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Abstract A novel method for solving optimal tracking control of linear quadratic time-varying systems with different
forms of time delays in state and input variables and with constraints is presented in this paper. Using the concepts of two
powerful wavelets, Legendre and Chebyshev wavelets, we convert the optimal tracking problem to a static optimization one.
The method is presented in a general from by which one can utilize it by other wavelets. The proposed method has the ability
to solve the problems with systems of integer and fractional orders. After determining open-loop solutions of time-delay
tracking systems, closed-loop suboptimal controller is designed. A highly successful wavelet-based suboptimal controller is
introduced in this work. This alternative method is applied on some optimal tracking systems.
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1. Introduction

The mathematical simulation of a time-delay system leads to a system of differential equations of delayed
(retarded) type [1]. One class of these equations, the integro-differential equations, was first studied by Volterra
who investigated time delay phenomena in various systems [2]. In optimal control problems, when we try to keep
the output or state near a desired output or state, we are dealing with tracking problems. We find that in both state
and output time-delay or regulator systems, the desired (reference) state or output is zero and in time-delay or
regulator tracking system the error is to be made zero [3]. Time-delay is a common phenomenon in engineering
problems [4]. Optimal time-delay tracking control as a combination of time-delay optimal control and tracking
control, aims at finding the optimal control law to minimize the given performance index to make the system
output track the reference in an optimal way. The tracking system is widely used in aerospace and mechanical
systems, robot control. For example, consider an antenna control system to track an aircraft.

Most previous studies which have been done to solve the optimal time-delay tracking control problem, used
discrete-time strategies. Ref. [5] presented an iterative method by using discretization to find the suboptimal control
of a linear quadratic time-varying system with multiple delays. [6] presented a discretization approach by using the
Newton center interpolation formula and the linear interpolation techniques for systems with multiple discrete and
distributed time delays. In [7] an optimal tracking controller for discrete time-delay systems based on a sensitivity
approximation approach was designed in which the problem under consideration was transformed into a series of
difference equations without time-advance on delayed terms. In [8], the authors used a successive approximation
method for delays systems with constant matrices and the resulting problems form two-point boundary value
problems (TPBVPs). [9] proposed a suboptimal tracking method which obtained by finite iterations of a solution
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of TPBVPs; for continuous-time control systems it provides good methodology but obtaining the solutions of
these TPBVPs is difficult. [10] by introducing a sensitively parameter, the discrete time systems transformed into
series of TPBVPs. In [11] by applying an approximation approach of differential equations, TPBVP derived from
the optimal tracking problem was transformed into a sequence of linear TPBVPs without delays. Ref. [12] used
a discrete-time strategy to design an optimal controller for multiple-input and multiple-output continuous time
systems with multiple delays in states, inputs and outputs which the Chebyshev quadrature formula together
with a linear interpolation method was employed to get an extended discrete-time model from the continuous-
time multiple time-delays system. [13] converted a continuous-time input-state delayed system into an equivalent
discrete-time input-state delayed model and its extended discrete-time delay-free model. Refs. [14, 15] proposed a
discrete variable transformation by which discrete-time linear-quadratic systems with multiple input delays were
transformed into equivalent delay-free ones. [16] proposed an adaptive dynamic programming algorithm to deal
with the optimal tracking problem for delay discrete-time systems. Also, there are some works which studied free-
delay linear tracking optimal control, for example, [17] continues-time systems, [18] discrete-time systems and [19]
time-varying systems. A discrete-time methodology has notable disadvantages. For example, the discretized system
is described by using the extended high-order state-space equation. Computational difficulties with the discrete-
time strategy occur in the algorithm, and in the case we have to impose some constraints to the system. In this paper
we introduce a novel method to solve constrained linear quadratic time-delay tracking optimal control systems. By
using the parameterization method we convert the original problem to a static optimization one. This state and
control parameterization method is based on Legendre and Chebyshev wavelets which consist of Legendre and
Chebyshev scaling functions. The main motivations of this research are summarized as:

• A continuous-time model of the optimal tracking control of a linear quadratic time-varying system with multiple
delays is obtained. A major advantage of continuous-time models is that they avoid dependence on a particular
timescale. Moreover, many standard numerical procedures are available to solve the simulated model.

• In the optimal tracking control, we would like on one hand, to keep the error small, but on the other hand, we
must not pay higher cost to large inputs; hence, we have to try various values of the weighting matrices. From this
fact, we conclude that we need a method provides good tracking in which with no concern about the algorithm
of the solution we can change these matrices.

• Physical considerations imply that some constraints should be imposed on the optimal tracking control systems
and unconstrained systems are less involved. An efficient method for solving a time-delay optimal tracking
control problem should easily be able to resolve the problem in the cases there are constraints on the controls
and states; in this case, the method can incorporate them directly into the model of the problem.

• The proposed method has a good future and a high degree of flexibility. For example, it is possible that there is
a reverse time term like x(tf − t) in the state equation and/or a time-delay term like u(t− h) in a performance
index, or, since fractional order dynamics appear in engineering problems [26], the state quation is fractional
order; the method is capable of executing such cases. Also, the method must guarantee intersample constraint
satisfaction and can be used to solve the optimal tracking problem in situations where there are multiple delays
or no delays (regulator systems), the plant matrices are time-varying and/or constants.

In Section 2, the concepts of Legendre and Chebyshev wavelets required to model the problems are given. We
will apply the state-control parameterization method to the tracking delay systems in Section 3. Corresponding
problems will be discussed in Section 4.

