cdf is not required to have a closed form. We present
our characterizations (i)− (ii) in three subsections.

2.1. Characterizations based on a simple relationship between two truncated moments
In this subsection we present characterizations of OLLT-G distribution in terms of the ratio of two
truncated moments. This characterization result employs a theorem due to Glänzel (1987), see Theorem
1 of Appendix A. Note that the result holds also when the interval H is not closed. Moreover, as mentioned
above, it could also be applied when the cdf F does not have a closed form. As shown in Glänzel (1990),
this characterization is stable in the sense of weak convergence.

Proposition 2.1. Let X : Ω → R be a continuous random variable and let
q1 (x) =

{{
G (x)

[
1 + λG (x)

]}α
+
{
G (x) [1− λG (x)]

}α}2 {
G (x) [1− λG (x)]

}−α and q2 (x) =

q1 (x)
{
G (x)

[
1 + λG (x)

]}α for x ∈ R. The random variable X has pdf (2) if and only if the
function η defined in Theorem 1 has the form

η (x) =
1

2

{
1 +

{
G (x)

[
1 + λG (x)

]}α}
, x ∈ R

Proof. Let X be a random variable with pdf (2), then

(1− F (x))E [q1 (X) | X ≥ x] = 1−
{
G (x)

[
1 + λG (x)

]}α
, x ∈ R,

and

(1− F (x))E [q2 (X) | X ≥ x] =
1

2

{
1−

{
G (x)

[
1 + λG (x)

]}2α
}
, x ∈ R,

and finally

η (x) q1 (x)− q2 (x) =
q1 (x)

2

{
1−

{
G (x)

[
1 + λG (x)

]}α} ̸= 0 for x ∈ R.

Conversely, if η is given as above, then

Stat., Optim. Inf. Comput. Vol. 10, June 2022



M. ALIZADEH, M. RASEKHI, H. YOUSOF, G.G. HAMEDANI AND A. ATAEI 907

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=
αg (x) (1 + λ− 2λG (x))

{
G (x)

[
1 + λG (x)

]}α−1

1−
{
G (x)

[
1 + λG (x)

]}α x ∈ R,

and hence

s (x) = log
(
1−

{
G (x)

[
1 + λG (x)

]}α)
, x ∈ R.

Now, in view of Theorem 1, X has density (2) .
Corollary 2.1. Let X : Ω → R be a continuous random variable and let q1 (x) be as in Proposition

2.1. The pdf of X is (2) if and only if there exist functions q2 and η defined in Theorem 1 satisfying the
differential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=
αg (x) (1 + λ− 2λG (x))

{
G (x)

[
1 + λG (x)

]}α−1

1−
{
G (x)

[
1 + λG (x)

]}α , x ∈ R.

The general solution of the differential equation in Corollary 2.1 is

η (x) =
{
1−

{
G (x)

[
1 + λG (x)

]}α}−1

×[
−
∫
αg (x) (1 + λ− 2λG (x))

{
G (x)

[
1 + λG (x)

]}α−1
(q1 (x))

−1
q2 (x) +D

]
,

where D is a constant. Note that a set of functions satisfying the above differential equation is given
in Proposition A.1 with D = 1

2 . However, it should be also noted that there are other triplets (q1, q2, η)
satisfying the conditions of Theorem 1.

2.2. Characterization based on hazard function
It is known that the hazard function, hF , of a twice differentiable distribution function, F , satisfies the
first order differential equation

f ′(x)

f (x)
=
h′F (x)

hF (x)
− hF (x).

For many univariate continuous distributions, this is the only characterization available in terms of
the hazard function. The following characterization establish a non-trivial characterization of OLLT-G
distribution, for α = 1, which is not of the above trivial form.

Proposition 2.2. Let X : Ω → R be a continuous random variable. The pdf of X is (2), for α = 1, if
and only if its hazard function hF (x) satisfies the differential equation

h′F (x)− g′ (x)

g (x)
hF (x) = g (x)

d

dx

{
1 + λ− 2λG (x)

G (x) [1− λG (x)]

}
, x ∈ R.

