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Abstract A new compound generalization of the Lomax lifetime model is presented and studied. The novel model
is established based on the Poisson Topp-Leone family of Merovci et al. (2020). The novel density can be “right
skewedwith heavy tail”, “symmetric” and “left skewedwith heavy tail”. The corresponding failure rate can be “monotonically
decreasing”, “increasingconstant”, “upside down”, “upside down-constant” and “reversed J-shape”. Relevant characteristics
are derived and discussed. numerical and graphical analysis for some statistical properties are presented. we derived some
new bivariate extensions via some common copulas. Graphical assessment for the maximum likelihood estimation is
presented. Graphical assessment for the maximum likelihood estimation is presented. Two real-life data sets are analyzed
and modelled using the novel model. The new model proven its superiority against fourteen competitive Lomax extensions.
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1. Introduction

The Lomax or Pareto type II distribution (Lomax [30]), is a heavy-tail probabilistic model used in modeling
business, actuarial science, biological sciences, engineering, economics, income and wealth inequality, queueing
theory, size of cities and Internet traffic data sets. Harris [24] and Atkinson and Harrison [9] employed the Lomax
(Lx) distribution in modeling data obtained from income and wealth. Corbellini et al. [17] used the Lx distribution
firm size data modeling. For applications in reliability and life testing experiments see Hassan and Al-Ghamdi
[25]. The Lx model is known as a special distribution form of Pearson system (type VI) and has also considered
as a mixture of standard exponential (Exp) and standard gamma (Ga) distributions. The Lx model belongs to the
family of “monotonically decreasing” hazard rate function (HRF) and considered as a limiting model of residual
lifetimes at great age (see Balkema and de Hann [10] and Chahkandi and Ganjali [12]). The Lx distribution has
been suggested as heavy tailed alternative model to the standard Exp, standard Weibull (W) and standard Gam
distributions (see Bryson [11]). For details about relation between the Lx model and the Burr XII and Compound
Gamma (CGam) models see Tadikamalla [51] and Durbey [15]. A random variable (rv) Y has the Lomax (Lx)
distribution with two parameters ζ1 and ζ2 if it has cumulative distribution function (CDF) (for Y > 0) given by

Gζ1,ζ2 (y) = 1−
(

1 +
y

ζ2

)−ζ1
, (1)
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where ζ1 > 0 and ζ2 > 0 are the shape and scale parameters, respectively. Then the corresponding probability
density function (PDF) of (1) is

gζ1,ζ2 (y) =
ζ1
ζ2

(
1 +

y

ζ2

)−(ζ1+1)

.

The main aim of this work is to provide a flexible extension of the Lx distribution using the Poisson Topp-Leone-G
(PTL-G) family defined by Merovci et al. [43]. The CDF of the PTL-G family can be expressed as

Fa,b (y) =
1

b∗

(
1− exp

{
−bGφ (y)

a
[
2−Gφ (y)

]a})
|y∈R, (2)

where b∗ = 1− exp (−b) and a, b > 0. The corresponding PDF can be written as

fa,b (y) = 2ba
gφ (y)Gφ (y)

a−1
Gφ (y)

[
2−Gφ (y)

]a−1
b∗ exp

{
bGφ (y)

a
[
2−Gφ (y)

]a} ,

where Gφ (y) = 1−Gφ (y) refers to the reliability function of the baseline model. The CDF of the Poisson Topp-
Leone Lomax (PTL-Lx) can then be derived as

FΘ (y) =
1

b∗

(
1− exp

{
−b

[
1−

(
1 +

y

ζ2

)−2ζ1]a})
|y∈R, (3)

The corresponding PDF can be written as

fΘ (y) = 2
baζ1
ζ2b∗

(
1 + y

ζ2

)−2ζ1−1 [
1−

(
1 + y

ζ2

)−2ζ1]a−1
exp

{
b

[
1−

(
1 + y

ζ2

)−2ζ1]a} . (4)

Due to Merovci et al. [43], the PDF of the PTL-Lx model in (3) can be expressed as

fΘ (y) =

∞∑
l,κ=0

[
ς
[1]
l,κ ha(l,κ)(y)− ς [2]l,κ h1+a(l,κ)(y)

]
, (5)

where hγ(y) = γgφ (y)Gφ (y)
γ−1refers to the PDF of the exp-Lx model,

ς
[1]
l,κ =

abl+1 (−1)
l+κ

l!b∗a (l, κ)

(
1

2

)κ−a(l+1)(
a (l + 1)− 1

κ

)
and

ς
[2]
l,κ =

abl+1 (−1)
l+κ

l!b∗ (1 + a (l, κ))

(
1

2

)κ−a(l+1)(
a (l + 1)− 1

κ

)
.

Equation (9) reveals that the density of Y can be expressed as a linear representation of exp-Lx density. So, several
mathematical properties of the new family can be obtained by knowing those of the exp-Lx distribution. The CDF
of the PTL-Lx model can also be expressed as a mixture of exp-Lx densities. By integrating (5), we obtain the
same mixture representation

FΘ (y) =

∞∑
l,κ=0

[
ς
[1]
l,κ Ha(l,κ)(y)− ς [2]l,κ H1+a(l,κ)(y)

]
(6)
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Figure 1. PDF and HRF plots for some selected parameters value.