Notation

The transpose of a matrix O is written O>. 0 and I denote the zero and identity matrices. Kronecker product of O
and Iq is denoted by Ô, Kronecker product of O and Ir is denoted by Ǒ, that is, Ô = O⊗ Iq, Ǒ = O⊗ Ir. The
superscript “∗” indicates the optimal condition. C[0, tf ] denotes real-valued continuous functions over [0, tf ]. w(t)
denotes the desired wavelets vector consists of Legendre or Chebyshev wavelets {wnm(t)}. The subscript “w” is
for the desired wavelets. The semicolon in defining matrices is used to separate the rows.
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2. Preliminaries

2.1. Legendre and Chebyshev wavelets

In applications of classical Legendre and Chebyshev wavelets, we have to use large k in most cases, for example,
see [24]. To overcome this drawback and others, we presented new definitions of Legendre and Chebyshev wavelets
in [20], [21]. For purposes of comparison with classic types, we have used ξk−1 in their definitions. Here we present
more general definitions for Legendre and Chebyshev wavelets. We mentioned previously in [28], we see in the
applications of these wavelets that we set k = 2 in their definitions. So by taking N = ξk−1 in the definition given
in [20], Legendre wavelets φnm are defined on [0, 1] as

φnm(t) =

{ √
NcmPm(2Nt− 2n+ 1), t ∈

[
n−1
N , nN

]
0, otherwise,

(1)

where t ∈ [0, 1] is as an independent variable, Pm are the well-known Legendre polynomials, N ∈ N≥2 is an
arbitrarily selected scaling parameterand specifies the number of subintervals, n = 1, 2, . . . , N refers to the number
of subinterval and specifies the location of the subinterval, m = 0, 1, . . . ,M − 1 is the degree of Pm and cm is
cm =

√
2m+ 1. Legendre wavelets are an orthonormal set with respect to the weight functions ωn(t) = 1.

Again by taking N = ξk−1 in the definition given in [21], Chebyshev wavelets ψnm are defined on [0, 1] as

ψnm(t) =

{ √
2NcmTm(2Nt− 2n+ 1), t ∈

[
n−1
N , nN

]
0, otherwise,

(2)

where Tm are the well-known Chebyshev polynomials,N,n andm are the same as before and c0 = 1/
√
π, cm6=0 =√

2/
√
π. They form an orthogonal basis with respect to the weight function ωn(t) = 1/

√
1− (2Nt− 2n+ 1)2.

We can expand a function f(t) in a series of Legendre or Chebyshev wavelets denoted by {wnm(t)} (we truncate
the series with the M th term in N subintervals) as

f(t) ∼=
N∑
n=1

M−1∑
m=0

fnmwnm(t) = fww(t), (3)

where fw is a 1×NM vector that consists of constants, w(t) as a NM × 1 vector of any of these two wavelets
and

fw = [f10, f11, . . . , f1M−1, f20, . . . , f2M−1, . . . , fN0, . . . , fNM−1], (4)

w(t) = [w10(t), w11(t), . . . , w1M−1(t), . . . , wN0(t), . . . , wNM−1(t)]
>
. (5)

The coefficients of these scaling functions can be approximated as follows

fnm =

∫ n
N

n−1
N

f(t)wnm(t)ωn(t) dt. (6)

We use the definitions of Legendre and Chebyshev wavelets in (1), (2) because they have many advantages over
classic definitions of them, [22–24].

Theorem 1
A twice differentiable function f(t), defined on [0, 1], with bounded second derivatives, say |f ′′(t)| ≤ ρ, can be
expanded as an infinite sum

∑
m of Legendre or Chebyshev wavelets, and this series converges uniformly to f(t).

Proof
The proof is the same as that was presented in [21].
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2.2. The operational matrices of Legendre and Chebyshev wavelets

The following properties of the desired wavelets will be used for applying the wavelet-based method:∫ t

0

w(τ)dτ ∼= Pww(t), (7a)

I αw(t) ∼= Pα
ww(t), (7b)

ẇ(t) = Dww(t), (7c)
Dαw(t) ∼= Dα

ww(t) (7d)
fww(t)w>(t) ∼= w>(t)f̃w, (8)

w(t− hι) =

{
0, 0 ≤ t < hι
Dιw(t), hι ≤ t ≤ 1,

(9)∫ 1

0

w(t)w>(t) dt = Γw, (10)

w(t− h(t)) =

{
0, 0 ≤ t < h(t)
Dtw(t), h(t) ≤ t ≤ 1,

(11)

where Pw is the integration operational matrix, the Riemann–Liouville fractional integral operator and the Caputo
fractional derivative of order α denoted by I α and Dα, Pα

w is the fractional integration operational matrix of
the desired wavelets in the Riemann–Liouville sense, Dw is the derivative operational matrix, Dα

w is the Caputo
fractional derivative operational matrix, f̃w is the product operational matrix of the desired wavelets for fw, Dι is
the delay operational matrix for a time-delay hι, Γw is the integration matrix of the product of two desired wavelets
vectors on [0, 1], and Dt is the piecewise delay operational matrix for a piecewise delay h(t). Dι and Dt are the
same for the both wavelets, so we do not use the subscript “w” for them. For more details, see [20], [21], [27], [28].
In [21], the error generated by using the wavelets approximation has been studied. All the properties mentioned
above have been presented in the general form in these texts and we just set N = ξk−1 in their formulas.

