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Abstract Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses
seem to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper
developes the semi-parametric quantile regression model for analyzing longitudinal continuous and ordinal mixed
responses. The latent variable model and some threshold parameters are used to perform the quantile regression
model’s ordinal part. The error of the latent variable model has Asymmetric Laplace (AL) distribution. The
error term’s distribution is assumed to be AL distribution to model the continuous responses. The correlations
of longitudinal responses belong to the same individual and those of mixed continuous and ordinal responses
are considered using a random-effects approach. The regression spline is used to approximate the non-parametric
part of the model. The parameter estimation procedure is performed under a Bayesian paradigm using the Gibbs
sampling method. A simulation study is performed to demonstrate the proposed model’s performance where the
relative biases, standard errors, and root of MSEs of estimated parameters are decreased in the semi-parametric
QR joint model when the number of subjects is increased. In our application, it was found that the mother’s age
and her child’s age have significant effects on reading ability, and antisocial behavior depends on the child’s gender.
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1. Introduction

1.1. Motivation
There are correlated continuous and ordinal responses in many longitudinal studies in social, psychiatry,
educational, public health, political, and medical studies. Analysis of the joint responses by a model
has some potential advantages over using separate models. However, models for response variables of
different types (discrete and continuous) are challenging to define and fit. Ordered categorical data are
commonly used in scientific fields where respondents express a graduated evaluation on a particular item.
Examples include survey responses on opinions, ratings of preference in consumer studies, numerical or
verbal rating scale, sensory evaluation on food perception and appreciation, self-evaluation of well-being
and life satisfaction, job satisfaction, job classifications by skill levels, economic perceived conditions, etc.
In many cases, the ordinal responses may be collected with other responses, such as continuous or count
responses. For example, suppose a questionnaire is designed to extract the simultaneous effects of gender,
level of education and age on income and life satisfaction. Then, it is clear that the variables of continuous
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response (income) and ordinal response (life satisfaction) are correlated, and their joint modeling will be
more helpful.

In some longitudinal surveys, the ordinal responses are observed through a hierarchical questionnaire or
interview across time. Consider the following example to clarify the matter. The PIAT data were prepared
at two-year intervals between 1986 and 1992 and contains both the mother and her child’s interviews.
This paper has selected two interesting continuous and ordinal data responses as the primary variables
for modeling. The continuous response is the child’s reading recognition skill (read), and the ordinal
response is the child’s antisocial behavior (anti). The study’s main idea was to specify the connection
between parental response to a child’s antisocial behavior and reading recognition skills. There are 221
children and mothers who were participated in the study. Further descriptions of this data set and the
mentioned variables are provided in the section 5. The ordinal response is a child’s antisocial behavior
(anti), and the continuous response is the child’s reading recognition skill (read). The antisocial behavior
sub-scale consisted of the mother’s report on six items that evaluated the child’s antisocial behavior over
the previous period of three months. The item measured the extent to which the child:

• Cheats or tells lies
• Bullies or is cruel or mean to others
• Does not seem to feel sorry after he/she misbehaves
• Breaks things on purpose or deliberately destroys his/her own or other’s things
• Is disobedient at school
• Has trouble getting along with teachers.

The three possible response choices were ”not true” (score of 0), ”sometimes true” (score of 1), and
”often true” (score of 2). These six item scores were summed to compute an overall measure of antisocial
behavior, which could range in value from 0 to 12. We categorized the variable to a three-level ordinal
response which takes the values 1, 2, and 3 when the sum is equal to 0, larger than 0 but less than or
equal to 6 and more than 6, respectively.

Figure 1 displays the box-plots of the continuous response (reading ability) for different levels of ordinal
response (antisocial behavior). According to this Figure, it can be found that children with low levels
of antisocial behavior have more reading ability than children with high levels of antisocial behavior at
all time points. Also, the Reading ability is improving over time. So, these two longitudinal endogenous
responses are correlated, and the effects of covariates on them should be taken into account simultaneously.

1.2. Related works
In many studies, interests are often concentrated on the significant effect of predictor variables on specific
responses variables over time. Linear regression models are statistical tools used to model the association
between variables. Many researchers used Classic Mean Regression (CMR) as a general tool to analyse the
data. The principal purpose of CMR is to model the mean of the response variable under a set of predictor
variables. Quantile regression (QR) is a type of regression analysis used for data analysis in statistics,
biomedical, medicine and econometrics. [28] used QR for the first time, which does not follow the Gaussian
assumption for the model error distribution, but formalized asymptotic properties of the least absolute
deviations estimator for independent observations. In recent years, many researchers used QR models
for longitudinal data analysis. QR models are the quantiles of the response variable given covariates.
Quantiles are less sensitive to skewed distributions and outliers. A comprehensive guide of the subject
can be found in [30] and [21]. QR estimators determine a linear plan and can be measured efficiently.
[30] characterized the finite-sample distributions of regression quantiles, but they are challenging to use
for statistical inference. In the last few years, QR models became a more generally utilized method to
define a response variable’s distribution given covariates. [27] used a quantile method to analyze the
nonlinear longitudinal responses. [23] recommended the transformed ordinal QR for single-index models.
[1] suggested a method for regularisation in mixed QR models.
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Figure 1. Box-plots of reading ability for different levels of antisocial behavior at four time-points of PIAT data
set.

The longitudinal study is often more informative than the classical cross-sectional samples because of
containing repeated measurements within each individual over time. The changes of responses and their
temporal patterns within each individual usually provide important information of scientific relevance.
Since longitudinal study combines the features of cross-sectional sampling and time-series observations,
their usefulness goes very high. It is often found in economics, biomedical studies, psychology, social
activities and many other scientific areas. In these studies, responses and some covariates are evaluated
for independent individuals over time, frequently. There are two approaches for analysing ordered and
categorical responses: cumulative link models and the ordered probit models. Cumulative link models
are a suitable method for modelling these data because the ordered nature of observation is used, and
the flexible regression structure provides good fitting performances. These models with a logit link are
generally known as the proportional odds model due to [35]. The cumulative models are also known as
ordinal regression models. Other alternatives regarding the logit and probit link functions are ordered
logit models and ordered probit models (for more information, see, Ch. 4 of[20]). In its contemporary,
regression-based form, [36],[37] proposed the ordered probit model to analyse such responses. The model
platform is an underlying random utility model or latent regression model, in which the continuous latent
”measure” is observed in discrete form through a censoring mechanism.
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The existence of the mixed correlated discrete and continuous responses for each experimental unit is one
of the critical issues in statistical applications. The general location model of [40] is used for joint modelling
of mixed categorical and continuous data. In this method, the continuous and categorical variables’
joint distribution is decomposed into a marginal multinomial distribution for the categorical variables
and a conditional multivariate normal distribution for the continuous variables given the categorical
variables. Several models using latent variables have been introduced to analyse multiple non-proportional
responses as covariates’ functions [44]. [3], [4] and [5] proposed the latent variable model for bivariate and
multivariate continuous and ordinal mixed responses. In their models, the ordinal responses are within-
correlated and are correlated with continuous response. They modelled ordinal and continuous responses
by using and generalising a method similar to the method of [22] and using the idea of latent variables. [34]
concentrated on the mixed data analysis, and discussed all of the suitable models that other researchers
use. [45] introduced a general joint model for mixed longitudinal set-inflated continuous and set-inflated
count responses.