where a (l, κ) = a (l + 1) + κ and Ha(l,κ)(y) refers to the CDF of the exp-Lx model with power parameter
(a (l, κ) > 0). Many useful Lx extensions can be found in Gupta et al. [16] (the exponentiated Lomax model),
Lemonte and Cordeiro [29] (Kumaraswamy Lomax, Macdonald Lomax and Beta Lomax models), Cordeiro et
al. [18] (Gamma Lomax), Tahir et al. [53] (Weibull Lomax distribution), Yousof et al. [58] (transmuted Topp-
Leone Lomax and reduced transmuted Topp-Leone Lomax), Cordeiro et al. (2018) (the one parameter Lomax
system of densities), Altun et al. [6] (odd log-logistic Lomax, proportional reversed hazard rate Lomax and reduced
odd log-logistic Lomax), Altun et al. [7] (Zografos-Balakrishnan Lomax distribution), Yousof et al.[59] (reduced
Burr-Hatke Lomax), Elbiely and Yousof [19] (Weibull generalized Lomax, Rayleigh generalized Lomax and
exponential generalized Lomax distributions), Yousof et al. [54]) (Topp Leone Poisson Lomax distribution), Goual
and Yousof [33] (Lomax inverse Rayleigh), Gad et al. [31] (Burr XII Lomax, Lomax Burr XII and Lomax Lomax
distributions), Chesneau and Yousof [13] (special generalized mixture Lomax), Yadav et al. [52] (Topp Leone
Lomax distribution), and Ibrahim and Yousof [27] (Poisson Burr X generalized Lomax and Poisson Rayleigh
generalized Lomax distributions). To illustrate the flexibility of the new PDF and its corresponding HRF we
present Figure 1. Figure 1(left plot) gives some PDF plots for some selected parameters value. Figure 1(right plot)
gives some HRF plots for some selected parameters value. Based on 1(left plot) the PTL-Lx density can be “right
skewed”, “symmetric” and “left skewed”. Based on Figure 1(right plot) the PTL-Lx HRF can be “monotonically
decreasing”, “increasing-constant”, “upside down”, “upside down-constant” and “reversed J-shape”.

The PTL-Lx model could be useful in modeling the asymmetric monotonically increasing hazard rate real
data sets as illustrated in Figure 10, the real data sets which have no extreme observations as shown Figure 8,
the real data sets which their Kernel density is semi-symmetric and bimodal as shown in Figure 11. The PTL-
Lx model proved its wide applicability in modeling against common variable Lomax extensions. In modeling
of the failure times of 84 aircraft windshields, the PTL-Lx model is compared with many well-known Lomax
extensions such as the exponentiated Lomax extension, the odd log-logistic Lomax extension, the transmuted
Topp-Leone Lx extension, the Kumaraswamy Lx extension, Gamma Lx extension, special generalized mixture Lx
extension, the Burr Hatke Lx extension and the proportional reversed hazard rate Lx extension under the consistent-
information criteria, Akaike information criteria, Bayesian information criteria and Hannan-Quinn information
criteria. In statistical modeling of the service times of 63 aircraft windshields, the PTL-Lx model is compared with
many well-known Lomax extensions such as the exponentiated Lomax extension, the odd log-logistic Lomax
extension, the transmuted Topp-Leone Lx extension, the Kumaraswamy Lx extension, Gamma Lx extension,
special generalized mixture Lx extension, the Burr Hatke Lx extension and the proportional reversed hazard rate Lx
extension under the consistent-information criteria, Akaike information criteria, Bayesian information criteria and
Hannan-Quinn information criteria. Additionally, we derived some new bivariate PTL-Lx (BPTL-Lx) via Farlie
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Gumbel Morgenstern (FGM) copula, modified Farlie Gumbel Morgenstern (FGM) copula, Renyi’s entropy and
Clayton copula. The Multivariate PTL-Lx (MPTL-Lx) type is also presented using the Clayton copula. However,
future works could be allocated to study these new models.

2. Mathematical properties

2.1. Moments, incomplete moments and generating function

The rth ordinary moment of Y is given by

µ′r,Y = E(Y r) =

∫ ∞
−∞

yr f (y) dy.

Then we obtain

µ′r,Y =

∞∑
l,κ=0

[
ς
[1]
l,κ E(Zra(l,κ))− ς

[2]
l,κ E(Zr1+a(l,κ))

]
. (7)

Henceforth, Za(l,κ) denotes the exp-Lx distribution with power parametera (l, κ) > 0.

µ′r,Y =

∞∑
l,κ=0

r∑
~=0

 ς
[1]
l,κ ∆

(a(l,κ),r)
~ B

(
a (l, κ) , 1 + ~−r

ζ1

)
−ς [2]l,κ ∆

(1+a(l,κ),r)
~ B

(
1 + a (l, κ) , 1 + ~−r

ζ1

)  |(ζ1>r).
where

∆
(γ,r)
~ = γζr2 (−1)

~
(
r

~

)
and

B(τ1, τ2) =

∫ 1

0

sτ1−1 (1− s)τ2−1 ds.

Setting r = 1 in (11), we have the mean of Y . The last integration can be computed numerically for most parent
distributions. The skewness and kurtosis measures can be calculated from the ordinary moments using well-known
relationships. The nth central moment of Y , say Mn,Y , follows as

Mn,Y = E(y − µ)n =

n∑
h=0

(−1)h
(
n

h

)
(µ′1)n µ′n−h.

The main applications of the first incomplete moment refer to the mean deviations and the Bonferroni and Lorenz
curves. These curves are very useful in economics, reliability, demography, insurance and medicine. The dth

incomplete moment, say Id,Y (t), of Y can be expressed from (9) as

Id,Y (t) =

∫ t

−∞
ydf (y) dy.

Then

Id,Y (t) =

∞∑
l,κ=0

d∑
~=0

 ς
[1]
l,κ∆

(a(l,κ),d)
~ Bt

(
a (l, κ) , 1 + ~−d

ζ1

)
−ς [2]l,κ ∆

(1+a(l,κ),d)
~ Bt

(
1 + a (l, κ) , 1 + ~−d

ζ1

)  |(ζ1>d), (8)

where

Bu(τ1, τ2) =

∫ u

0

wτ1−1 (1− w)
τ2−1 dw.
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The mean deviations about the mean [δ1,Y = E(|Y − µ′1|)] and about the median [δ2,Y = E (|Y −M |)] of Y are
given by δ1,Y = 2µ

′

1,Y F (µ′1,Y )− 2I1,Y (µ′1,Y ) and δ2,Y = µ′1,Y − 2I1,Y (M), respectively, where µ′1,Y = E (Y ),
M =Median(y) = Q

(
1
2

)
is the median, F (µ′1,Y ) is easily calculated from (3) and I1,Y (t) is the first incomplete

moment given by (8) with d = 1. Ageneral equation for I1,Y (t) can be derived from (8) as

I1,Y (t) =

∞∑
l,κ=0

1∑
~=0

 ς
[1]
l,κ∆

(a(l,κ),1)
~ Bt

(
a (l, κ) , 1 + ~−1

ζ1

)
−ς [2]l,κ ∆

(1+a(l,κ),1)
~ Bt

(
1 + a (l, κ) , 1 + ~−1

ζ1

)  |(ζ1>1),

The moment generating function (MGF) MY (t) = E
(
et Y
)

of Y can be derived from equation (5) as

MY (t) =

∞∑
l,κ,r=0

r∑
~=0

tr

r!