3. Optimal tracker for linear quadratic time-delay system

Consider a linear time-varying system with multiple time delays described by

ẋ(t) = (A(t) + ∆A(t))x(t) + (Ah(t) + ∆Ah(t))x(t− hx) + B(t)u(t) + Bh(t)u(t− hu) + d(t), 0 ≤ t ≤ tf
(12){

x(t) = f(t), −hx ≤ t < 0
u(t) = g(t), −hu ≤ t < 0,

(13)

x(0) = x0 (14)
and a quadratic performance index as

J = 1
2 [x(tf )− r(tf )]>T [x(tf )− r(tf )] + 1

2

∫ tf

0

{
[x(t)− r(t)]>Q[x(t)− r(t)] + u>(t)Ru(t)

}
dt, (15)

where x(t) and u(t) are q- and r-dimensional state and control vectors, respectively, A(t), Ah(t), B(t) and
Bh(t) are piecewise-continuous matrices of compatible dimensions, ∆A(t) and ∆Ah(t) denote the parameter
uncertainties, hx and hu denote time delays, d(t) as a q-dimensional vector represents disturbances, f(t) is a q-
dimensional initial state vector function, g(t) is an r-dimensional initial control vector function, x0 is an initial
condition vector, Q is a positive semi-definite matrix, R is a positive definite matrix and r(t) is a q-dimensional
desired or reference state vector. The main purpose of the matrix T is to ensure that the error at the terminal time is
as small as possible. So, this matrix should be positive semi-definite. Our objective is to control this system in such
a way that the state x(t) tracks the desired state r(t) as close as possible during the time interval [0, tf ]. The optimal
tracking problem is to find u∗(t), x∗(t) and J∗ for the time-delay system (12)–(14) such that the performance index
in (15) is minimized.
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3.1. Open-Loop Optimal Controller (OLOC)

We find OLOC from solving the optimization problem which is presented in the following.

Theorem 2
The optimal tracking problem as minimizing the performance index (15) for the plant described by (12)–(14), by
using the properties of the desired wavelets can be solved by forming a quadratic programming (QP) problem as

minimize
χw

J(χw) = 1
2χ
>
w ℵwχw

subject to Λwχw = bw,

where ℵw, Λw, and bw are known constant matrices and χw as a combination of parameters of the state and control
parameterization is the solution of the problem in terms of the desired wavelets. The function J(χw) in this QP is
convex.

Proof
We can use two procedures based on (7a) or (7c). First we use the integration procedure. For using the wavelet
method, we must change the range of t such that 0 ≤ t ≤ 1. We set τ = t/tf to rescale (12), this implies

ẋ(τ) = tf
{

(A(τ) + ∆A(τ))x(τ) + (Ah(τ) + ∆Ah(τ))x(τ − τx)

+ B(τ)u(τ) + Bh(τ)u(τ − τu) + d(τ)
}
, 0 ≤ τ ≤ 1

(16)

where τx = hx/tf and τu = hu/tf . The bounded measurable control function u(τ) is an admissible control, where
for τ ∈ [−τu, 0), u(τ) = g(τ). Assume that U is a class of such admissible controls. To each u ∈ U, the system
has a solution as the corresponding state function x(·|u). Let us define a new state vector as

x̄(τ) = x(τ)− r(τ). (17)

Using Theorem 1, extending (3)–(5) for vector functions, we parameterize this new state and the control vectors as
follows

x̄(τ) = ŵ
>

(τ)x̄w,u(τ) = w̌>(τ)uw, (18)

where x̄w and uw are NqM × 1 and NrM × 1 column vectors of unknown parameters and

x̄w =
[
x̄110, . . . , x̄

q
10, . . . , x̄

1
1M−1, . . . , x̄

q
1M−1, . . . , x̄

1
NM−1, . . . , x̄

q
NM−1

]>
, (19)

uw =
[
u110, . . . , u

r
10, . . . , u

1
1M−1, . . . , u

r
1M−1, . . . , u

1
NM−1, . . . , u

r
NM−1

]>
. (20)

Using the latter point, we expand the initial condition and the desired state as

x0 = ŵ
>

(τ)x0
w, (21)

r(τ) = ŵ
>

(τ)rw, (22)

where x0
w and rw are known NqM × 1 column vectors given by

x0
w = 1

w10

[
a0
10,a

0
20, . . . ,a

0
N0

]>
, (23)

rw =
[
r110, . . . , r

q
10, . . . , r

1
1M−1, . . . , r

q
1M−1, . . . , r

1
NM−1, . . . , r

q
NM−1

]>
. (24)

In (23), a0
n0 := [x>0 ,01×q(M−1)] and in (24), the constant coefficients {ranm}, for a = 1, 2, . . . , q, are obtained by

(6). Since r(t) : [0, tf ]→ Rq, if 0 ≤ τ < τx, then r(τ − τx) = 0. Using this and (9) in (22), we can write

r(τ − τx) = ŵ
>

(τ)D̂>x rw. (25)
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If
{

0 ≤ τ < τx
0 ≤ τ < τu

then
{
−τx ≤ τ − τx < 0
−τu ≤ τ − τu < 0

, so according to (13) we have
{

x(τ − τx) = f(τ − τx)
u(τ − τu) = g(τ − τu)

; by (3),

we can write
f(τ − τx) = ŵ

>
(τ)fxw,g(τ − τu) = w̌>(τ)guw, (26)

where by taking nx = Nτx and nu = Nτu, fxw and guw are, respectively,NqM × 1 andNrM × 1 column vectors
of constants defined by

fxw =
[
f110, . . . , f

q
10, . . . , f

1
nxM−1, . . . , f

q
nxM−1,01×(N−nx)qM

]>
, (27)

guw =
[
g110, . . . , g

r
10, . . . , g

1
nuM−1 , . . . , g

r
nuM−1,01×(N−nu)rM

]>
. (28)

fanm and for b = 1, 2, . . . , r, gbnm can be calculated using formula (6). Thus from (18), (26), (9), we find

x(τ − τx) =

{
f(τ − τx), 0 ≤ τ < τx

ŵ
>

(τ)D̂>x x̄w + r(τ − τx), τx ≤ τ ≤ 1

= ŵ
>

(τ)fxw + ŵ
>

(τ)D̂>x x̄w + ŵ
>

(τ)D̂>x rw,

(29)

u(τ − τν) =

{
g(τ − τν), 0 ≤ τ < τν
w̌>(τ)Ď>ν uw, τν ≤ τ ≤ 1

= w̌>(τ)guw + w̌>(τ)Ď>ν uw.