Longitudinal data analysis with the correlation structure within responses may be complicated. In
this situation, Joint models can consider suitably for the correlation between the responses. [14] have
introduced different producers for joint modeling in their book. One of the methods they use is the
random effects approach. As we know, the correlation of longitudinal responses of the same individual is
considered using a random-effects approach. The same idea can be used to create longitudinal models by
random effects. The random-effects models imply more flexible correlation patterns compared to the other
models. The separate random effects are used in the models of the joint model to confirm a longitudinal
response dependence. For more information about these, see [38] and [14]. See also [16], [5], [43], [49], [45],
[46] and [19] for joint modeling of mixed discrete and continuous longitudinal responses.

Recently, [31] considered a semi-parametric method for the QR model using a Bayesian approach. They
suggested the Dirichlet process for the error term in an additive QR construction. [56] used the semi-
parametric QR model to decrease the covariates’ dimension and keep non-parametric regression flexibility.
[7] proposed semi-parametric QR estimation for dynamic models with partially varying coefficients so
that the values of some coefficients may be functions of informative covariates. They recommended the
estimation of both parametric and non-parametric functional coefficients. [57] used the QR model with a
latent variable approach for the ordinal response variable. [24] introduced a multi-index semi-parametric
QR model for ordinal data. [8] suggested semi-parametric partial linear quantile regression of longitudinal
data with time-varying coefficient and informative observation of time. [25] proposed quantile regression
semi-parametric nonlinear mixed-effects models to analyze longitudinal data using a Bayesian approach.

This paper provides a new semi-parametric QR joint model for analyzing mixed longitudinal data
using a Bayesian framework where the posterior distribution can be evaluated under various priors. In
the proposed approach, we use the random effects to consider the dependence between continuous and
ordinal responses. In our method, the Latent variable approach is used for modeling the ordinal response.
Also, we use the regression spline method to approximate the model’s non-parametric part. We extended
a Metropolis-Hastings algorithm within the Gibbs sampling to sample from the posterior distribution.

This paper is organized as follows: In Section 2, we first provide the relation between Asymmetric
Laplace distribution and the simple semi-parametric QR (SQR) model. Then a semi-parametric QR
approach for analyzing the joint model of longitudinal ordinal and continuous responses is presented.
Section 3 specifies prior distributions for unknown parameters and formulates a Bayesian hierarchical
model for the semi-parametric QR model defined in Section 2. Section 4 provides some simulation studies
to evaluate the performance of the model. The proposed model is used for analyzing a data set (PIAT),
in Section 5. Some results and discussion are presented in Section 6.

2. SQR joint models
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2.1. Asymmetric laplace distribution and SQR model
Suppose the random variable y has the asymmetric Laplace (AL) distribution, then its probability density
function is

f(y|µ, σ, τ ) = τ(1− τ)

σ
exp

{
−ρτ

(y − µ

σ

)}
, (1)

where µ is a location parameter, σ is scale parameter, τ is skewness parameter, y, µ ∈ R, 0 < τ < 1 and
σ > 0. In equation (1), ρτ (u) is the loss function ([30]) determined by

ρτ (u) = u(τ − I(u < 0)) 0 < τ < 1 (2)

such that I(.) is the indicator function. In AL distribution F
ALD

y|x (µ) = p(y < µ) = τ , it means that µ

is the τth quantile of AL distribution. This feature is one of the attractive properties in the quantile
regression model for analyzing data. The ALD has different mixture representations as shown by [32]. We
use a mixture demonstration of the standard exponential distribution and standard normal distribution
to generate a QR model sampling algorithm. This structure can be found in [32].
Theorem 1
Let U be an exponential variable with mean σ, Z be a standard normal variable and U and Z be
independent of each other. If a random variable Y follows the ALD with density (1), then we can represent
Y as a location-scale mixture of normals given by

Y =
√
aUZ + bU + µ (3)

where a =
2σ

τ(1− τ)
, b = 1− 2τ

τ(1− τ)
and Y ∼ ALD(µ, σ, τ ).

A proof for theorem 1 can be found in [33]. The equation (3) can be written in a hierarchical setup as
follows

Y |U ∼ N(bU + µ, aU),

U ∼ exp(σ).

This arrangement can be used in performing the Bayesian approach. The mean and variance of AL
distribution can be found from (3) as

E(Y ) = µ+
σ(1− 2τ)

τ(1− τ)
, var(Y ) =

1− 2τ + 2τ2

τ2(1− τ)
2 σ2.

see more in [55].
Considering the following simple semi-parametric model for the responses yi,

yi = xT
i βτ + ηi,τ (.) + εi,τ , i = 1, ..., n (4)

where xi is the k × 1 fixed vector of covariates, βτ is the k × 1 vector of unknown parameters, ηi,τ (.) is the
non-parametric part of the model and εi,τ is the error of the model. The error distribution is supposed
to be unknown in the QR model, and it is restricted to have the τ -th quantile to be equal to zero for
0 < τ < 1.

One way to estimate the fixed regression coefficient in the semi-parametric QR model is to minimize
the sum of the asymmetrically weighted absolute errors

min
βτ

n∑
i=1

ρτ (yi − xT
i βτ − ηi,τ (.)) (5)
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where ρ(.) was defined in (2). Considering that (5) is not recognizable at the origin, there is no closed-form
solution for β and a linear programming algorithm can perform the minimization of (5) ([32, 29, 15]).
To implement a Bayesian inference with SQR, suppose that the errors in (4), given a known τ , are
independent and εi,τ ∼ ALD(0, σ, τ). Then a continuous random variable yi given xi have ALD(µi, σ, τ)
where µi = xT

i βτ − ηi,τ (.) is the location parameter. The likelihood function of parameters (βτ and σ)
can be composed based on n independent components of y = (y1, y2, ..., yn) as follows:

L(βτ , σ|y) =
(
τ(1− τ)

σ

)n

exp

{
−

n∑
i=1

ρτ (
yi − µi

σ
)

}
. (6)

The maximum likelihood estimates (MLEs) of βτ and σ are obtained by maximization of Equation (6)
with respect to βτ . This is equivalent to minimizing the loss function in (5) with respect to βτ . The
connection between AL distribution and Bayesian quantile regression first proceeded in [54].