 ς
[1]
l,κ ∆

(a(l,κ),r)
~ B

(
a (l, κ) , 1 + ~−r

ζ1

)
−ς [2]l,κ ∆

(1+a(l,κ),r)
~ B

(
1 + a (l, κ) , 1 + ~−r

ζ1

)  |(ζ1>r),
By analyzing the µ′1, µ2, skewness (β1), kurtosis (β2) and dispersion index (IxDis(Y )) numerically in Table 1, it is
noted that, the β1 of the PTL-Lx distribution can be positive. The spread for the β2 of the PTL-Lx model is ranging
from −361.2494 to∞. The IxDis(Y ) for the PTL-Lx model can be in (0, 1) and also > 1 so it may be used as an
“under-dispersed” and “over-dispersed” model.

Table 1: µ′1, µ2, β1, β2 and IxDis(Y ) of the PTL-Lx model.
b a ζ1 ζ2 µ′1 µ2 β1 β2 IxDis(Y )

−200 15 1000 1000 4.364728 0.117768 38.81793 −361.2494 0.026982
−100 4.034451 0.059426 117.5225 −1478.971 0.014729
−5 1.98×10−05 6.733262 1.070338 1.243717 340223.1
−1 6.22×10−06 4.287837 1.106353 1.38395 689418.0
1 2.29×10−06 2.48×10−05 ∞ ∞ 10.85709

1 0.001 2 2 3.46×10−05 0.00101 147.2431 215068.6 30.56841
0.1 0.08937321 0.09784 15.69555 2500.37 1.094691
1 0.7153228 0.51387 9.746332 867.1376 0.718369
5 1.84746 0.87187 16.60932 1414.631 0.471928
20 3.225945 1.80607 16.64470 1245.859 0.559861
50 4.404508 3.31518 13.36668 890.0193 0.752678
150 6.219562 6.78740 10.31248 607.2698 1.091299
500 8.89245 14.1094 8.371584 442.6783 1.586673

1000 10.85174 21.0158 7.685889 385.4050 1.936633

2.5 5 0.001 2.5 2.57×10−05 0.1562103 18115.52 ∞ 6077.279
0.1 1607.577 4925510 1.870781 5.826488 3063.933
0.25 288.6213 733405.6 6.458681 52.3623 2541.066
0.5 30.41014 28188.14 29.69571 1175.791 926.9325
0.75 9.450391 1234.114 101.3404 17330.13 130.5887

1 5.205106 81.08433 188.7926 105717.9 15.57784

−1 1 100 500 4.431624 3.112067 7.716443 20.5981 0.7022408
1000 8.863248 12.44827 7.716443 20.5981 1.404482
5000 44.31624 311.2067 7.716443 20.5981 7.022408
10000 88.63248 1244.827 7.716443 20.5981 14.04482
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2.2. Probability weighted moments

The PWMs are expectations of certain functions of a random variable and they can be defined for any random
variable whose ordinary moments exist. The PWM method can generally be used for estimating parameters of
a distribution whose inverse form cannot be expressed explicitly. The (d, r)th PWM of Y following the PTL-G
family, say ρd,r, is formally defined by

ρd,r = E
{
Y d F (y)r

}
=

∫ ∞
−∞

yd F (y)r f (y) dy.

Using equations (5) and (6), we can write

fΘ (y) FΘ(y)r =

∞∑
l,κ=0

[
ν
[1]
l,κ ha(l,κ)(y)− ν[2]l,κ h1+a(l,κ)(y)

]
,

where

ν
[1]
l,κ =

∞∑
κ=0

abl+1 (−1)
l+κ+κ

(κ+ 1)
l

l!br+1
∗ a (l, κ)

(
1

2

)κ−a(l+1)(
r

κ

)(
a (l + 1)− 1

κ

)
and

ν
[2]
l,κ =

∞∑
κ=0

abl+1 (−1)
l+κ+κ

(κ+ 1)
l

l!br+1
∗ [1 + a (l, κ)]

(
1

2

)κ−a(l+1)(
r

κ

)(
a (l + 1)− 1

κ

)
.

Then, the (d, r)th PWM of Y can be expressed as

ρd,r =

∞∑
l,κ=0

d∑
~=0

 ν
[1]
l,κ∆

(a(l,κ),d)
~ B

(
a (l, κ) , 1 + ~−d

ζ1

)
−ν[2]l,κ ∆

(1+a(l,κ),d)
~ B

(
1 + a (l, κ) , 1 + ~−d

ζ1

)  |(ζ1>d) .
2.3. Residual life and reversed residual life functions

The nth moment of the residual life, say

mn,Y (t) = E[(Y − t)n | y > t], n = 1, 2, . . . ,

The nth moment of the residual life of Y is given by

mn,Y (t) =
1

1− F (t)

∫ ∞
t

(y − t)ndFΘ(y).

Therefore,

mn,Y (t) =
1

1− FΘ(t)

∞∑
l,κ=0

n∑
r=0

n∑
~=0

c[1]r


ς
[1]
l,κ ∆

(a(l,κ),n)
~

 B
(
a (l, κ) , 1 + ~−n

ζ1

)
−Bt

(
a (l, κ) , 1 + ~−n

ζ1

) 
−ς [2]l,κ∆

(1+a(l,κ),n)
~

 B
(

1 + a (l, κ) , 1 + ~−n
ζ1

)
−Bt

(
1 + a (l, κ) , 1 + ~−n

ζ1

) 


|(ζ1>n),

where c
[1]
r =

(
n
r

)
(−t)n−r . Another interesting function is the mean residual life (MRL) function or the life

expectation at age t defined by m1(t) = E [(y − t) | y > t], which represents the expected additional life length
for a unit which is alive at age t. The MRL of Y can be obtained by setting n = 1 in the last equation. The
nth moment of the reversed residual life, say Mn,Y (t) = E [(t− Y )n | y ≤ t] for t > 0 and n = 1, 2,. . . uniquely
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determines F (y). We obtain

Mn,Y (t) =
1

F (t)

∫ t

0

(t− y)ndF (y).