Proof. If X has pdf (2), for α = 1, then clearly the above differential equation holds. Now, if this
differential equation holds, then

d

dx

{
g (x)

−1
hF (x)

}
=

d

dx

{
1 + λ− 2λG (x)

G (x) [1− λG (x)]

}
, x ∈ R,

from which, we obtain

hF (x) = g (x)

{
1 + λ− 2λG (x)

G (x) [1− λG (x)]

}
, x ∈ R,

which is the hazard function of OLLT-G distribution.
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3. Properties

The formulae derived throughout the paper can be easily handled in most symbolic computation software
platforms such as Maple, Mathematica and Matlab because of their ability to deal with analytic
expressions of formidable size and complexity. Established explicit expressions to calculate statistical
measures can be more efficient than computing them directly by numerical integration.

3.1. Linear combination for cdf and pdf
First using generalized binomial expansion we can write

{
G(x)

[
1 + λ Ḡ(x)

]}α
=

∞∑
j=0

aj
{
G(x)

[
1 + λ Ḡ(x)

]}j
,

where aj =
∑∞

i=j(−1)i+j
(
α

i

)(
i

j

)
and

{
G(x)

[
1 + λ Ḡ(x)

]}α
+
{
1−G(x)

[
1 + λ Ḡ(x)

]}α
=

∞∑
j=0

bj
{
G(x)

[
1 + λ Ḡ(x)

]}j
,

where bj = aj + (−1)J
(
α

j

)
. Then using the ratio of two power series we can write

F (x) =

∑∞
j=0 aj

{
G(x)

[
1 + λ Ḡ(x)

]}j∑∞
j=0 bj

{
G(x)

[
1 + λ Ḡ(x)

]}j =

∞∑
j=0

cj
{
G(x)

[
1 + λ Ḡ(x)

]}j
,

where c0 = a0
b0

and for j ≥ 1 we have

cj =
1

b0

[
aj −

1

b0

j∑
r=1

br cj−r

]
.

Again using binomial expansion we can write

F (x) =

∞∑
j=0

∞∑
l=j

cj λ
l

(
j

l

)
G(x)j Ḡ(x)l =

∞∑
j=0

j∑
l=0

l∑
r=0

cj λ
l (−1)r

(
j

l

)(
l

r

)
G(x)j+r

=

∞∑
j=0

j∑
l=0

l∑
r=0

wj,l,r G(x)
j+r =

∞∑
j=0

j∑
l=0

l∑
r=0

wj,l,rHj+r(x), (8)

where wj,l,r = cj λ
l (−1)r

(
j

l

)(
l

r

)
. Then by differentiating (8) we get

f(x) =

∞∑
j=0

j∑
l=0

l∑
r=0

wj,l,rhj+r(x), (9)

where Ha(x) = G(x)a and ha(x) = a g(x)G(x)a−1 denote the cdf and pdf of Exp-G with power parameter
a.
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3.2. Quantile function
For λ ̸= 0, if U ∼ U(0, 1), then

Xu = QG


1 + λ−

√
(1 + λ)2 − 4λ u

1
α

u
1
α +(1−u)

1
α

2λ


has cdf (5). For λ = 0, Xu = QG

{
u

1
α

u
1
α +(1−u)

1
α

}
has cdf (5).

3.3. Asymptotics
Let a = inf {x|G(x) > 0}, then, the asymptotics of cdf, pdf and hrf as x→ a are given by

F (x) ∼ [(1 + λ)G(x)]
α as x→ a,

f (x) ∼ α (1 + λ)α g(x)G(x)α−1 as x→ a,
h (x) ∼ α (1 + λ)α g(x)G(x)α−1 as x→ a.

The asymptotics of cdf, pdf and hrf as x→ ∞ are given by

1− F (x) ∼ Ḡ(x)α as x→ ∞,
f (x) ∼ α g(x) Ḡ(x)α−1 as x→ ∞,

h (x) ∼ α g(x)

Ḡ(x)
as x→ ∞.

These equations show the effect of parameters on tails of OLLT-G.