2.2. Monotone equivariance property of QR models
Authors often transform the variable’s scale to get an appropriate model fit or normalize the data. One
of the quantiles’ features is the monotone equivariance property. See more in, [21]. It means that if we
use a monotone transformation g to a random variable, then quantiles of the new random variable are
collected using a similar transformation with the quantile of the untransformed random variable. For
example, if Qτ is the τth quantile of the random variable Y then g(Qτ ) is the τth quantile of g(Y ). QR
model contains monotone equivariance property as well. It means that if g is a monotone function, then
we have

Qτ (g(Yi)|xi) = g (Qτ (Yi|xi)) . (7)

CMR does not hold the above condition. The QR model can reinterpret by using this feature. For more
details, see [21] and [30]. By adopting this feature, a semi-parametric QR joint model can be fitted for
ordinal and continuous data.

2.3. Joint model: Notation and model specification
For modeling the mixed longitudinal ordinal and continuous responses, let ỹ = (ỹij , j = 1, ..., ni, i =
1, ..., n) and y = (yij , j = 1, ..., ni, i = 1, ..., n), where ỹij and yij denote the ordinal with levels l1, l2, . . . , lm
and continuous longitudinal responses, respectively, for the ith subject measured at the jth time. Suppose
that y is relevant to the latent continuous variable, y∗ij , with cut points l1l2, . . . , lm, as follows

ỹij =


1 l0 < y∗ij ≤ l1
2 l1 < y∗ij ≤ l2
...

...
m lm−1 < y∗ij ≤ lm

, (8)

where l0 = −∞ and lm = ∞. The SQR model cannot be straightly used for ordinal data. The monotone
equivariant property (7) and the non-decreasing function (8) provide the necessary conditions for modeling
ordinal data using the SQR model.

One approach to simultaneously perform the joint model analysis of continuous and ordinal responses
is to consider correlations between them. For this purpose, we suggest the following joint model for yij
and y∗ij

yij = xT
1ijβτ +ZT

1ib
(1)
i + ητ (tij) + εyij ,

y∗ij = xT
2ijατ +ZT

2ib
(2)
i + εy

∗

ij , (9)

εyij ∼ ALD(0, σy, τy), ε
y∗

ij ∼ ALD(0, σy∗ , τy∗)
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where xkij = (xkij1, ..., xkijp)
T , k = 1, 2 denotes the vector of p covariates observed at time tij ,

βτ = (β1, ..., βp)
T and ατ = (α1, ..., αp)

T are p× 1 vectors of fixed-effect regression coefficients, Zki =

(zki1, ..., zkiq)
T , k = 1, 2 is a q × 1 vector of covariate connected with random effects, b(k)i = (bi1, ..., biq)

T

is a q × 1 vector of random-effect regression coefficients and bi = (b
(1)
i , b

(2)
i ) such that bi ∼ N(0,Σ), ητ (tij)

is a nonparametric part of the model, εyij and εy
∗

ij are the errors of the model which are independent of
each other. In model (9) we assumed bi’s and εij ’s are independent. Then yij given b

(1)
i s and y∗ij given

b
(2)
i s have AL distribution. It means that

yij |b(1)i ∼ ALD(xT
1ijβτ +ZT

1ib
(1)
i + ητ (tij), σy, τ)

y∗ij |b
(2)
i ∼ ALD(xT

2ijατ +ZT
2ib

(2)
i , σy∗ , τy∗). (10)

So

p(ỹij = c) = p(y∗ij ≤ lc) = F
εy

∗
ij
(lc −ατ +ZT

2ib
(2)
i ) (11)

where F
εy

∗
ij

is the CDF of AL(0, σy∗ , τy∗).
We will fix the variance of y∗ to identify the ordinal response in the joint model (9) by considering

σy∗ = 1. We will also fix one of the cut points in (8). Traditionally, the l0 has to be zero. The more
properties of ordinal model’s identifiability in the structure of a cut point notion is provided in [26].

To fit model (9), we use the regression spline method to handle the unknown nonparametric part
of the model. In this method ητ (tij) can be approximated with a polynomial splines. Let (a1, a2) be
an arbitrary interval and a1 = υ0 < υ1 < ... < υKn

< υKn+1 = a2 be a partition of (a1, a2) into Kn + 1
subintervals Inj = [υj , υj+1) , j = 0, ...,Kn − 1 and InKn = [υKn , a2) ,where the number of internal knots
Kn increases with the sample size. So within any two neighboring knots, Taylor’s expansion up to some
degrees is valid. A regression spline is a piecewise polynomial, which is a polynomial of some degrees
within any two neighboring knots in Inj for j = 0, 1, ...Kn and is joined together at knots properly but
allows discontinuous derivatives at the knots. The key for this method is to approximate ητ (tij) by a
linear combination of a regression spline basis Ψp(tij) = (Ψ0(tij),Ψ1(tij), ...,Ψp−1(tij))

T . Ψp(tij) can be
constructed using any basis such as the truncated power basis ([51, 47, 10]), B-spline basis [9], reproducing
kernel Hilbert space basis ([50]), or wavelet basis, between others. When a truncated power basis or a
B-spline basis is used in the regression spline, we need to specify the knots and select the number of the
basis functions, p, for the proper performance of the regression spline. To select an optimal degree of
regression spline and numbers of knots, that is, optimal sizes of p, the Akaike information criterion (AIC)
or the Bayesian information criterion (BIC) is often applied, see [52]. For given Ψp(t), we can approximate
ητ (t) using the basis vectors. That is,

ητ (tij) ≈ ΨT
p (tij)λp =

p−1∑
k=0

λkΨk(tij) (12)

where λp = (λ0, λ1, ..., λp−1)
T . Thus, the SQR joint model (9) associated with Equation (12) returns

to a parametric QR model. For our model, we set the cubic spline bases with equally spaced knots
Kn =

[
n1/2p+3

]
which was used by [53].

The likelihood function of the unknown parameters in model (9) for given τ and yi = (yi1, yi2, ..., yini
)
T

and y∗
i =

(
y∗i1, y

∗
i2, ..., y

∗
ini

)T can be written as
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L(βτ , σ,λp,ατ , l|yi,y
∗
i , bi) = f(yi,y

∗
i |βτ , σ,λp, bi,ατ , l) (13)

=

ni∏
j=1

f(yij , y
∗
ij |βτ , σ,λp, bi,ατ , l),

=

ni∏
j=1

{
f(yij |βτ , σ, b

(1)
i ,λp)f(y

∗
ij |ατ , b

(2)
i , l)

}
,

=

ni∏
j=1

f(yij |βτ , σ, b
(1)
i ,λp)×

ni∏
j=1

f(y∗ij |ατ , b
(2)
i , l).

And

L(βτ , σ,λp,ατ , l|Y ,Y ∗, b) = f(Y ,Y ∗|βτ , σ,λp, b,ατ , l)

=

n∏
i=1

f(yi,y
∗
i |βτ , σ,λp, bi,ατ , l)

=

n∏
i=1

ni∏
j=1

f(yij |βτ , σ, b
(1)
i ,λp)×

n∏
i=1

ni∏
j=1

f(y∗ij |ατ , b
(2)
i , l),

where Y =
(
yT
1 ,y

T
2 , ...,y

T
n

)T
,Y ∗ =

(
y∗
1
T ,y∗

2
T , ...,y∗

n
T
)T and b =

(
bT1 , b

T
2 , ..., b

T
n

)T . The third equality in
(13) is obtained from the fact that Y and Y ∗ are independent of each other given bi.