Then, the nth moment of the reversed residual life of Y becomes

Mn,Y (t) =
1

FΘ(t)

∞∑
l,κ=0

n∑
r=0

n∑
~=0

c[2]r

 ς
[1]
l,κ ∆

(a(l,κ),n)
~ Bt

(
a (l, κ) , 1 + ~−n

ζ1

)
−ς [2]l,κ∆

(1+a(l,κ),n)
~ Bt

(
1 + a (l, κ) , 1 + ~−n

ζ1

)  |(ζ1>n),
where c[2]r = (−1)

r (n
r

)
tn−r. The mean inactivity time (MIT) or mean waiting time (MWT) also called the mean

reversed residual life function is given by M1,Y (t) = E[(t− Y ) | y ≤ t], and it represents the waiting time elapsed
since the failure of an item on condition that this failure had occurred in (0, t).The MIT of the PTL-Lx distributions
can be obtained easily by setting n = 1 in the above equation.

2.4. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let Y1, Y2, . . . , Yn be a
random sample from the PTL-G family of distributions and let Y(1:n), Y(2:n), . . . , Y(n::n) be the corresponding
order statistics. The PDF of lth order statistic, say Yl:n, can be written as

fl:n (y) =
f (y)

B (l, n− l + 1)

n−l∑
κ=0

(−1)
κ

(
n− l
κ

)
F (y)

κ+l−1
, (9)

where B(·, ·) is the beta function. Substituting (3) and (4) in equation (9) and using a power series expansion,we
get

fΘ (y) FΘ(y)κ+l−1 =

∞∑
w1,w2=0

[
ζ
[1]
l,κ ha(w1,w2)(y)− ζ [2]l,κ h1+a(w1,w2)(y)

]
,

where

ζ
[1]
l,κ =

∞∑
κ=0

abw1+1 (−1)
w1+w2+κ (κ+ 1)

w1

w1!bκ+l∗ [a (w1, w2)]

(
1

2

)w2−a(w1+1)(
κ+ l − 1

κ

)(
a (w1 + 1)− 1

w2

)
and

ζ
[2]
l,κ =

∞∑
κ=0

abw1+1 (−1)
w1+w2+κ (κ+ 1)

w1

w1!bκ+l∗ [1 + a (w1, w2)]

(
1

2

)w2−a(w1+1)(
κ+ l − 1

κ

)(
a (w1 + 1)− 1

w2

)
.

The PDF of Yl:n can be expressed as

fl:n (y) =

n−l∑
κ=0

∞∑
w1,w2=0

cκ

[
ζ
[1]
l,κ ha(w1,w2)(y)− ζ [2]l,κ h1+a(w1,w2)(y)

]
,

where

cκ =
1

B (l, n− l + 1)
(−1)

κ

(
n− l
κ

)
.

Then, the density function of the PTL order statistics is a mixture of exp-Lx densities. The moments of Yl:n can be
expressed as

E
(
Y ql:n
)

=

n−l∑
κ=0

∞∑
w1,w2=0

q∑
~=0

cκ

 ζ
[1]
l,κ ∆

(a(w1,w2),q)
~ Bt

(
a (w1, w2) , 1 + ~−q

ζ1

)
−ζ [2]l,κ ∆

(1+a(w1,w2),q)
~ Bt

(
1 + a (w1, w2) , 1 + ~−q

ζ1

)  . (10)
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The L-moments are analogous to the ordinary moments but can be estimated by linear combinations of order
statistics. They exist whenever the mean of the distribution exists, even though some higher moments may not
exist, and are relatively robust to the effects of outliers. Based upon the moments in equation (10), we can derive
explicit expressions for the L-moments of Y as infinite weighted linear combinations of the means of suitable
PTL-Lx order statistics. They are linear functions of expected order statistics defined by

λr,Y =
1

r

r−1∑
d=0

(−1)
d
E (Yr−d:r)

(
r − 1

d

)
, r ≥ 1.

3. copulas

3.1. BPTL-Lx type via FGM copula

Consider the joint CDF of the FGM family (Gumbel [35] and Gumbel [36]), then

CΥ∈(−1,1)(d,w)|Υ∈(−1,1) = dw
(
1 + Υdw

)
,

where the marginal function d = F1(y1), w = F2(y2) is a dependence parameter and for every d,w ∈ (0, 1)
2,

CΥ(d, 0) = CΥ(0, w) = 0 which is “grounded minimum” and CΥ(d, 1) = d and CΥ(1, w) = w which is
“grounded maximum”. Then, we have

FΥ(y1, y2) =
1− gb1,a1,ζ1,ζ2 (y1)

b∗1

1− gb2,a2,ζ1,ζ2 (y2)

b∗2

×
(
1 + Υ

[
gb1,a1,ζ1,ζ2 (y1) gb2,a2,ζ1,ζ2 (y2)

])
.

where

gb1,a1,ζ1,ζ2 (y1) = exp

{
−b1

[
1−

(
1 +

y1
ζ2

)−2ζ1]a1}
,

gb2,a2,ζ1,ζ2 (y2) = exp

{
−b2

[
1−

(
1 +

y2
ζ2

)−2ζ1]a2}
,

gb1,a1,ζ1,ζ2 (y1) = 1− gb1,a1,ζ1,ζ2 (y1)

and
gb2,a2,ζ1,ζ2 (y2) = 1− gb2,a2,ζ1,ζ2 (y2) .

The joint PDF can then derived from

cΥ(d,w) = 1 + Υd∗w∗|(d∗=1−2d and w∗=1−2w).