(30)

Now we express the time-varying matrices in (16) in terms of the desired scaling functions. Using (3) for A(τ), we
can write

A(τ) = [A10, . . . ,A1M−1,A20, . . . ,A2M−1, . . . ,AN0, . . . ,ANM−1]ŵ(τ)

= Awŵ(τ),
(31)

where Aw := [A10, . . . ,A1M−1,A20, . . . ,A2M−1, . . . ,AN0, . . . ,ANM−1]. Similarly, we can write

B(τ) = Bww̌(τ),Ah(τ) = Ahwŵ(τ),Bh(τ) = Bhww̌(τ),∆A(τ) = ∆Awŵ(τ),∆Ah(τ) = ∆Ahwŵ(τ).
(32)

Similar to r(τ), the disturbance can be expressed as

d(τ) = ŵ
>

(τ)dw. (33)

First, we substitute (17) in (16). Then, as was mentioned in [24], we integrate the resulting equation from 0 to τ ,
substitute (18), (21), (22), (25), (26), (29)–(33) and then we use (7a) and (8), hence

ŵ
>

(τ)x̄w − ŵ
>

(τ)x0
w + ŵ

>
(τ)rw = tf

{
ŵ
>

(τ)P̂>w(Ãw + ∆Ãw)x̄w + ŵ
>

(τ)P̂>w(Ãw + ∆Ãw)rw

+ ŵ
>

(τ)P̂>w(Ãhw + ∆Ãhw)fxw + ŵ
>

(τ)P̂>w(Ãhw + ∆Ãhw)D̂>x x̄w + ŵ
>

(τ)P̂>w(Ãhw + ∆Ãhw)D̂>x rw

+ ŵ
>

(τ)P̂>wB̃wuw + ŵ
>

(τ)P̂>wB̃hwguw + ŵ
>

(τ)P̂>wB̃hwĎ>u uw + ŵ
>

(τ)P̂>wdw

}
.

Thus, by factoring x̄w and uw representing the new state and control vector of the problem, we have[
tf
(
P̂>w(Ãw + ∆Ãw) + P̂>w(Ãhw + ∆Ãhw)D̂>x

)
− Iqs

]
x̄w + tf

[
P̂>wB̃w + P̂>wB̃hwĎ>u

]
uw

= rw − x0
w − tf

{
P̂>w(Ãw + ∆Ãw)rw + P̂>w(Ãhw + ∆Ãhw)D̂>x rw + P̂>w(Ãhw + ∆Ãhw)fxw

+ P̂>wB̃hwguw + P̂>wdw

}
,

(34)

where we let s = NM .
From the definition of this wavelet, we see the fact that the time interval [0, 1] is divided into N subintervals. In

order to ensure continuity in the obtained states across these subintervals, the following compatibility constraint
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[25] is enfotced at the interface points (τι) of two consecutive subintervals:

for τι =
ι

N
, ι = 1, 2, . . . , N − 1,

we must have x(τ−ι ) = x(τ+ι ).

We assume that r(t) is in C[0, tf ], so for all a, it is necessary that

x̄a(τ−ι ) = x̄a(τ+ι )

which implies

[wι 0(τι) wι 1(τι) · · · wιM−1(τι)]
[
x̄aι 0 x̄aι 1 · · · x̄aιM−1

]> − [wι+1 0(τι)

wι+1 1(τι) · · · wι+1M−1(τι)]
[
x̄aι+1 0 x̄aι+1 1 · · · x̄aι+1M−1

]>
= 0.

Thus, byϕn(τ) := [wn0(τ), wn1(τ), . . . , wnM−1(τ)], the compatibility constraint for the new state is expressed as

Ŵccx̄w = 0(N−1)q×1, (35)

where by ρι := [

ι−1︷ ︸︸ ︷
01×M · · · 01×M ϕn(1/N) −ϕn(0)

N−ι−1︷ ︸︸ ︷
01×M · · · 01×M ], Ŵcc = [ρ1;ρ2; · · · ;ρN−1]. Using

(14) for x̄(0) and combining it with (35),
Ŵcx̄w = σ, (36)

where Wc = [Wcc;w
>(0)], σ = [0(N−1)q×1; x0 − r(0)].

By setting (17) in the (rescaled) performance index (15), using (18) and (10), we can write

J = 1
2 x̄>wŵ(1)Tŵ

>
(1)x̄w + 1

2 tf

∫ 1

0

[x̄>wŵ(τ)Qŵ
>

(τ)x̄w + u>ww̌(τ)Rw̌>(τ)uw dτ ]

= 1
2{x̄

>
w(w(1)w>(1)⊗T)x̄w + tf

∫ 1

0

[x̄>w(w(τ)w>(τ)⊗Q)x̄w + u>w(w(τ)w>(τ)⊗R)uw dτ ]}

= 1
2{x̄

>
w(w(1)w>(1)⊗T + tfΓw ⊗Q)x̄w + u>w(tfΓw ⊗R)uw}.

As a result

J = 1
2

[
x̄>w uw

>] [tfΓw ⊗Q + (w(1)w>(1)⊗T) 0
0 tfΓw ⊗R

] [
x̄w

uw

]
. (37)

Taking (37), (36) and (34) together, the optimal tracking control problem is transformed into a QP problem as:

minimize
χw

J(χw) = 1
2χ
>
wℵwχw

subject to Λwχw = bw,

where we set
χw = [x̄w ; uw], (38)

ℵw =

[
tfΓw ⊗Q + (w(1)w>(1)⊗T) 0qNM×rNM

0rNM×qNM tfΓw ⊗R

]
, (39)

Λw =

[
tf (P̂>w(Ãw + ∆Ãw) + P̂>w(Ãhw + ∆Ãhw)D̂>x )− IqNM tf (P̂>wB̃w + P̂>wB̃hwĎ>u )

Ŵc 0Nq×rNM

]
, (40)

bw =

[
rw − x0

w − tf
{
P̂>w(Ãw + ∆Ãw)rw + P̂>w(Ãhw + ∆Ãhw)D̂>x rw

σ

+P̂>w(Ãhw + ∆Ãhw)fxw + P̂>wB̃hwguw + P̂>wdw

} ]
.