3.4. Moments and generating function
The nth ordinary moment of X is given by

µ′
n = E(Xn) =

∞∑
j=0

j∑
l=0

l∑
r=0

wj,l,rE(Y nj+r), (9)

where Yj+r denotes the Exp-G distribution with power parameter j + r. By setting n = 1 in (12), we
have the mean of X. The last integration can be computed numerically for most parent distributions.The
nth central moment of X, the skewness and kurtosis measures can be calculated from the ordinary
moments using well-known relationships. The moment generating function (mgf), MX (t) = E

(
etX

)
of

X, can be derived from equation (9) as MX (t) =
∑∞

j=0

∑j
l=0

∑l
r=0 wj,l,rMj+r (t) , where Mj+r (t) is the

mgf of Yj+r. Hence, MX (t) can be determined from the Exp-G generating function. The main applications
of the first incomplete moment refer to the mean deviations and the Bonferroni and Lorenz curves. These
curves are very useful in economics, reliability, demography, insurance and medicine. The sth incomplete
moment, say φs (t), of X can be expressed from (9) as

φs (t) =

∫ t

−∞
xsf (x) dx =

∞∑
j=0

j∑
l=0

l∑
r=0

wj,l,r

∫ t

−∞
xs πj+r (x) dx. (10)
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3.5. Special case: graphical presentation and statistical properties

For the OLLTWeibull (OLLTW) model-with cdf G (x; a, b) = 1− e−(x/a)
b

as a special OLLT-G model- we
have the following results

FOLLTW (x) =

{[
1− e−(x/a)

b
] [

1 + λe−(x/a)
b
]}α

{[
1− e−(x/a)b

] [
1 + λe−(x/a)b

]}α
+
(
e−(x/a)b

{
1− λ

[
1− e−(x/a)b

]})α ,
µ′
n = E(Xn) =

∞∑
j,m=0

j∑
l=0

l∑
r=0

w
(j+r,n)
j,l,r,m Γ (1 + n/b) , ∀ n > −b,

µ′
1 = E(X) =

∞∑
j,m=0

j∑
l=0

l∑
r=0

w
(j+r,1)
j,l,r,m Γ (1 + 1/b) , ∀ 1 > −b,

µ′
2 = E(X2) =

∞∑
j,m=0

j∑
l=0

l∑
r=0

w
(j+r,2)
j,l,r,m Γ (1 + 2/b) , ∀ 2 > −b,

MX (t) =

∞∑
j,m,n=0

j∑
l=0

l∑
r=0

ω
(j+r,n)
j,l,r,m,nΓ (1 + n/b) , ∀ n > −b,

φs (t) =

∞∑
j,m=0

j∑
l=0

l∑
r=0

w
(j+r,s)
j,l,r,m γ

(
1 + s/b, at−b

)
, ∀ s > −b

and

φ1 (t) =

∞∑
j,m=0

j∑
l=0

l∑
r=0

w
(j+r,1)
j,l,r,m γ

(
1 + 1/b, at−b

)
, ∀ 1 > −b,

where

w
(j+r,n)
j,l,r,m = wj,l,rν

(j+r,n)
m , ω(j+r,n)

j,l,r,m,n = tn (n!)
−1
w

(j+r,n)
j,l,r,m and ν(j+r,n)m =

(k + 1) (−1)
m

(1/a)
n
(m+ 1)

(n+b)/b

(
k

m

)
.

Figure 1 gives the some plot of the OLLTW pdf and hrf From Figure 1 we notice that pdf can exhibit
various shapes like increasing, decreasing, unimodal and bimodal, that pdf can exhibit various shapes like
increasing, unimodal then increasing and bathtub.

4. Parameter estimation

4.1. Maximum likelihood estimation
Let x1, . . . , xn be a random sample from the OLLT-G distribution with parameters δ, a and ψ. Let
Θ = (α, λ, ψ⊺)⊺ be the (p+ 2)× 1 parameter vector. To determine the Maximum likelihood estimations
(MLE) of Θ, we have the log-likelihood function

ℓ = ℓ(Θ) = n logα+

n∑
i=1

log g (xi;ψ) +

n∑
i=1

log [1 + λ− 2λG(xi;ψ)]

+ (α− 1)

n∑
i=1

log si,r − 2

n∑
i=1

log
(
sαi,r + zαi,r

)
+ (α− 1)

n∑
i=1

log zαi,r.
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Figure 1. The OLLTW Distribution (α, λ, b, c):pdf (left), hrf (right).