3.2. BvOBGR type via modified FGM copula

Consider the following modified version of the bivariate FGM copula defined as (see Rodriguez-Lallena and
Ubeda-Flores [46])

CΥ(d,w)|Υ∈[−1,1] = dw [1 + Υ℘ (d)ψ (w)] = dw + ΥA (d)B (w) ,

where A (d) = d℘ (d), and B (w) = wψ (w). Where ℘ (d) and ψ (w) are two absolutely continuous functions on
(0, 1) with the following conditions:

1-The boundary condition:
℘ (0) = ℘ (1) = ψ (0) = ψ (1) = 0.
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2-Let

τ1 = inf

{
∂

∂d
A (d) |Λ1 (d)

}
< 0,

τ2 = sup

{
∂

∂d
A (d) |Λ1 (d)

}
< 0,

π1 = inf

{
∂

∂w
B (w) |Λ2 (w)

}
> 0,

π2 = sup

{
∂

∂w
B (w) |Λ2 (w)

}
> 0,

Then, min (τ1τ2, π1π2) ≥ 1 where
∂

∂d
A (d) = ℘ (d) + d

∂

∂d
℘ (d) ,

Λ1 (d) =

{
d : d ∈ (0, 1) | ∂

∂d
A (d) exists

}
,

and

Λ2 (w) =

{
w : w ∈ (0, 1) | ∂

∂w
B (w) exists

}
.

3.2.1. BPTL-Lx-FGM (Type I) model

Here, we consider the following functional form for both A (d) and B (w) as

CΥ(y1, y2) =
1− gb1,a1,ζ1,ζ2 (y1)

b∗1

1− gb2,a2,ζ1,ζ2 (y2)

b∗2
+ ΥA (y1)B (y2) ,

where

A (y1) =
1− gb1,a1,ζ1,ζ2 (y1)

b∗1
gb1,a1,ζ1,ζ2 (y1)

and

B (y2) =
1− gb2,a2,ζ1,ζ2 (y2)

b∗2
gb2,a2,ζ1,ζ2 (y2) .

3.2.2. BPTL-Lx-FGM (Type II) model

Due to Ghosh and Ray [32] the CDF of the BPTL-Lx-FGM (Type II) model can be derived from

CΥ(d,w) =
1− gb1,a1,ζ1,ζ2 (d)

b∗1
F−1(w) +

1− gb2,a2,ζ1,ζ2 (w)

b∗2
F−1(d)− F−1(d)F−1(w),

where

F−1(d) = ζ2

{1−
[
− 1

b1
ln (1− db∗1)

] 1
a1

}− 1
2ζ1

− 1

 ,

and

F−1(w) = ζ2

{1−
[
− 1

b2
ln (1− wb∗2)

] 1
a2

}− 1
2ζ1

− 1

 .
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3.2.3. BPTL-Lx-FGM (Type III) model

Consider the following functional form for both A (d) |(Υ1>0) = dΥ1 (1− d)
1−Υ1 and Z (w) |(Υ2>0) =

wΥ2 (1− w)
1−Υ2 which satisfy all the conditions stated earlier. Then, the corresponding bivariate copula

(henceforth, BPTL-Lx-FGM (Type III) copula) can be derived from

CΥ,Υ1,Υ2
(d,w) = dw [1 + ΥA (d)Z (w)] .

Therefore

CΥ,Υ1,Υ2
(d,w) =

1− gb1,a1,ζ1,ζ2 (d)

b∗1

1− gb2,a2,ζ1,ζ2 (w)

b∗2

×

1 + Υ


[
1−gb1,a1,ζ1,ζ2 (d)

b∗1

]Υ1

g1−Υ1

b1,a1,ζ1,ζ2
(d)

×
[
1−gb2,a2,ζ1,ζ2 (w)

b∗2

]Υ2

g1−Υ2

b2,a2,ζ1,ζ2
(w)




3.2.4. BPTL-Lx-FGM (Type IV) model

Consider the following functional form for both C (d) = d log
(
1 + d

)
and D (w) = w log (1 + w) which

satisfy all the conditions stated earlier. In this case, one can also derive a closed form expression for the associated
CDF of the BPTL-Lx-FGM (Type IV) as

CΥ(d,w) = dw [1 + ΥC (d)D (w)] .

Hence

CΥ(d,w) =
1− gb1,a1,ζ1,ζ2 (d)

b∗1

1− gb2,a2,ζ1,ζ2 (w)

b∗2

×
(

1 + Υ

{
d log

[
1 + gb1,a1,ζ1,ζ2 (d)

]
×w log

[
1 + gb2,a2,ζ1,ζ2 (w)

] })
3.3. BPTL-Lx type via Renyi’s entropy

Consider theorem of Pougaza and Djafari [45] where

C(d,w) = y2d+ y1w − y1y2,

where d and W are two absolutely continuous functions on (0, 1). Then, the associated BPTL-Lx will be

C(y1, y2) =
1− gb1,a1,ζ1,ζ2 (y1)

b∗1
y2 +

1− gb2,a2,ζ1,ζ2 (y2)

b∗2
y1 − y1y2.

3.4. BPTL-Lx type via Clayton copula

The Clayton copula can be considered as

CΥ(w1, w2) =
(
w−Υ

1 + w−Υ
2 − 1

)− 1
Υ |Υ∈[0,∞].

Let us assume that Y ∼PTL-Lx (Θ1) and Z ∼PTL-Lx (Θ2). Then, setting

w1 = w (y|Θ1) =
1

b∗1
[1− gb1,a1,ζ1,ζ2 (w1)] ,

and
w2 = w (z|Θ2) =

1

b∗2
[1− gb2,a2,ζ1,ζ2 (w2)] .
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Then, the BPTL-Lx type distribution can be derived as

FΥ(y, z) = CΥ(FΘ1
(y) , FΘ2

(z)) =


[
1−gb1,a1,ζ1,ζ2 (w1)

b∗1

]−Υ

+
[
1−gb2,a2,ζ1,ζ2 (w2)

b∗2

]−Υ

− 1


− 1

Υ

.

3.5. MPTL-Lx extention via Clayton copula

A straightforward n-dimensional extension from the above will be

C(wi) =

(
n∑
i=1

wΥ
i + 1− n

)− 1
Υ

.