As mentioned in the previous section, to generate a sampling algorithm for the quantile regression, we
use a mixture representation based on the exponential and standard normal distributions, which can be
detected in [32]. The stochastic representation (see equation 3 ) in model (9) is used to facilitate some
analytical and numerical computations because working with the AL distribution is not easy. By studying
the following illustration for the error of model (9), we have

εyij =
√
a1uij zij + a2uij

εy
∗

ij =
√

a1u∗
ij z

∗
ij + a2u

∗
ij ,

where a1 =
2σ

τ(1− τ)
, a2 =

1− 2τ

τ(1− τ)
, uij ’s and u∗

ij ’s have standard exponential distribution with mean
σ and 1, respectively. zij ’s and z∗ij ’s have standard normal distribution. Therefore, the conditional
distribution of εyij given uij and εy

∗

ij given u∗
ij are

εyij |uij ∼ N (a2uij , a1uij)

εy
∗

ij

∣∣u∗
ij ∼ N

(
a2u

∗
ij , a1u

∗
ij

)
then

yij |uij , b
(1)
i ∼ N (µij , a1uij)

y∗ij |u∗
ij , b

(2)
i ∼ N

(
µ∗
ij , a1u

∗
ij

)
⇒ ỹij |u∗

ij , b
(2)
i ∼ DU(φ) (14)

where µij = a2uij + E(yij |b(1)i ), µ∗
ij = a2u

∗
ij + E(y∗ij |b

(2)
i ) and DU(φ) indicates discrete uniform

distribution on vector of parameters φ = (φij,1, φij,2, ..., φij,m).
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The likelihood function of the refreshed parameters for joint model is given by
L
(
βτ , σ,λp,ατ , l|Y, Ỹ , b, u, u∗) = f(Y, Ỹ |βτ , σ,λp,ατ , l, b, u,u

∗)

=

n∏
i=1

ni∏
j=1

f
(
yij , ỹij |βτ , σ,λp,ατ , bi, l, uij , u

∗
ij

)
=

n∏
i=1

ni∏
j=1

f
(
yij |βτ , σ,λp, bi

(1), uij

)
×

n∏
i=1

ni∏
j=1

f
(
ỹij |ατ , bi

(2), l, u∗
ij

)
, (15)

where Y =
(
yT
1 ,y

T
2 , ...,y

T
n

)T , Ỹ =
(
ỹT
1 , ỹ

T
2 , ..., ỹ

T
n

)T , b =
(
bT1 , b

T
2 , ..., b

T
n

)T , l = (l1, l2, ..., lm)
T , u =(

uT
1 ,u

T
2 , ...,u

T
n

)T , u∗ =
(
u∗
1
T ,u∗

2
T , ...,u∗

n
T
)T and

f
(
yij |βτ , σ, b

(1)
i , u∗

ij

)
=

1

γij
√
2π

exp

{
−1

2

(
yij − µij

γij

)}

f
(
ỹij |ατ , b

(2)
i , l, uij

)
= p(ỹij = k|ατ , b

(2)
i , l, u∗

ij)

= φ(ij, k) = Φ

(
lk − µ∗

ij

γ∗
ij

)
− Φ

(
lk−1 − µ∗

ij

γ∗
ij

)
in which

γij =

√
2uijσy

τ(1− τ)
, γ∗

ij =

√
2u∗

ij

τ(1− τ)
.

3. Bayesian inferences

This section performs the Bayesian approach using MCMC methods to estimate the previous
section’s model parameters. Bayesian approaches provide convenient alternative inference tools for
quantile regression. Even though conventional quantile regression does not need any parametric
distributional assumptions, a working likelihood is required to carry out Bayesian analysis. Suppose
Θ = (βτ ,ατ , σy,λp, b,u,u

∗, l) be the vector of unknown parameters in (15). We allocate independent
prior distributions for each elements of Θ. We consider the following priors in the Bayesian hierarchical
framework to the SQR model parameters for i = 1, 2, . . . , n, j = 1, 2, . . . , ni and k = 1, ...,m as

yij |b(1)i , uij ,βτ , σy ∼ N (µij , a1uij) ,

ỹij |b(2)i , u∗
ij ,ατ ∼ DU (φij,1, φij,2, ..., φij,m) ,

bi|Σb ∼ N (0,Σb) ,

uij ∼ exp(σ),

u∗
ij ∼ exp(1),

ατ ∼ N (µα,Ω1) ,

βτ ∼ N (µβ ,Ω2) ,

λp ∼ N (µλ,Ω3) ,

lk|l1, l2, ..., lk−1 ∼ TN (µlk , σlk , lk−1,∞) ,

Σb ∼ IW (Ω4, ω1) ,

σy ∼ IG (ω2, ω3) ,

(16)
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such that µij , φij,k and a1 are defined in the previous sections and ωr(r = 1, 2, 3) are constants. The hyper-
parameter matrices Ωs (s = 1, ..., 4) can be assumed to be diagonal for convenient implementation. IG
and IW also indicate inverse gamma and inverse Wishart distributions, respectively. An MCMC method,
such as the Gibbs sampling algorithm, can perform Bayesian analysis as a numerical method. We need
to determine the full conditional distributions of parameters to receive this goal. Since the posterior
distributions are analytically intractable, we can use a Metropolis-Hastings algorithm to generate the
parameters’ full-conditional distributions.

3.1. Convergence diagnostic and Deviance information criteria (DIC)
One of the most critical steps of the Bayesian MCMC algorithm is to determine the chain’s convergence
and the burn-in period’s length, typically assessed using diagnostics tools. For this aim, we use several
chains with several initial values and then analyse their behaviours. Therefore chains will be converged
when they begin to generate the same values. The Gelman–Rubin diagnostic ([17]) assesses MCMC
convergence by analysing the difference between multiple Markov chains. This method evaluated the
convergence by comparing the estimated Inter-chain and Intra-chains variances for each model parameter.
Significant differences between these variances indicate non-convergence. Let M be the number of chains
with length N , although the chains may be of different lengths. The same-length opinion is used for
convenience and simplifies the formulas. For a model parameter θ, let {θmt}Nt=1 be the mth simulated
chain, m = 1, . . . ,M . Let θ̂m and σ̂2

m be the sample posterior mean and variance of the mth chain, and let
the overall sample posterior mean be θ̂ = (1/M)

∑M
m=1 θ̂m. The between-chains and within-chain variances

are given by

B =
N

M − 1

M∑
m=1

(θ̂m − θ̂)2

W =
1

M

M∑
m=1

σ̂2
m

Under certain stationarity conditions, the pooled variance is as follows

V̂ =
N − 1

N
W +

M + 1

MN
B

then
R̂ =

V̂

W

The chains will be converging If the produced data-size is large. The Intra-chain variance should be
relatively small than the Inter-chain variance; thus, R goes to one. In other words, R values greater than
one show non-convergence.