The components of the score vector, U (Θ) = ∂ℓ
∂Θ =

(
∂ℓ
∂α ,

∂ℓ
∂λ ,

∂ℓ
∂ψ

)⊺
, are

Uα =
n

α
+

n∑
i=1

log si,r +

n∑
i=1

log zi,r − 2

n∑
i=1

log (si,r) s
α
i,r + log (zi,r) z

α
i,r

sαi,r + zαi,r
,

Uλ =

n∑
i=1

1− 2G(xi;ψ)

1 + λ− 2λG(xi;ψ)
+ (α− 1)

n∑
i=1

(si,r)
−1
G(x;ψ)

[
1 + Ḡ(xi;ψ)

]
−2

n∑
i=1

αG(xi;ψ)
(
sα−1
i,r − zα−1

i,r

)(
sαi,r + zαi,r

) [
1 + Ḡ(xi;ψ)

]−1 − (α− 1)

n∑
i=1

(zi,r)
−1
G(xi;ψ)

[
1 + Ḡ(xi;ψ)

]
and (for r = 1, 2, . . . , p)

Uψr = +

n∑
i=1

g′r (xi;ψ)

g (xi;ψ)
+

n∑
i=1

−2λG′
r (xi;ψ)

1 + λ− 2λG(xi;ψ)

+ (α− 1)

n∑
i=1

(si,r)
−1
G′
r (xi;ψ)

[
1 + λ Ḡ(xi;ψ)− λG(x;ψ)

]
−2α

n∑
i=1

G′
r (xi;ψ)

{
1 + λ Ḡ(xi;ψ)− λG(xi;ψ)

} (
sα−1
i,r − zα−1

i,r

) (
sαi,r + zαi,r

)−1
,

where g′r (xi;ψ) = ∂g (xi;ψ) /∂ψr, G
′
r (xi;ψ) = ∂G (xi;ψ) /∂ψr, si,r = G(xi;ψ)

[
1 + λ Ḡ(xi;ψ)

]
and zi,r =

1−G(xi;ψ)
[
1 + λ Ḡ(xi;ψ)

]
. Setting the nonlinear system of equations Uδ = Ua = 0 and Uψ = 0 and

solving them simultaneously yields the MLE Θ̂ =
(
α̂, λ̂, ψ̂⊺

)⊺
. Usually, it is more efficient to obtain

the MLEs by maximizing ℓ directly. We used the routine optim in the R software for direct numerical
maximization of ℓ. optim is based on a quasi-Newton algorithm. The initial values for numerical
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maximization were determined by the method of moments; that is, by equating the first (p+ 2) moments
of the OLLT-G distribution with the corresponding empirical moments. The simultaneous roots of these
(p+ 2) equations were determined by the routine multiroot in the R software. The optim routine always
converged when the method of moments estimates were used as initial values.

For interval estimation of the parameters, we obtain the (p+ 2)× (p+ 2) observed information matrix
J(Θ) =

{
∂2ℓ
∂r ∂s

}
(for r, s = α, λ, ψ), whose elements can be computed numerically. Under standard

regularity conditions when n→ ∞, the distribution of Θ̂ can be approximated by a multivariate normal
Np+2

(
Θ, J

(
Θ̂
)−1

)
distribution to construct approximate confidence intervals for the parameters, where

J
(
Θ̂
)

is the total observed information matrix evaluated at Θ̂. For example, 95 percent confidence
intervals for α and λ are (

α̂± 1.96
√
J11

)
,

and (
λ̂± 1.96

√
J22

)
,

respectively, where J11 denotes the (1, 1)th element of J
(
Θ̂
)−1

and J22 denotes the (2, 2)th element of

J
(
Θ̂
)−1

. A test of H0 : α = α0 versus H1 : α ̸= α0 at the five percent significance level is to reject H0 if

(|α0 − α̂|)
(
J11

)− 1
2 > 1.96.

Similarly, a test of H0 : λ = λ0 versus H1 : λ ̸= λ0 at the five percent significance level is to reject H0 if(
|λ0 − λ̂|

) (
J22

)− 1
2 > 1.96.

The method of re-sampling bootstrap can be used for correcting the biases of the MLEs of the model
parameters. Good interval estimates may also be obtained using the bootstrap percentile method. The
elements of J(Θ) can be obtained from the authors upon request.

4.2. Other methods of estimation
There are several approaches to estimate the parameters of distributions that each of them has its
characteristic features and benefits. In this subsection five of those methods are briefly introduced and
will be numerically investigated in the simulation study. A useful summary of these methods can be seen
in Dey et al. (2017). Here {ti; i = 1, 2, ..., n} and {ti:n; i = 1, 2, ..., n} is the random sample and associated
order statistics and F is the distribution function of OLLTWeibull distribution.