Then, the MPTL-Lx extention can expressed as

C(Z) =

(
n∑
i=1

{
1− gbi,ai,ζ1,ζ2 (wi)

b∗i

}−Υ

+ 1− n

)− 1
Υ

,

where Z = z1, z2, · · · , zn. For more details see Ali et al. [3], Ali et al. [4], Elgohari and Yousof [20], Elgohari
and Yousof [21], Elgohari and Yousof [22], Elgohari et al. [23], Shehata and Yousof [49], Al-Babtain et al. [1],
Al-Babtain et al. [2], Salah et al. [47], Shehata et al. [50], Shehata and Yousof [48] and Yousof et al. [60].

4. Graphical assessment

Graphically and using the biases and mean squared errors (MSEs), we can perform the simulation experiments to
assess the finite sample behavior of the maximum likelihood estimations (MLEs). The assessment was based on
N=1000 replication for all n|(n=50,100,...,500). The following algorithm is considered:

1. Generate N=1000 samples of size n|(n=50,100,...,500) from the PTL-Lx distribution using (4);

yu = ζ2

{1−
[
−1

b
ln (1− ub∗)

] 1
a

}− 1
2ζ1

− 1

 .

2. Compute the MLEs for the N=1000 samples, say(
ân, b̂n, ζ̂1n, ζ̂2n

)
|(n=1,2,...,1000),

3. Compute the SEs of the MLEs for the 1000 samples, say(
κân , κb̂n , κζ̂1n , κζ̂2n

)
|(n=1,2,...,1000).

The standard errors (SEs) were computed by inverting the observed information matrix.
4. Compute the biases and mean squared errors given for Θ = a, b, ζ1, ζ2. We repeated these steps for
n|(n=50,100,...,500) with b = 1, 2, .., 100, a = 1, 2, .., 100, ζ1 = 1, 2, .., 100, ζ2 = 1, 2, .., 100, so computing
biases

(
BiasΘ(n)

)
, mean squared errors (MSEs) (MSEh(n)) for Θ = a, b, ζ1, ζ2 and n|(n=50,100,...,500)

where

BiasΘ(n)|(Θ=a,b,ζ1,ζ2) =
1

1000

1000∑
n=1

(
Θ̂n −Θ

)
,
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Figure 2. biases and mean squared errors for the parameter a.
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Figure 3. biases and mean squared errors for the parameter b.

and

MSEΘ(n)|(Θ=a,b,ζ1,ζ2) =
1

1000

1000∑
n=1

(
Θ̂n −Θ

)2
.

Figure 2, Figure 3, Figure 4 and Figure 5 give the biases (left panels) and MSEs (right panels) for the
parameters a, b, ζ1 and ζ2 respectively. The left panels from show how the four biases vary with respect
to n. The right panels show how the four MSEs vary with respect to n. The broken line in red in Figure 6
corresponds to the biases being 0. From Figure 2, Figure 3, Figure 4 and Figure 5 ( left panels), the biases
for each parameter are generally negative and tends to zero as n→∞. From Figure 2, Figure 3, Figure 4 and
Figure 5 ( right panels), the MSEs for each parameter decrease to zero as n→∞.

Stat., Optim. Inf. Comput. Vol. 10, March 2022



496 A NEW COMPOUND GENERALIZATION OF THE LOMAX LIFETIME MODEL

0 500 1000 1500

−0
.0

8
−0

.0
6

−0
.0

4
−0

.0
2

0.
00

Bias of  ζ1

n

B
ia

s

0 500 1000 1500

0.
01

0.
02

0.
03

0.
04

MSE of  ζ1

n

M
S

E
 

Figure 4. biases and mean squared errors for the parameter ζ1.
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Figure 5. biases and mean squared errors for the parameter ζ2.

5. Applications

In this section, we provide two real life applications to two real data sets to illustrate the importance and flexibility
of the PTL-Lx model. We compare the fit of the PTL-Lx with some well-known competitive models (see Table 2).
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Table 2: The competitive models.
N. Model Abbreviation
1 Lomax (two paramters) Lx
2 Exponentiated Lx (three paramters) Exp-Lx
3 Kumaraswamy Lx (four paramters) K-Lx
4 Macdonald Lx (four paramters) Mc-Lx
5 Beta Lx (four paramters) B-Lx
6 Gamma Lx (four paramters) Ga-Lx
7 Transmuted Topp-Leone Lx (four paramters) TTL-Lx
8 Reduced TTL-Lx (three paramters) RTTL-Lx
9 Odd log-logistic Lx (three paramters) OLL-Lx

10 Reduced OLL-Lx (wo paramters) ROLL-Lx
11 Reduced Burr-Hatke Lx (two paramters) RBH-Lx
12 Special generalized mixture Lomax (three paramters) SGM-Lx
13 Reduced PTL-Lx (three paramters) RPTL-Lx
14 Proportional reversed hazard rate Lx (three paramters) PRHR-Lx

First data set: Failure times of 84 Aircraft Windshield: The first real data set (data set I) represents the data on failure
times of 84 aircraft windshield given in Murthy et al. [44]. The data are: 0.0400, 1.866, 2.3850, 3.443, 0.3010,
1.876, 2.4810, 3.467, 0.309, 1.8990, 2.610, 3.4780, 0.557, 1.9110, 2.625, 3.5780, 0.943, 1.9120, 2.632, 3.5950,
1.0700, 1.914, 2.6460, 3.699, 1.1240, 1.981, 2.661, 3.7790,1.248, 2.0100, 2.688, 3.9240, 1.2810, 2.038, 2.820,
3, 4.035, 1.281, 2.0850, 2.890, 4.121, 1.3030, 2.089, 2.902, 4.167, 1.4320, 2.097, 2.934, 4.2400, 1.480, 2.135,
2.962, 4.2550, 1.505, 2.154, 2.9640, 4.278, 1.506, 2.190, 3.000, 4.3050, 1.568, 2.1940, 3.103, 4.376, 1.615, 2.2230,
3.114, 4.449, 1.6190, 2.224, 3.1170, 4.485, 1.652, 2.2290, 3.166, 4.570, 1.652, 2.3000, 3.344, 4.602, 1.7570, 2.324,
3.3760, 4.663.