DIC is a metric used for model comparison in the Bayesian approach. This criterion is a reduced version
of the DIC introduced by [48]. DIC consists of two parts based on the posterior distribution. The first part,
the posterior mean, measures the goodness of fit and the second part, the effective number of parameters,
is the penalty for increasing model complexity. The DIC formulation is:

DIC = D̄(θ) + pD,

where pD = D̄(θ)−D(θ̄), and D(θ) = Eθ|y − 2 [log (f(y|θ))]. D̄(θ) and θ̄ are the posterior mean estimates
of D(θ) and θ, respectively. Additionally y = (y1, y2, . . . , yn) is the complete data with density f(y |θ ) and
θ is the vector of unknown parameters. We can obtain a Monte Carlo approximation of DIC Utilizing the
MCMC samples of the posterior distribution. The lowest value of DIC indicates a better fit of a model
to the observations.
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4. Simulation

To specify the proposed SQR joint model’s performance, we carry out some MCMC simulation studies.
Three scenarios for simulation study are considered such that the continuous response distribution is
ALD with skew parameters τ = 0.25, 0.50, and 0.75. Each generated dataset is fitted by a semi-parametric
Quantile Regression joint Model (SQRJM) for τ = 0.25, τ = 0.5 and τ = 0.75 and later we compare
performance of our method with that of a standard method. These datasets are analyzed by a Classic
Mean Regression joint Model (CMRJM). The models’ performances are evaluated using two criteria: the
relative bias (R.Bias) and root of mean-squared errors (RMSE). These are given by

R.Bias =
1

N

N∑
l=1

(
θ̂l − θ

θ

)

RMSE =

√√√√ 1

N

N∑
l=1

(
θ̂l − θ

)2
where θ̂l is the estimate of θ for the lth sample, and N is the number of simulated samples (N =100 in
this section). We run the Gibbs sampler algorithm for 10,000 iterations, and a burn-in period of 5000
iterations are chosen. The last 5000 iterations are considered to get the Bayesian estimation. To fit our
suggested model to produce data in a Bayesian structure, we use non-informative prior distributions
to estimate parameters by considering (µβ,Ω2) = (03, 100I3), (µα,Ω1) = (04, 100I4), (µl, σl) = (0, 100)
and (ω2, ω3) = (0.01, 0.01) in Equation (16). Also, an inverse Wishart prior distribution with parameters
(Ω4, ω1) = (I2, 5) are considered for Σb. The MCMC method is performed using OpenBUGS software
which interacts with R software by R2OpenBUGS package. This software is available online free of cost.
See [41] and [48].

In this simulation study, we generate the data set in three situations i.e. the continuous response is
assumed to have the AL distribution for τ = 0.25, 0.50, and 0.75. We generate 100 data sets (iterations)
based on the above mentioned three cases. Each generated dataset is fitted by SQRJMs for one of
τ = 0.25 or τ = 0.5 or τ = 0.75 that the data is generated from and CMRJM. This simulation performs
longitudinal studies with n = 250 and n = 500 subjects that the responses have been measured 4 times.
The continuous and ordinal longitudinal responses are sampled from the following SQRJM for i = 1, 2, ..., n
and j = 1, 2, 3, 4

yij = β0 + β1xij1 + β2xij2 + ηij(t) + b1i + εyij

y∗ij = α0 + α1xij1 + α2xij2 + α3tj + b2i + εy
∗

ij (17)

where (β0, β1, β2) = (−1, 3, 2), (α1, α2, α3, α4) = (−1, 1,−1, 1), tj = j and ηij(t) is approximated with cubic
polynomial 3(1 + t+ t2 + t3). xij1 and xij2 are generated from Bernoulli distribution with p = 0.5

and standard normal distribution, respectively. Also εyijs and εy
∗

ij s sampled from ALD(0, σy, τ) and
ALD(0, 1, τ), respectively. The vector of random effects b is sampled from a bivariate normal distribution
with mean 0 and the following covariance matrix

Σb =

(
1 0.5
0.5 1

)
.

(l0, l1, l3) = (0, 10, 20) is the vector of cut points that used in the ordinal model. Thus, the ordinal responses
in model (17) are sampled according to

ỹij =


1 y∗ij ≤ l0
2 l0 < y∗ij ≤ l1
3 l1 < y∗ij ≤ l2
4 y∗ij > l2

.
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Two parallel MCMC chains with different starting values are performed for 10,000 iterations after a
burn-in period of 5000 iterations. In each iteration, the convergence of chains is controlled by using the
Gelman-Rubin diagnostic test. If the chains are not converged based on this in each iteration, then the
sample is discarded.

Table 1. Results of simulation study from fitting SQRJM(0.25) and CMRJM to generated data by SQRJM(0.25).

SQRJM(0.25) CMRJM
n parameters Real Est. SD R.Bias RMSE Est. SD R.Bias RMSE
250 β0 -1 -1.077 0.125 0.077 0.147 1.216 0.333 -2.216 2.241

β1 3 2.943 0.187 -0.019 0.195 2.658 0.280 -0.114 0.443
β2 2 2.084 0.097 0.042 0.129 1.936 0.143 -0.032 0.156
α0 -1 -0.998 0.336 -0.002 0.336 -0.290 7.176 -0.710 7.211
α1 1 1.057 0.302 0.057 0.307 -0.356 7.192 -1.356 7.319
α2 -1 -0.749 0.145 -0.251 0.290 -0.301 6.895 -0.699 6.931
α3 1 0.899 0.143 -0.101 0.175 -0.105 7.227 -1.105 7.311
σ11 1 0.517 0.173 -0.483 0.513 0.753 0.385 -0.247 0.457
σ12 0.5 0.302 0.204 -0.396 0.284 0.057 0.913 -0.887 1.015
σ22 1 0.697 0.432 -0.303 0.527 7.010 0.258 6.010 6.016
σy 1 0.984 0.033 -0.016 0.037 4.015 0.099 3.015 3.016
l1 10 9.370 0.427 -0.063 0.762 12.213 0.714 0.221 2.325
l2 20 20.056 1.387 0.003 1.388 16.356 1.198 -0.182 3.836

500 β0 -1 -0.948 0.115 -0.052 0.127 2.007 0.260 -3.007 3.018
β1 3 3.011 0.155 0.004 0.156 2.386 0.302 -0.205 0.684
β2 2 2.139 0.081 0.070 0.161 1.932 0.141 -0.034 0.156
α0 -1 -0.910 0.220 -0.090 0.238 0.716 7.069 -1.716 7.274
α1 1 1.213 0.208 0.213 0.298 0.172 6.965 -0.828 7.014
α2 -1 -0.897 0.117 -0.103 0.156 0.017 6.994 -1.017 7.067
α3 1 0.911 0.092 -0.089 0.128 -0.029 7.187 -1.029 7.261
σ11 1 1.118 0.193 0.118 0.226 0.913 0.581 -0.087 0.588
σ12 0.5 0.389 0.183 -0.221 0.214 1.899 1.518 2.799 2.064
σ22 1 0.403 0.197 -0.597 0.629 2.321 1.073 1.321 1.702
σy 1 1.015 0.025 0.015 0.029 4.330 0.119 3.330 3.332
l1 10 9.516 0.301 -0.048 0.570 7.550 1.162 -0.245 2.712
l2 20 18.543 0.797 -0.073 1.660 16.134 1.484 -0.193 4.141

Est.: estimate of parameter, S.D.: posterior standard deviation, R.bias: relative biase, RMSE: root of
mean-square errors.