4.2.1. Least squares and weighted least squares estimators The Least Squares (LSE) and weighted Least
Squares Estimators (WLSE) are introduced by Swain et al., (1988). The LSE’s and WLSE’s are obtained
by minimizing the following functions:

SLSE(α, λ, b, c) =

n∑
i=1

(
F (ti:n;α, λ, b, c)−

i

n+ 1

)2

and
SWLSE(α, λ, b, c) =

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

(
F (ti:n;α, λ, b, c)−

i

n+ 1

)2

.
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4.2.2. Cramér–von–Mises estimator Cramér–von–Mises Estimator (CME) is introduced by Choi and
Bulgren (1968). The CMEs is obtained by minimizing the following function:

SCME(α, λ, b, c) =
1

12n
+

n∑
i=1

(
F (ti:n;α, λ, b, c)−

2i− 1

2n

)2

.

4.2.3. Anderson–Darling and right-tailed Anderson–Darling The Anderson Darling (ADE) and Right-
Tailed Anderson Darling Estimators (RTADE) are introduced by Anderson and Darling (1952). The
ADE’s and RTADE’s are obtained by minimizing the following functions:

SADE(α, λ, b, c) = −n− 1

n

n∑
i=1

(2i− 1){logF (ti;α, λ, b, c) + logF (tn+1−i;α, λ, b, c)}

and
SRTADE(α, λ, b, c) =

n

2
− 2

n∑
i=1

F (ti;α, λ, b, c)−
1

n

n∑
i=1

(2i− 1) logF (tn+1−i;α, λ, b, c),

where F (·) = 1− F (·).

4.2.4. Method of maximum product of spacings Chenga nd Amin (1979 , 1983) introduced the maximum
product of spacings (MPS) method as an alternative to MLEs for estimating parameters of continuous
univariate distributions. Ranneby (1984 ) independently developed the same method as an approximation
to the Kullbackâ Leibler measure of information. The MPS’s are obtained by maximizing the following
functions:

G(a, b, c, α) =

[
n+1∏
i=1

Di(a, b, c, α)

] 1
n+1

,

where Di(α, λ, b, c) = F (ti:n;α, λ, b, c)− F (ti−1:n;α, λ, b, c), i = 1, ..., n,, F (t0:n;α, λ, b, c) = 0 and
F (tn+1:n;α, λ, b, c) = 1.

4.3. Simulation study
In order to comprise the estimators introduced in previous section, we consider an special
case of the proposed model (OLLT-Weibull) and investigate the MSE of those estimators for
different samples. For instance according to what has been mentioned above, for (α, λ, b, c) =
(2, 0.5, 1.5, 3), (.25, .7, 8, 2.5), (.2,−.5, 4, 1.5). The shapes of OLLTWeibull pdf for these choices are unimodal
and bimodal shapes, respectively (Figure 2).
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Figure 2. The shape of OLLT-Weibull pdfs for simulation study
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The performance of each method of parameters estimations for the OLLTWeibull distribution with
respect to sample size n is considered. For this aim, simulation study is done based on following steps:
1. generate one thousand samples of size n from (5) for weibull case. This work is done simply by inverse
method via the quantile function and generating data from uniform distribution.
2. compute the estimates for the one thousand samples, say

(
α̂i, λ̂i, b̂i, ĉi

)
for i = 1, 2, ..., 1000.

3. compute the biases and mean squared errors given by

Biasε(n) =
1

1000

1000∑
i=1

(ε̂i − ε)

and

MSEε(n) =
1

1000

1000∑
i=1

(ε̂i − ε)
2
,

for ε = α, λ, b, c.
We repeated these steps for n = 30, 60, 90, · · · 400 with mentioned special case of parameters. So computing
biasε(n) and MSEε(n) for ε = α, λ, b, c and n = 30, 60, 90, · · · 400. To obtain the value of the estimators,
we have used the optima function and Nelder-Mead method in R. The result of the simulations of this
subsection is shown in Figures 3 to 7. A general result about above figures is that MSE plot for four
parameters with the increase in the volume of the sample all methods will approach to zero and this verifies
the validity of the these estimation methods and numerical calculations for the distribution parameters
OLLTW.
Some of other results are mentioned as follow:

• In unimodal case of parameters and all estimation methods, the bias of parameter α larger than
other parameters (Figure 3).