(41)
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Similarly, by using (7c), we formulate the second QP with the new components as

Λw =

[
Ãw + ∆Ãw + (Ãhw + ∆Ãhw)D̂>x − t−1f D̂w B̃w + B̃hwĎ>u

Ŵc 0Nq×rNM

]
, (42)

bw =

[
t−1f D̂wrw − (Ãw + ∆Ãw)rw − (Ãhw + ∆Ãhw)D̂>x rw − (Ãhw + ∆Ãhw)fxw − B̃hwguw − dw

}
σ

]
,

(43)
where the vector χ and the matrix ℵ are the same as (38) and (39).

For convexity, we must show that for all λ ∈ [0, 1], z1, z2, we have

J(λz1 + (1− λ)z2) ≤ λJ(z1) + (1− λ)J(z2).

Since Γw and w(1)w>(1) are symmetric matrices, it is clear that ℵw is symmetric; this yields z>1 ℵwz2 = z>2 ℵwz1,
for z1, z2 ∈ RNM(q+r). Thus by assuming J(z.) ≥ 0, we can write

J(λz1 + (1− λ)z2) = 1
2 (λz1 + (1− λ)z2)>ℵw(λz1 + (1− λ)z2)

= 1
2λ

2z>1 ℵwz1 + 1
2 (1− λ)λz>1 ℵwz2 + 1

2 (1− λ)λz>2 ℵwz1 + 1
2 (1− λ)2z>2 ℵwz2

= 1
2λ

2z>1 ℵwz1 + λz>1 ℵwz2 − λ2z>1 ℵwz2 + 1
2 (1− λ)2z>2 ℵwz2

= 1
2λ

2(z1 − z2)>ℵw(z1 − z2) + λz>1 ℵwz2 + 1
2z>2 ℵwz2 − λz>2 ℵwz2

≤ 1
2λ(z1 − z2)>ℵw(z1 − z2) + λ(z1 − z2)>ℵwz2 + 1

2z>2 ℵwz2

= 1
2λz>1 ℵwz1 + 1

2z>2 ℵwz2 − 1
2λz>2 ℵwz2

= 1
2λz>1 ℵwz1 + 1

2 (1− λ)z>2 ℵwz2

= λJ(z1) + (1− λ)J(z2),

so we see that J is a convex function, if and only if ℵw is (symmetric) positive semidefinite. For showing ℵw is
positive semidefinite, we know a block diagonal matrix is positive semidefinite if and only if its diagonal blocks are
positive semidefinite. Assume that ε1, ε2, . . . , εNM are the eigenvalues of Γw and υ1, υ2, . . . , υq are the eigenvalues
of Q, then the eigenvalues of Γw ⊗Q are εiυj , 1 ≤ i ≤ NM , 1 ≤ j ≤ q. Also assume that {εi} are corresponding
eigenvectors of Γw and {υj} are corresponding eigenvectors of Q. Then

η := {ε1 ⊗ υ1, ε1 ⊗ υ2, . . . , ε2 ⊗ υ2, . . . , εNM ⊗ υq}

are corresponding corresponding eigenvectors of Γw ⊗Q. It follows directly that since Γw is positive definite and
Q is positive semidefinite, Γw ⊗Q is positive semidefinite. We can obtain similar statements for other blocks of
ℵw; hence ℵw is positive semidefinite.

Corollary 1
Let u∗exact(t) be the OLOP of the original problem and u∗(t) be the OLOP of the QP problem. Then for nx, nu ∈ N,
lim
M→∞

u∗(t) = u∗exact(t). Also by assuming similar statement for J , lim
M→∞

J∗ = J∗exact.

The first goal is to find χ from solving the optimization problem which is static in nature. Standard numerical
methods are available to solve this QP problem. Hence we do not need a special program. We can use the quadprog
function provided by the optimization toolbox in MATLAB. This toolbox widely has been used to solve constrained
and unconstrained optimization problems and like the case we have simple delay or regulator systems, [21], [29], in
which the value of optimal cost is one of its default outputs. In this work we use the interior-point-convex algorithm
of the quadprog function in MATLAB R2013b; the proposed algorithm provides accurate solutions, and is fast and
stable. Detailed information about handling various cases of plant matrices, constraints and ..., can be found in our
previous works.

By doing so we obtain the OLOC and its corresponding state from (18)–(20). In the next section, we define a
closed-loop suboptimal controller which obtained from the results of this section. But before doing this, we present
some important remarks.
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Remark 1 (Systems with multiple state and input delays)
For a system with multiple delays described over 0 ≤ t ≤ tf as

ẋ(t) = (A(t) + ∆A(t))x(t) +

V∑
µ=1

(Ahµ(t) + ∆Ahµ(t))x(t− hµ) + B(t)u(t) +

W∑
ν=1

Bhν (t)u(t− hν) + d(t),

{
x(t) = f(t), t ≤ 0
u(t) = g(t), t < 0,

we replace (Ãhw + ∆Ãhw)D̂>x and (Ãhw + ∆Ãhw)fxw in (40)–(43) by
∑V

µ=1(Ãhµw + ∆Ãhµw)D̂>µ and∑V
µ=1(Ãhµw + ∆Ãhµw)fµw, respectively, in which every Dµ is obtained from (9) and every fµw is constructed

according to the value of hµ from (27), where nµ = Nhµ/tf . Also for input delay terms, we do the same and replace
B̃hwĎ>u and B̃hwguw by

∑W
ν=1 B̃hνwĎ>ν and

∑W
ν=1 B̃hνwgνw, respectively, in which every gνw is constructed

according to hν from (28) and nν = Nhν/tf .