Table 1 summarizes simulation results which include estimates of parameters, standard deviations,
relative bias and root of MSE (RMSE) for the SQRJM(0.25) and CMRJM with n = 250 and n = 500
subjects. The relative biases, standard errors, and RMSEs of estimated parameters is decreased in
SQRJM(0.25) when the number of subjects is increased. This feature shows that the recommended
method provides consistency properties of estimates (see Figure 2). In spite of having low standard
deviation among the estimated parameters in CMRJM the performance of the SQRJM is better than the
CMRJM because it has lower relative biases and RMSE among the estimated parameters. Table 2 and
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Table 2. Results of simulation study from fitting SQRJM(0.5) and CMRJM to generated data by SQRJM(0.5).

SQRJM(0.50) CMRJM
n parameters Real Est. SD R.Bias RMSE Est. SD R.Bias RMSE
250 β0 -1 -1.002 0.136 0.002 0.136 -1.183 0.157 0.183 0.241

β1 3 2.967 0.193 -0.011 0.195 3.049 0.224 0.016 0.229
β2 2 2.007 0.097 0.004 0.097 1.918 0.109 -0.041 0.136
α0 -1 -0.996 0.292 -0.004 0.292 -0.542 0.119 -0.458 0.473
α1 1 0.945 0.264 -0.055 0.269 0.404 0.111 -0.596 0.606
α2 -1 -0.984 0.142 -0.016 0.143 -0.427 0.059 -0.573 0.576
α3 1 0.994 0.116 -0.006 0.117 0.442 0.041 -0.558 0.560
σ11 1 0.942 0.211 -0.058 0.219 0.956 0.283 -0.044 0.286
σ12 0.5 0.511 0.195 0.022 0.195 0.342 0.098 -0.315 0.186
σ22 1 0.788 0.355 -0.212 0.414 0.285 0.077 -0.715 0.719
σy 1 1.004 0.034 0.004 0.035 2.899 0.073 1.899 1.900
l1 10 10.000 0.607 0.000 0.607 8.605 0.173 -0.140 1.406
l2 20 19.257 3.932 -0.037 4.002 17.265 5.157 -0.137 5.853

500 β0 -1 -0.994 0.136 -0.006 0.136 -1.087 0.161 0.087 0.183
β1 3 3.015 0.192 0.005 0.193 3.198 0.223 0.066 0.298
β2 2 2.015 0.096 0.008 0.097 2.007 0.108 0.003 0.109
α0 -1 -0.960 0.290 -0.040 0.293 -0.165 7.422 -0.835 7.469
α1 1 0.974 0.261 -0.026 0.262 0.452 7.425 -0.548 7.445
α2 -1 -0.977 0.142 -0.023 0.144 -0.518 7.127 -0.482 7.143
α3 1 0.980 0.117 -0.020 0.119 -0.335 7.589 -1.335 7.706
σ11 1 0.903 0.206 -0.097 0.228 0.477 0.210 -0.523 0.563
σ12 0.5 0.426 0.192 -0.149 0.205 5.748 8.399 10.496 9.903
σ22 1 0.745 0.347 -0.255 0.431 1.321 1.916 0.321 1.943
σy 1 1.008 0.035 0.008 0.036 2.990 0.076 1.990 1.991
l1 10 9.965 0.603 -0.003 0.604 9.660 2.561 -0.034 2.583
l2 20 19.400 4.010 -0.030 4.055 24.060 3.364 0.203 5.273

Est.: estimate of parameter, S.D.: posterior standard deviation, R.bias: relative biase, RMSE: root of
mean-square errors.

Table 4 contains estimates of parameters, standard deviations, relative biases and RMSEs estimates by
models SQRJM(0.5) and CMRJM and SQRJM(0.75) and CMRJM, respectively. The results from Tables
2 and 4 have interpretation similar to those in Table 1. Figure 2 shows that how the RMSE varies with
the variation of the sample size n and consistent estimators in the SQRJM(0.75) model when data are
generated by SQRJM(0.75). For all scenarios considered in this simulation study, it is of interest to see
that when an estimated bias for an estimator is negative that parameter is underestimated and when an
estimated bias for an estimator is positive that parameter is overestimated. To assess the computational
time and efficiency, we compute the elapsed time for fitting the different methods. The computation time
to estimate for each of the 100 simulated datasets using a computer equipped with an Intel(R) Core (TM)
i5-2500 CPU, and 4.00 GB RAM for different models are given in Table 3.
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Table 3. The elapsed time (in seconds) for fitting the different models.

models n = 250 n = 500

SQRJM(0.25) 1556.34 3326.81
SQRJM(0.50) 1408.61 3234.99
SQRJM(0.75) 1499.79 3292.36
CMRJM 701.56 1754.41

Figure 2. RMSE of parameter estimates in the SQRJM(0.75) model for n = 250 and 500, (parameter estimates
are given inside the plot with the sign “◦”).

5. Application

In this section, to specify the performance of the proposed SQRM, we analyse a set of real data i.e.
the Peabody Individual Achievement Test (PIAT) data set. The PIAT data set was previously analyzed
by [43], [39], and [19]. The PIAT data were prepared at two-year intervals between 1986 and 1992 and
contains both the mother and her child’s interviews. This paper has selected two interesting continuous
and ordinal responses from the dataset as the primary variables for modeling. The continuous response is
the child’s reading recognition skill (read) and the ordinal response is the child’s antisocial behavior (anti).
The study’s main idea was to specify the connection between parental response on a child’s antisocial
behavior and the child’s reading recognition skill.

Children’s reading recognition skill was measured by the PIAT reading recognition subtests. The
reading recognition subtests measure word recognition and pronunciation ability. These components are
considered essential to reading achievement. First, the children read a word silently, then say it aloud. the
PIAT Reading Recognition contains 84 items, each of them has four possible response, which increases
in difficulty from preschool to high school levels, one of them is the correct response. Skills evaluated
containing matching letters, naming names, and reading single words aloud. The reading recognition
obtained by summing the total number of correct items for the 84 items subtest and scores could range
in value from 0 to 84. The final reading recognition scores were divided by 10. These data consist of 221
children and mothers who had perfect answers at all time. These individuals data have been studied as
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Table 4. Results of simulation study from fitting SQRJM(0.75) and CMRJM to generated data by SQRJM(0.75).