• For first selected values of parameters, MLE method better works than other methods in all
parameters except c. For parameter c, CME estimation has smaller bias and MSE when sample
size tend to infinity (Figure 3 and 4).

• For second selected values of parameters, MLE estimation has better perfomance than other
estimation methods in all parameters when sample size tend to infinity (Figures 5 and 6).

• For last selected values of parameters, MLE method better works than other methods in all
parameters except λ and c. For parameters λ and c, WLSE estimation has smaller bias and MSE
when sample size tend to infinity (Figures 7 and 8).
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Figure 3. Bias of estimations for parameter values 2, 0.5, 1.5, 3 (Black:MLE, Blue:LSE, Red:WLSE, Green:CME,
Purple:ADE, Brown:RTADE, yellow:MPSE)
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Figure 4. MSE of estimations for parameter values 2, 0.5, 1.5, 3(Black:MLE, Blue:LSE, Red:WLSE, Green:CME,
Purple:ADE, Brown:RTADE, yellow:MPSE)

Stat., Optim. Inf. Comput. Vol. 10, June 2022



M. ALIZADEH, M. RASEKHI, H. YOUSOF, G.G. HAMEDANI AND A. ATAEI 917

50 150 250 350

0.
00

0.
06

0.
12

Sample Size

B
ia

s 
α

50 150 250 350

−
0.

5
−

0.
3

−
0.

1

Sample Size

B
ia

s 
λ

50 150 250 350

−
1.

0
0.

0
1.

0

Sample Size

B
ia

s 
b

50 150 250 350

−
0.

10
0.

00
0.

10

Sample Size

B
ia

s 
c

Figure 5. Bias of estimations for parameter values 0.25, 0.7, 8, 2.5(Black:MLE, Blue:LSE, Red:WLSE, Green:CME,
Purple:ADE, Brown:RTADE, yellow:MPSE)
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Figure 6. MSE of estimations for parameter values 0.25, 0.7, 8, 2.5(Black:MLE, Blue:LSE, Red:WLSE, Green:CME,
Purple:ADE, Brown:RTADE, yellow:MPSE)

5. Application

In this section, the OLLTWeibull distribution is applied to a data set from Sylwia (2007) on the lifetime
of a certain device. The OLLTWeibull distribution is fitted to the data set and compared the results
with submodels OLL-Weibull, Transmuted Weibull (Khan et al., 2017) and Weibull distributions by
likelihood ratio test. Also this model is compared with some well-known four parameter generalization
of weibull distributions such as beta Weibull (Lee et al., 2007), kumaraswamy Weibull (Cordeiro et al.,
2010), exponentiated modified Weibull extension (Sarhan and Apaloo, 2013), P-A-L extended Weibull
(Al-Zahrani et al., 2016) and gamma modified Weibull (Cordeiro et al., 2015) distributions.
The maximum likelihood estimates, the log-likelihood value, the AIC (Akaike Information Criterion),
the BIC (Bayesian Information Criterion), the CAIC (Consistent Akaike Information Criterion) and the
HQIC (Hannan-Quinn Information Criterion) for the fitted distributions are reported in Tables 1 and 2.
Each distribution was fitted to the datasets using the optim() function in R program. In Figure 9, the
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Figure 7. Bias of estimations for parameter values 0.2,−0.5, 4, 1.5(Black:MLE, Blue:LSE, Red:WLSE, Green:CME,
Purple:ADE, Brown:RTADE, yellow:MPSE)

TTT plot (Aarset, 1987) of this set of data displays bathtube hazards rate function that indicates the
appropriateness of the OLLTW distribution to fit the data sets. We see that OLLTW distribution fitted
on data better than other rivals. Also likelihood ratio test is performed for comparing our model with
well-known submodels(Table 3). Figure 10 is illustrated fitted proposed model with submodels and other
rivals on this datasets.
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Figure 8. MSE of estimations for parameter values 0.2,−0.5, 4, 1.5(Black:MLE, Blue:LSE, Red:WLSE, Green:CME,
Purple:ADE, Brown:RTADE, yellow:MPSE)