Remark 2 (Systems with piecewise constant delays or time-varying delays)
For a system with a piecewise constant state delay h(t) described over 0 ≤ t ≤ tf by

ẋ(t) = (A(t) + ∆A(t))x(t) + (Ah(t) + ∆Ah(t))x(t− h(t)) + B(t)u(t) + Bh(t)u(t− hu) + d(t),{
x(t) = f(t), t ≤ 0
u(t) = g(t), −hu ≤ t < 0,

we replace Dx and fxw by Dt and f tw which Dt is the piecewise delay operational matrix of Legendre or Chebyshev
wavelets given in (11) and f tw is the piecewise wavelets expansion of f(t− h(t)). For a piecewise constant input
delay, we do the same. Moreover, for a system with a time-varying time-delay h(t) by using the time-partition
technique, as we did in Ref. [21], after selecting N , in each subinterval [ti−1, ti], where i = 1, 2, . . . , N , we take
hi ≈ h(ti−1)+h(ti)

2 and construct the matrix Dt. Hence we can apply this operational matrix on such systems in
which delays are time-varying.

Remark 3 (Fractional tracking delay systems)
If the state equation in (12) is given with the Caputo derivative of order α as

Dαx(t) = (A(t) + ∆A(t))x(t) + (Ah(t) + ∆Ah(t))x(t− hx) + B(t)u(t) + Bh(t)u(t− hu) + d(t), (44)

where 0 < α < 1, by applying the α-integral (the Riemann–Liouville fractional integral) to both sides of (44) and
using (7b), we just replace tf and P̂>w in (40), (41) of the first QP model by tαf and P̂α>

w . Using (7d), we do the same

for the second QP model and replace D̂
>
w in (42), (43) by D̂

α>

w . So, we extend the QP models to such systems.

3.2. Closed-Loop Optimal Controller (CLOC)

One of main motivations of defining new wavelets is (by eliminating inaccuracies of the previous definitions) to use
them to obtain the closed-loop solutions [21]. Engineers prefer the closed-loop optimal control to an optimal control
problem. Open-loop solutions are not of great interest in practice. Because in practical engineering problems, we
need a closed-loop solution in the major of cases and open-loop solutions have not the practical significance.

We propose a suboptimal controller which has been applied on some real world optimization problem previously
as Example 4 in [30] and Example 6 in [28]. The proposed CLOC of the system described in (12)–(14) is

u∗(t) =

{
−Kx∗(t)− l(t), 0 ≤ t < hx
−Kx∗(t)−Khx

∗(t− hx), hx ≤ t ≤ tf ,
(45)

where we use the results of OLOC to find the optimal feedback matrices K and Kh and the vector l(t). Using (17)
in (45), we can write

u∗(t) =

{
−K(x̄∗(t) + r(t))− l(t), 0 ≤ t < hx
−K(x̄∗(t) + r(t))−Kh(x̄∗(t− hx) + r(t− hx)), hx ≤ t ≤ tf .

(46)
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Using the relations of these wavelets, we can compute the unknowns in (46). The proposed method is summarized
in Algorithm 1. First, we use our results to the interval [hx, tf ] to compute K and Kh. Then by using K and from
the properties of the desired wavelets, we compute l(t).

Depending on the other types of the system (systems with multiple delays or a piecewise constant delay or a
time-varying delay or with a piecewise reference state), we can propose another types of CLOCs.

Algorithm 1
Input: Λw, ℵw, bw

Output: χw for x∗(t) and u∗(t), and consequently u∗CLOC(t)
Initialization: choose N from the problem and set M = 8; select the method and form the QP model
1. Use the quadprog solver to find x∗(t) and u∗(t)
2. Design the CLOC for the tracking problem
3. Find K, Kh and l(t)
4. Plot u∗CLOC(t) and compare with u∗(t)
5. If the results are in good agreement, go to 6 otherwise go back to 2
6. END

4. Numerical examples

We shall examine the proposed method in this section for solving optimal tracking control of some systems. We
first show applicability of the method on a simple problem and then on some complex problems.

Example 1
The problem involves the minimization of

J =

∫ 15

0

{
[x1(t)− 0.2t]2 + 0.025u2(t)

}
dt (47)

subjected to the system of delayed differential equations and initial conditions such as

ẋ1(t) = 0.05x1(t− 1) + x2(t) + 0.01u(t− 0.5), (48)

ẋ2(t) = 2x1(t) + 0.01x2(t− 1)− x2(t) + u(t)− 0.05u(t− 0.5), (49)

x1(t) = −4, −1 ≤ t ≤ 0
x2(t) = 0, −1 ≤ t ≤ 0
u(t) = 0, −0.5 ≤ t < 0.

 (50)

for the case which x(tf = 15) is free and admissible optimal control and states are unbounded, see [5].
After rescaling (47)–(50), we choose N = 30; then we use the method with the both wavelets. The solution

curves are presented in Fig. 1. A comparison of the optimal value of the cost functional (47) as J∗ is given in Table
1. It is clear that the obtained result is in good agreement. We used two QP models for both wavelets. Although we
see that there are some significant differences between elements of these QP models, but the results are very close.