Second data set: Service times of 63 Aircraft Windshield: The second real data set (data set II) represents the
data on service times of 63 aircraft windshield given in Murthy et al. [44]. The data are: 0.046, 1.436, 2.592, 0.140,
1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.7190, 2.717, 0.2800, 1.794, 2.819, 0.3130, 1.915, 2.820, 0.389, 1.9200,
2.878, 0.487, 1.9630, 2.950, 0.622, 1.978, 3.0030, 0.9000, 2.053, 3.1020, 0.952, 2.065, 3.3040, 0.9960, 2.117,
3.483, 1.0030, 2.137, 3.500, 1.0100, 2.141, 3.6220, 1.085, 2.163, 3.6650, 1.092, 2.183, 3.695, 1.1520, 2.2400,
4.015, 1.183, 2.3410, 4.628, 1.2440, 2.435, 4.806, 1.249, 2.4640, 4.881, 1.262, 2.5430, 5.140. Many other useful
real life data sets can be found in Aryal et al. [8], Yousof et al. [61], Mansour et al. [41], Goual et al. [34] and
Cordeiro et al. [14]. For exploring the extreme vaues, the box plot is plotted (see Figure 6). Based on Figure 6,
we note that no extreme values were found in the two real life data sets. For checking the normality, the Quantile-
Quantile (Q-Q) plot is sketched (see Figure 7). Based on Figure 7, we note that the normality is nearly exists. For
exploring the HRF for real data, the total time test (TTT) plot is provided (see Figure 8). Based on Figure 8, we note
that the HRF is “monotonically increasing” for the two real life data sets. For exploring the initial shape of real data
nonparametrically, kernel density estimation (KDE) is provided (see Figure 9). Figure 9 show nonparametric KDE
for exploring the data. Figure 10 and Figure 11 give the Probability-Probability (P-P) plot (top left), estemated PDF
(EPDF) (top right), estemated CDF (ECDF) (bottom left) and estemated HRF (EHRF) (bottom right) for data set I
and II respectively.

We estimate the unknown parameters of each model by maximum likelihood using “L-BFGS-B” method and the
goodness-of-fit statistics Akaike information criterion (AIC), Bayesian IC (BIC) and Consistent AIC (CAIC) are
used to compare the models. In general, the smaller the values of these statistics, the better the fit to the data. The
required computations are obtained by using the “maxLik” and “goftest” sub-routines in R-software. For failure
times data: the analysis results of are listed in Tables 3 and 4. Table 3 gives the MLEs and standard errors (SEs)
for failure times data. Table 4 gives the −ˆ̀ and goodness-of-fits statistics for failure times data. For service times
data: the analysis results of are listed in Tables 5 and 6. Table 5 gives the MLEs and SEs for service times data.
Table 6 give the −ˆ̀and goodness-of-fits statistics for the service times data. Based on Tables 4 and 6, we note that
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Figure 8. TTT plots.

the PTL-Lx model gives the lowest values for the AIC, CAIC, BIC and HQIC among all fitted models. Hence, it
could be chosen as the best model under these criteria.
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Figure 9. KDE plots.

Table 3: MLEs and SEs for failure times data.
Model Estimates

PTL-Lx(a, b, ζ1, ζ2) −8.61942 0.38072 1511.814 4817.088
(6.22168) (0.3761) (292.445) (548.812)

Mc-Lx(a, b, c, ζ1, ζ2) 2.187521 119.1751 12.41714 19.92433 75.6606
(0.5211) (140.297) (20.845) (38.9601) (147.24)

TTL-Lx(a, b, ζ1, ζ2) −0.80750 2.47663 (15608.2) (38628.3)
(0.13960) (0.54176) (1602.37) (123.936)

K-Lx(a, b, ζ1, ζ2) 2.6150 100.2756 5.27710 78.6774
(0.3822) (120.486) (9.8116) (186.005)

B-Lx(a, b, ζ1, ζ2) 3.60360 33.63870 4.830700 118.8374
(0.6187) (63.7145) (9.23820) (428.927)

PRHR-Lx(a, ζ1, ζ2) 3.73×106 4.707×10−1 4.49×106

1.01×106 (0.00001) 37.14684
RTTL-Lx(a, b, ζ1) −0.84732 5.52057 1.15678

(0.10010) (1.18479) (0.09588)
SGM-Lx(b, ζ1, ζ2) −1.04×10−1 9.83×106 1.18×107

(0.1223) (4843.3) (501.04)
OLL-Lx(b, ζ1, ζ2) 2.32636 (7.17×105) 2.34×106)

(2.14×10−1) (1.19×104) (2.61×101)
Ga-Lx(b, ζ1, ζ2) 3.58760 52001.49 37029.66

(0.5133) (7955.00) ( 81.1644)
Exp-Lx(b, ζ1, ζ2) 3.62610 20074.51 26257.68

(0.6236) (2041.83) (99.7417)
ROLL-Lx(b, ζ1) 3.890564 0.57316

(0.36524) (0.01946)
RBH-Lx(ζ1, ζ2) 10801754 51367189

(983309) (232312)
Lx(ζ1, ζ2) 51425.35 131789.8

(5933.49) (296.119)

Stat., Optim. Inf. Comput. Vol. 10, March 2022



500 A NEW COMPOUND GENERALIZATION OF THE LOMAX LIFETIME MODEL

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

The PTL−Lx model

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

x

E
H

R
F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Observed Probabilites

E
xp

ec
te

d 
P

ro
ba

bi
lit

es

Figure 10. EPDF, EHRF and P-P plot for data set I.
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Figure 11. EPDF, EHRF and P-P plot for data set I.
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Table 4: −ˆ̀and goodness-of-fits statistics for failure times data.