SQRJM(0.75) CMRJM
n parameters Real Est. SD R.Bias RMSE Est. SD R.Bias RMSE
250 β0 -1 -0.997 0.152 -0.003 0.152 -3.645 0.205 2.645 2.653

β1 3 3.045 0.213 0.015 0.218 2.996 0.286 -0.001 0.286
β2 2 1.994 0.108 -0.003 0.108 2.003 0.146 0.001 0.146
α0 -1 -0.914 0.325 -0.086 0.337 -0.837 1.742 -0.163 1.750
α1 1 0.964 0.284 -0.036 0.286 0.283 2.007 -0.717 2.131
α2 -1 -0.998 0.153 -0.002 0.153 -0.279 1.651 -0.721 1.801
α3 1 0.976 0.123 -0.024 0.126 0.269 1.692 -0.731 1.843
σ11 1 0.919 0.252 -0.081 0.265 0.611 0.344 -0.389 0.520
σ12 0.5 0.445 0.223 -0.110 0.230 1.361 2.068 1.722 2.240
σ22 1 0.742 0.374 -0.258 0.455 6.021 0.971 5.021 5.114
σy 1 1.007 0.035 0.007 0.035 4.224 0.104 3.224 3.226
l1 10 10.704 1.488 0.070 1.646 13.301 2.973 0.330 4.442
l2 20 16.872 4.545 -0.156 5.517 27.022 5.196 0.351 8.735

500 β0 -1 -0.971 0.108 -0.029 0.111 -3.639 0.146 2.639 2.643
β1 3 2.989 0.151 -0.004 0.151 2.986 0.205 -0.005 0.205
β2 2 2.008 0.076 0.004 0.077 2.014 0.105 0.007 0.106
α0 -1 -0.952 0.228 -0.048 0.233 -0.796 2.114 -0.204 2.124
α1 1 0.983 0.198 -0.017 0.199 0.260 2.355 -0.740 2.468
α2 -1 -0.985 0.107 -0.015 0.108 -0.286 2.051 -0.714 2.172
α3 1 0.976 0.087 -0.024 0.091 0.216 2.055 -0.784 2.199
σ11 1 0.956 0.180 -0.044 0.186 0.685 0.313 -0.315 0.444
σ12 0.5 0.498 0.165 -0.004 0.165 2.089 2.092 3.179 2.627
σ22 1 0.742 0.293 -0.258 0.391 2.324 0.809 1.324 1.552
σy 1 1.002 0.024 0.002 0.024 4.237 0.119 3.237 3.240
l1 10 10.219 0.913 0.022 0.939 11.693 1.076 0.169 2.006
l2 20 17.067 4.398 -0.147 5.286 25.511 5.591 0.276 7.851

Est.: estimate of parameter, S.D.: posterior standard deviation, R.bias: relative biase, RMSE: root of
mean-square errors.

complete data in this paper. Dataset also includes some covariates which will be used in our analysis:
child’s gender (Gender, girl=0 and boy=1), mother’s age at first time-point (Momage, from age 21 up
to age 29), child’s age at first time-point (Kidage, from age six up to age 8 ) and time (Time=1, 2, 3, 4
corresponds to the first, second, third and fourth time-points, respectively).

5.1. Model implementation
We use linear combinations of cubic splines with equally spaced knots to approximate the nonparametric
functions ητ (t) (see section 2.2). There are 221 children and mothers, then Kn =

[
n1/2p+3

]
= 1. The

following joint model is considered for reading ability (read) and latent variable antisocial behavior (anti∗),
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for i = 1, 2, . . . , 221 and j = 1, 2, 3, 4

readij = β1Genderi + β2Kidagei + β3Momagei + ητ (tij) + b1i + εreadij ,

anti∗ij = α0 + α1Genderi + α2Kidagei + α3Momagei + α4tij + b2i + εantiij ,
(18)

where bi = (b1i, b2i) is the normally distributed vector of random effects with mean 0 and covariance
matrix Σb and εreadij and εantiij are independently follows as AL(0, σ, τ) and AL(0, 1, τ), respectively. The
continuous covariates (Momage and Kidage) are also standardized. η(tij) is a non-parametric part of the
model approximated by linear combinations of cubic splines. For Bayesian inference, we set Ψ0(t) ≡ 1
and take the truncated power basis in the approximations (12) that suggesting the following function for
ητ (t).

ητ (t) = λ0 + λ1t+ λ2t
2 + λ3t

3 + λ4(t− υ1)
3.

According to equations (11), the corresponding cumulative probabilities of antiij at the cth (c = 1, 2)
category are derived from (18) as

p(antiij ≤ c|α, b2i, l) = FAL(lc − (α0 + α1Genderi + α2Kidagei

+ α3Momagei + α4tj + b2i)),
(19)

where FAL is the CDF of AL distribution with parameters (0, 1, τ) and relation between anti∗ij and antiij
is given by

antiij = I(−∞,l1](anti
∗
ij) + 2I(l1,l2](anti

∗
ij) + 3I(l2,∞)(anti

∗
ij).

The prior distributions used in the Bayesian implementation were similar to the simulation study’s
prior distributions. We run two parallel MCMC chains with distinctive initial values for 60,000 iterations,
and ignore the first 20,000 iterations to do the Bayesian inference. Figure 3 shows the output diagrams
of the Gelman-Rubin diagnostics for SQRJM(0.75) of different parameters. Three curves exist in each
plot of which one is a horizontal line, which shows the value of one. The curves under the horizontal line
display V̂ in green color and W in blue color, and the top curve above the horizontal line display the
ratio of V̂ and W , i.e. R̂. As it is seen, when the number of replication increases, V̂ and W are steadying,
and R̂ is conducing to one. Figure 3 shows the convergence of the MCMC chains.
We fit four different models to PIAT data. In order to compare the models, the DIC criterion is used. In
the fitted models, we use mean regression and the τth QR model for responses by choosing τ = 0.25, 0.50
and 0.75. The following non-informative prior distributions are employed for a Bayesian implementation.

β ∼ N3(03, 100I3), β = (β1, β2, β3)
′
,

λ ∼ N5(05, 100I5), λ = (λ0, λ1, λ2, λ3, λ4)
′
,

α ∼ N4(04, 100I4), α = (α0, α1, α2, α3, α4)
′
,

Σb ∼ IW (I2, 5),

σy ∼ IGamma(0, 01, 0, 01).
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Figure 3. Gelman-Rubin diagnostic plots for all parameters in the SQRJM(0.75).