For performing a better tracking by the system we increase the value of weighting matrix Q such that:
Qnew = 10Q = [ 20 0

0 0 ]. Then x∗(t) and u∗(t) for this weighting matrix are plotted in Fig. 2; also we get J∗ =
60.882278290621493 by Legendre wavelet method and J∗ = 60.882278290621464 by Chebyshev wavelet method.
These results mean that when we increase the values of the weighting matrix Q, the state of the new system is able
to track the reference state better with lower error, but we have to pay higher cost for larger control effort. Suppose,
to achieve a better tracking, that instead of increasing the value of the error weighted matrix Q, we decrease the
value of the control weighted matrix R, such as: Rnew = 0.1R = 0.005. This gives J∗ = 6.088227829062145, thus
we get a lower cost while the graphs of x∗(t) and u∗(t) are the same as those obtained with new Q (in Fig. 2).
We want on one hand, to keep the new state small and on the other hand, we must not pay higher cost to large
controls; this leads us immediately to the conclusion that we have to try various values of the weighting matrix R.
The computed optimal feedback gain for the two error weighted matrices are given in Table 2.
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Figure 1. r(t), x∗(t), u∗(t) and l(t) for Example 1.
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Figure 2. r(t), x∗(t), u∗(t) and l(t) for Example 1 with new Q.

Table 1. Comparison of J∗ for Example 1.

Source Optimal performance criteria (J∗)
C.T. Leondes, E. Shieh [5] 17.2993
Legendre wavelet, QP 1 16.631490663295480
Chebyshev wavelet, QP 1 16.631490663295427
Legendre wavelet, QP 2 16.631490663295413
Chebyshev wavelet, QP 2 16.631490663295285

Table 2. Optimal feedback gains for Example 1.

for Q for Qnew

Wavelet K Kh K Kh

Legendre [5.280582 − 4.271121] [−3.235100 − 0.635388] [3.178350 − 4.411132] [−0.956307 − 0.125761]
Chebyshev [5.280582 − 4.271121] [−3.235100 − 0.635388] [3.178350 − 4.411132] [−0.956307 − 0.125761]

Example 2
Consider a non-square multi-input multi-output controllable and observable system (see [13])

ẋ(t) =


0.809 −2.060 0.325 0.465 0.895
6.667 0.200 1.333 0 0.667
−1.291 0.458 −1.072 −2.326 −0.199
−0.324 0.824 1.670 −1.186 −0.358
−3.509 −4.316 −0.702 0 −8.351

x(t)

+


0 0 0 0 0

−0.164 0 0 0 0
0.729 0 0 0.533 −0.045

0 0 0 −0.266 0.167
1.407 0 0 0 −1.120

x(t− hx) +


0.955 −0.379
−1.667 −1.667
−0.212 1.195

0.618 0.052
0.877 1.403

u(t− hu) (51)

Stat., Optim. Inf. Comput. Vol. 9, June 2021



IMAN MALMIR 429

with the performance index

J =

∫ tf

0

{
[y(t)− r(t)]>Q[y(t)− r(t)] + u>(t)I2u(t)

}
dt, (52)

where

y(t) =

[
2 0 1 0 0
0 1.5 0 1.2 1

]
x(t), r(t) = [sin(t) cos(t)]>, and for t ≤ 0,x(t) = [0.05 0.05 0.05 0.05 0.05]>.

Also, x(t) ∈ R5 is the state vector, y(t) ∈ R2 is the output vector, and u(t) ∈ R2 is the control vector. The problem
is to find the optimal states and controls for the time-delay system (51), which minimizes (52).

We set: Q = 103I2 and hx = 0.2, hu = 0.1, and tf = 6. Since the performance index is not in the form that
we presented, we define x6(t) = 2x1(t) + x3(t) and x7(t) = 1.5x2(t) + 1.2x4(t) + x5(t). Then we reformulate
the plant and the performance index matrices, for example, we have Q = 2[05×7; 02×5, 103I2]. Solving the new
system, our results are shown in Figs. 3 and 4.

As one can see in the given tracking systems, we sometimes have to change the control weighted matrix of the
system in order to enable it to better track the reference state. By changing the weighting matrix R, in using the
method of [13], we have to repeat the steps of the modeling process but in our method we can change it without
any concern and even we can replace it by a time-varying matrix (as we shall see later).
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Figure 3. Optimal trajectories for Example 2.
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Figure 4. u∗(t), y(t) and r(t) for Example 2.
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Example 3
To see the applicability of our method on time-varying systems, consider a system described by (12) or (44), where

A(t) =

 0 1 0 0
0 0 1 0

cos t 0 0 0
−1 0 0 1

, ∆A(t) =

0 (0.01 sin t)U (t− hx) 0 0
0 0 (0.15− 0.12 cos t)U (t− hx) 0
0 0 0 0
0 0 0 0

,

Ah(t) =

 0 −1 0 0
−0.1t2 0 0.5 0

e−t 0 t 0
0 0 0 −2

, ∆Ah(t)) = 0, B(t) =

 0 0
3 + sin t 0

0 1
cos t 0

, Bh(t) =

 0 0
cos t 0

0 0
0 1

,

d(t) =

 0
0

0.2− 0.15 cos t
0.4− 0.3 cos t

,

{
x(t) =

[
1 0 sin t cos t

]>
, −hx ≤ t ≤ 0

u(t) =
[
1 0

]>
, −hu ≤ t < 0,

in which U is the unit step function or the Heaviside function over 0 ≤ t ≤ tf . This system is to be controlled to
minimize the performance index

J = [x1(tf )− r(tf )]2 + 1
2

∫ tf

0

{
100[x1(t)− r(t)]2 + u21(t) + u22(t)

}
dt (53)

in order that the state x1(t) tracks the desired trajectory r(t), where

r(t) = cos t.

The terminal time is tf = 4 and delays are hx = 0.5, hu = 1.5. In the following, we consider this optimal control
problem with different orders and constraints as Cases 1 and 2; we take:

Case 1. α = 0.9 and the controls and states of the fractional tracking delay system are unconstrained.