Model −ˆ̀ AIC CAIC BIC HQIC

PTL-Lx 107.2758 222.5516 223.058 232.2749 226.4603
Mc-Lx 129.8023 269.6045 270.3640 281.8178 274.5170

RPTL-Lx 132.1993 270.3987 270.6987 277.6911 273.3302
OLL-Lx 134.4235 274.8470 275.1470 282.1394 277.7785
TTL-Lx 135.5700 279.1400 279.6464 288.8633 283.0487
Ga-Lx 138.4042 282.8083 283.1046 290.1363 285.7559
B-Lx 138.7177 285.4354 285.9354 295.2060 289.3654

Exp-Lx 141.3997 288.7994 289.0957 296.1273 291.7469
ROLL-Lx 142.8452 289.6904 289.8385 294.5520 291.6447
SGM-Lx 143.0874 292.1747 292.4747 299.4672 295.1062
PRHR-Lx 162.8770 331.7540 332.0540 339.0464 334.6855

Lx 164.9884 333.9767 334.1230 338.8620 335.9417
RBH-Lx 168.6040 341.2081 341.3562 346.0697 343.1624

Table 5: MLEs and SEs for service times data.

Model Estimates

PTL-Lx(a, b, ζ1, ζ2) −138.3583 0.010947 43.9167 162.301
(1.01027) (7.96×10−3) (7.0164) (2.5831)

K-Lx(a, b, ζ1, ζ2) 1.66914 60.5673 2.56490 65.0640
(0.2570) (86.0131) (4.7589) (177.59)

B-Lx(a, b, ζ1, ζ2) 1.92183 31.2594 4.9684 169.5719
(0.3184) (316.841) (50.528) (339.207)

TTL-Lx(a, b, ζ1, ζ2) (−0.6070) 1.785780 2123.391 4822.789
(0.21371) (0.41522) (163.915) (200.009)

PRHR-Lx(a, ζ1, ζ2) 1.59×106 3.93×10−1 1.30×106

2.01×103 0.0004×10−1 0.95×106

RTTL-Lx(a, b, ζ1) −0.67145 2.74496 1.01238
(0.18746) (0.6696) (0.11405)

SGM-Lx(b, ζ1, ζ2) −1.04×10−1 6.45×106 6.33×106

(4.1×10−10) (3.21×106) (3.8573)
OLL-Lx(b, ζ1, ζ2) 1.66419 6.340×105 2.01×106

(1.79×10−1) (1.68×104) 7.22×106

Ga-Lx(b, ζ1, ζ2) 1.9073 35842.433 39197.57
(0.3213) (6945.074) (151.653)

Exp-Lx(b, ζ1, ζ2) 1.9145 22971.154 32881.99
(0.3482) (3209.533) (162.230)

ROLL-Lx(b, ζ1) 2.37233 0.69109
(0.26825) (0.04488)

RBH-Lx(ζ1, ζ2) 14055522 53203423
(422.005) (28.52323)

Lx(ζ1, ζ2) 99269.78 207019.37
(11863.5) (301.2366)
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Table 6: −ˆ̀and goodness-of-fits statistics for the service times data.

Model −ˆ̀ AIC CAIC BIC HQIC

PTL-Lx 75.96769 159.9354 160.625 168.5079 163.307
K-Lx 100.8676 209.7353 210.4249 218.3078 213.1069

TTL-Lx 102.4498 212.8996 213.5893 221.4722 216.2713
Ga-Lx 102.8332 211.6663 212.0730 218.0958 214.1951

SGM-Lx 102.8940 211.7881 212.1949 218.2175 214.3168
B-Lx 102.9611 213.9223 214.6119 222.4948 217.2939

Exp-Lx 103.5498 213.0995 213.5063 219.5289 215.6282
OLL-Lx 104.9041 215.8082 216.2150 222.2376 218.3369

PRHR-Lx 109.2986 224.5973 225.004 231.0267 227.1264
Lx 109.2988 222.5976 222.7976 226.8839 224.2834

ROLL-Lx 110.7287 225.4573 225.6573 229.7436 227.1431
RTTL-Lx 112.1855 230.3710 230.7778 236.8004 232.8997
RBH-Lx 112.6005 229.2011 229.4011 233.4873 230.8869

6. Conclusions

A new four parameter compound lifetime model called the Poisson Topp-Leone Lomax (PTL-Lx) is defined
and studied. The novel model is established based on the Poisson Topp-Leone family of Merovci et al. [43].
The PTL-Lx density function can be “right skewedwith heavy tail”, “symmetric” and “left skewedwith heavy
tail”. The corresponding failure rate can be “monotonically decreasing”, “increasing-constant”, “upside down”,
“upside down-constant” and “reversed J-shape”. The new PTL-Lx density can be expressed as as a mixture of
the exponentiated Lomax densitied. The skewness of the PTL-Lx distribution can be positive. The spread for the
kurtosis of the PTL-Lx model is ranging from−361.2494 to∞. The index of dispersion for the PTL-Lx model can
be in (0, 1) and also > 1 so it may be used as an ”under-dispersed” and ”over-dispersed” model.

Relevant characteristics are derived and discussed. numerical and graphical analysis for some statistical
properties are presented. we derived some new bivariate extensions via some common copulas such as Farlie
Gumbel Morgenstern copula, modified Farlie Gumbel Morgenstern copula, Renyi’s entropy and Clayton copula.
The maximum likelihood method is used to estimate the PTL-Lx parameters. By means of “biases” and “mean
squared errors”, we performed simulation experiments to assess the finite sample behavior of the maximum
likelihood estimators. It is noted that, the biases for all parameters are generally negative and tends to 0 as n
→∞ and the mean squared errors for all parameter decrease to 0 as n→∞. The new model deserved to be chosen
as the best model among many well-know Lomax extension.

As a future work, we can apply many new useful goodness-of-fit tests for right censored validation such as
the Nikulin-Rao-Robson goodness-of-fit test, modified Nikulin-Rao-Robson goodness-of-fit test, Bagdonavicius-
Nikulin goodness-of-fit test, modified Bagdonavicius-Nikulin goodness-of-fit test, to the new PTL-Lx model as
performed by Ibrahim et al. [14], Mansour et al. ([41], [37], [38], [39], [40], [42]), Yadav et al. (2020), Ibrahim et
al. [26], Yousof et al. [55], Yousof et al. [56], Yousof et al. [57], among others.
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