6. Conclusion

In this work, we propose a new class of lifetime distributions called the odd log-logistic transmuted-
G family. The proposed family of distributions is constructed by compounding the odd log-logistic
distribution with the transmuted distribution. It can provide better fits than some of the known lifetime
models and this fact represents a good characterization of this new family. Some characterizations for
the new family are presented as well as some of its mathematical properties including. The maximum
likelihood, Least squares and weighted least squares, Cramér-von-Mises, Anderson-Darling and right-
tailed Anderson-Darlingare and maximum product of spacings methods are used for estimating the model
parameters. The importance and flexibility of the new family are illustrated by means of an application
to a real data set. Some usefull results are mentioned as follow: In unimodal case of parameters and all
estimation methods, the bias of parameter α larger than other parameters (as shown in Figure 3); For first
selected values of parameters, MLE method better works than other methods in all parameters except
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Table 1. Parameters estimates and log likelihood values for the lifetime of a certain device dataset.

Model Estimates (Standard Error) Log Likelihood
OLLTW 0.110, -0.993, 7.407, 8.529 −73.925
(α, λ, a, b) (0.017), (0.013), (0.002), (0.002)

OLLW(Submodel) 0.113, 6.334, 7.856 −75.953
(α, a, b) (0.017), (0.002), (0.002)

TW(Submodel) -0.659, 1.500, 7.976 −90.347
(λ, a, b) (0.198), (0.260), (0.950)

W(Submodel) 1.619, 9.585 −92.729
(a, b) (0.277), (1.096)
B-W 0.012, 173.126, 0.067, 91.720 −79.148

(α, β, λ, c) 0.005, 1.203, 0.831, 3.638
Kw-W 0.087, 0.058, 0.292, 2.501 −78.071

(a, b, λ, c) (0.003), (0.010), (0.004), (0.004)
EMWE 0.094, 14.531, 4.783, 0.233 −81.318

(λ, α, β, γ) (0.010), (0.005), (0.005), (0.043)
PALEW 1.986, 0.967, 61.257, 2.197 −81.897
(α, β, ν, p) (1.004), (0.210), (78.954), (5.287)

GAMW 1.836, 0.143, 0.217, 0.131 −74.502
(a, α, λ, β) (1.014), (0.197), (0.065), (0.110)
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Figure 9. TTT plot of the lifetime of a certain device data set

c, for parameter c, Cramer–von–Mises estimation has smaller bias and MSE when sample size tend to
infinity (see Figure 3 and 4); For second selected values of parameters, maximum likelihood method has
better perfomance than other estimation methods in all parameters when sample size tend to infinity
(as illustrated in Figures 5 and 6); For last selected values of parameters, maximum likelihood method
better works than other methods in all parameters except λ and c. For parameters λ and c, weighted least
squares method has smaller bias and maximum likelihood method when sample size tend to infinity (as
shown in Figure 7 and 8).
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Figure 10. Fitted pdfs on histogram: (Left) with Submodels, (Right) Other rivals

Table 2. Formal goodness of fit statistics

Model Goodness of fit criteria
AIC BIC HQIC CAIC

OLLTW 155.850 161.455 157.643 157.450
B-W 166.297 171.902 168.090 167.897

Kw-W 164.142 169.746 165.935 165.742
EMWE 170.637 176.242 172.430 172.237
PALEW 171.795 177.400 173.588 173.395
GAMW 157.004 162.609 158.797 158.604

Table 3. Likelihood Ratio test for Submodels

Hypothesis LR P − V alue

H0 : OLLW versusH1 : OLLTW 0.131 0.044
H0 : TW versusH1 : OLLTW 7.38×10−8 9.98×10−9

H0 :W versusH1 : OLLTW 6.81×10−9 6.18×10−9
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Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for some d < b
(a = −∞, b = ∞ might as well be allowed) . Let X : Ω → H be a continuous random variable with the
distribution function F and let q1 and q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,

is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and F is twice continuously
differentiable and strictly monotone function on the set H. Finally, assume that the equation ηq1 = q2

Stat., Optim. Inf. Comput. Vol. 10, June 2022



924 THE ODD LOG-LOGISTIC TRANSMUTED-G FAMILY OF DISTRIBUTIONS

has no real solution in the interior of H. Then F is uniquely determined by the functions q1, q2 and η ,
particularly

F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,
where the function s is a solution of the differential equation s′ = η′ q1

ηq1−q2 and C is the normalization
constant, such that

∫
H
dF = 1.
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