5.2. Results of data analysis
Bayesian modeling approach in the SQR joint model at the three quantiles of τ = 0.25, 0.50, and 0.75 was
used to fit the PIAT data. Results in Table 5 show posterior mean, standard deviation, and Bayesian
criteria for comparing models. Results of Table 5 are obtained using SQRJM(0.25), SQRJM(0.50),
SQRJM(0.75), and CMRJM. According to the results of Table 5, SQRJM(0.25) has the lowest DIC,
and by this continuous model, there are no significant differences between boys’ and girls’ reading ability.
The mother’s age and her child’s age have significant effects on reading ability. It shows that older mothers
can increase their children’s reading ability more than younger mothers, and older children also have a
higher reading ability than younger children. As we expect, time is significant in continuous models.
It means that children’s reading ability is developing over time. This result follows what we observed in
Figure 1. Additionally, antisocial behavior depends on the child’s gender in the ordinal model. Considering
the α1 is significant, this result is obtained that boys more antisocial behavior than girls at all time points.
The other covariates (Momage, Kidage and time) do not affect antisocial behavior.

According to DIC values in Table 5, the SQRJM(τ) model is an excellent fit compared to that of the
CMRJM model. SQRJM(0.25) provides the lowest DIC value, then SQRJM(0.25) gives the most suitable
model in existing models based on DIC values.

6. Conclusion

This paper aimed to use the SQJRM for mixed continuous and ordinal longitudinal data using random
effects. However, QR originally does not require any distributional assumption; an AL distribution was
allocated to the mixed effect model’s error for continuous data in our approach. The QR model is usually
used for continuous responses, but it could not be handled straight to the ordinal response. In this
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Table 5. Results of analyzing real data from fitting SQRJM(τ = 0.25, 0.50 and 0.75) and CMRJM to PIAT data.

SQRJM(τ = 0.25) SQRJM(τ = 0.50)
parameters Est. S.D. 95% PCI Est. S.D. 95% PCI
β1 -0.128 0.117 (-0.322 , 0.066) -0.109 0.117 (-0.303 , 0.083)
β2 0.376 0.108 (0.156 , 0.549) 0.385 0.091 (0.235 , 0.537)
β3 0.108 0.032 (0.051 , 0.153) 0.112 0.030 ( 0.065 , 0.160)
λ0 -3.558 1.211 (-5.614 , -1.666) -4.807 1.321 ( -6.858 , -2.474)
λ1 1.042 0.841 (0.274 , 3.076) 2.094 1.685 (0.175 , 4.701)
λ2 0.448 0.255 (0.079 , 0.973) -0.357 0.522 ( -1.165 , 0.363)
λ3 -0.041 0.025 (-0.094 , -0.005) 0.034 0.050 (-0.036 , 0.115)
λ4 -0.202 0.048 (-0.282 , -0.129) -0.042 0.083 (-0.155 , -0.014)
σy 0.167 0.006 (0.157 , 0.178) 0.227 0.008 (0.214 , 0.241)
α1 1.316 0.440 (0.604 , 2.047) 1.315 0.449 (0.583 , 2.064)
α2 0.232 0.349 (-0.287 , 0.811) 0.137 0.338 (-0.487 , 0.661)
α3 -0.025 0.123 (-0.200 , 0.219) -0.013 0.123 (-0.217 , 0.189)
α4 0.098 0.108 (-0.078 , 0.275) 0.098 0.110 (-0.083 , 0.280)
l1 -0.067 3.008 (-5.280 , 4.899) -0.433 3.289 (-5.962 , 4.593)
l2 8.511 3.029 (3.348 , 13.550) 8.152 3.283 (2.673 , 13.240)
σ11 0.647 0.070 (0.541 , 0.770) 0.650 0.072 (0.540 , 0.776)
σ12 -0.622 0.197 (-0.956 , -0.312) -0.669 0.202 (-1.013 , -0.352)
σ22 6.962 1.461 (4.828 , 9.570) 7.005 1.473 (4.836 , 9.635)
DIC 2144 2247

SQRJM(τ = 0.75) CMRJM
parameter Est. S.D. 95% PCI Est. S.D. 95% PCI
β1 -0.069 0.118 (-0.262 , 0.127) -0.091 0.116 (-0.281 , 0.101)
β2 0.375 0.096 (0.222 , 0.530) 0.379 0.092 (0.230 , 0.532)
β3 0.116 0.030 (0.067 , 0.165) 0.116 0.030 (0.067 , 0.167)
λ0 -3.644 1.024 (-5.331 , -1.854) -6.700 2.011 (-9.784 , -2.984)
λ1 1.011 1.184 (-1.442 , 2.682) 5.015 2.985 (-0.796 , 9.836)
λ2 -0.013 0.369 (-0.540 , 0.748) -1.249 0.921 (-2.726 , 0.534)
λ3 0.003 0.036 (-0.067 , 0.054) 0.116 0.086 (-0.048 , 0.253)
λ4 -0.063 0.060 (-0.180 , -0.026) -0.096 0.144 (-0.176 , -0.009)
σy 0.180 0.007 (0.169 , 0.191) 0.614 0.017 (0.587 , 0.642)
α1 1.316 0.447 (0.591 , 2.061) 0.497 0.166 (0.226 , 0.772)
α2 0.135 0.356 (-0.474 , 0.647) 0.087 0.139 (-0.134 , 0.319)
α3 -0.022 0.109 (-0.187 , 0.166) -0.013 0.042 (-0.086 , 0.058)
α4 0.098 0.111 (-0.085 , 0.281) 0.048 0.041 (-0.020 , 0.115)
l1 -0.665 3.393 (-6.657 , 4.487) -0.113 1.412 (-2.495 , 2.265)
l2 7.918 3.395 (1.924 , 13.120) 3.069 1.420 (0.687 , 5.474)
σ11 0.666 0.075 (0.551 , 0.796) 0.631 0.070 (0.524 , 0.752)
σ12 -0.654 0.202 (-0.997 , -0.336) -0.236 0.073 (-0.360 , -0.120)
σ22 6.993 1.481 (4.811 , 9.628) 1.009 0.193 (0.721 , 1.350)
DIC 2307 2973
Est.: estimate of parameter, S.D.: posterior standard deviation, PCI: posterior credible interval.
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situation, the continuous latent variable mixed-effect model was used for modeling the ordinal responses,
such that the latent variable has an asymmetric Laplace distribution given random effects. Consequently,
the QR model is performed to ordinal responses using the monotone equivariance feature of quantiles—
the connection between these two models being established with some correlated random effects. The
non-parametric part of the model is approximated by regression spline. As shown, the suggested model
can be fitted under a Bayesian structure via MCMC methods. The simulation was carried out to study
the performance of the proposed method. According to this, the performance of the suggested model
was good. We earned consistent and desirable results and analysed the PIAT data. The results specified
that SQJRM has a better performance than that of the CMRJM. Furthermore, considering the proposed
model to analyse data with missing responses is an ongoing research.
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