Case 2. α = 1 and



a. the controls and states are unconstrained.

b.
∫ tf

0

{x1(t)− x2(t)− 2x3(t) + 2x4(t)− u1(t) + 2u2(t)} dt ≤ 1.

c.
{

(−0.0625t2 − 1)x2(t) + (−0.05t+ 1)x3(t) + 2u1(t) ≤ 0.8, if t ∈ [0, hu]
x3(t) ≤ r(t), if t ∈ [hu, tf ].

By the proposed method for Chebyshev wavelet, we find the optimal solutions of the problem for all cases. For
modeling the problem with the isoperimetric constraint as Case 2(b), we use the method given in [30], but one
should be a little bit careful here. From (17), the term

∫ tf
0
r(t)dt must be considered in the reformulated constraint.

For Case 3(c), we use the method given in [29]. The solution curves for all cases are given in Figs. 5–8. The optimal
values of the performance indices are reported in Table 3. As claimed, we see in Case 1 the fact that the method
has the ability to solve fractional time-delay linear-quadratic optimal control problems. For Case 1, we find

K =
[
1.112671 −0.736540 0.897889 −0.004673
1.050100 −0.052876 0.810009 0.112116

]
,Kh =

[−0.647319 0.776308 −2.633025 −0.002322
0.603174 −0.148614 −1.953213 0.025470

]
.

From the experience of studying optimal control of some time-delay systems in [24], [21], we find that behavioral
changes may arise in time-delay systems on each side of delays or times which are associated with delays (for
example at hx, hu, tf − hu). Hence we have to redesign the CLOCs. In Case 2(b) which the isoperimetric constraint
is imposed, we redesign the controller for [tf − hh, tf ]. The initial designs are shown in Fig. 7(b). Using the given
concepts, the redesigned controllers are shown in Fig. 7(c). From Corollary 1, with reference to the OLOCs, it is
obvious that the redesigned controllers are in good agreement. For Case 2(b), we find

K =
[

6.657986 −0.126147 −4.165508 −0.188596
−0.579871 −0.158419 1.505470 −0.045072

]
,Kh =

[−3.955034 −1.390248 2.688256 0.263275
1.120470 0.088402 −0.460960 −0.138913

]
, if t ∈ [0, tf − hu),

K =
[
4.078564 −5.932374 28.054687 −10.085808
0.025592 −0.249735 2.826549 −0.840069

]
,Kh =

[
14.331205 0.404236 −58.551719 5.134490
−0.180855 −0.071575 −6.008462 −0.052453

]
, if t ∈ [tf − hu, tf ].

Stat., Optim. Inf. Comput. Vol. 9, June 2021



IMAN MALMIR 431

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

−4

−3

−2

−1

0

1

2
Case 1

t

x i* (t
) 

&
 r

(t
)

 

 

x
1
* (t)

x
2
* (t)

x
3
* (t)

x
4
* (t)

r(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5
Case 1

t

u i* (t
)

 

 

u
1
* (t)

u
2
* (t)

open−loop optimal control
closed−loop optimal control

Figure 5. r(t), x∗(t) and u∗(t) for Example 3, Case 1.
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Figure 6. r(t), x∗(t) and u∗(t) for Example 3, Case 2(a).
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(b) Designed CLOP
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(c) Redesigned CLOP

Figure 7. r(t), x∗(t) and u∗(t) for Example 3, Case 2(b).
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(a) Optimal states and reference trajectories
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(b) Designed CLOP
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Figure 8. r(t), x∗(t) and u∗(t) for Example 3, Case 2(c).

From the nature of the constraint given in Case 2(c), we have to calculate the feedback gains for three subintervals
separately. Comparing Figs. 8(b) and 8(c), we see that the redesigned CLOCs are in good agreement with OLOCs.
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Moreover,, by modifying the performance index (53) and the desired trajectory of the system given in Case 2(a),
we consider another case as:

Case 3. For the system in Case 2(a), the new performance index is

J = [x1(tf )− r1(tf )]2 + [x3(tf )− r2(tf )]2+ 1
2

∫ tf

0

{
100[x1(t)− r1(t)]2 + 100[x3(t)− r2(t)]2 + u21(t) + u22(t)

}
dt

(54)

and

{
a. r(t) =

[
cos t −1 + cos t

]>
.

b. r(t) =
[
cos t sin t

]>
.

By making some changes in the model of Case 2(a) without doing any further work, we solve the new problems
and this is a distinct advantage. As before, the results are presented in Figs. 9 and 10, and Table 3.

In order to get a better tracking in Cases 3(a) and 3(b), we decrease the values of entries of the control weighted

matrix R = [ 1 0
0 1 ] and replace them by time-varying ones such that Rnew =

[ 1
1+2t 0

0 1
1+2t

]
. By using the proposed

method, the optimal states and controls for these cases are shown in Figs. 11 and 12; as can be seen, we reach a
better tracking. The optimal values of (54) become J∗ = 3.876154 and J∗ = 2.460061, respectively. So, the system
with the new time-varying control weighted matrix, tracks the reference state better with lower cost. The errors for
the two weighting matrices are shown in Fig. 13. As we did previously, we redesigned the CLOCs in Case 3(a).

Table 3. J∗ for Example 3.

Case 1 2(a) 2(b) 2(c) 3(a), R 3(b), R 3(a), Rnew 3(b), Rnew
J∗ 1.653963 1.593711 2.683854 2.003653 19.26915 12.51794 3.876154 2.460061
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Figure 9. r(t), x∗(t) and u∗(t) for Example 3, Case 3(a).
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Figure 10. r(t), x∗(t) and u∗(t) for Example 3, Case 3(b).
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Figure 11. r(t), x∗(t) and u∗(t) for Example 3, Case 3(a) with Rnew.
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Figure 12. r(t), x∗(t) and u∗(t) for Example 3, Case 3(b) with Rnew.
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Figure 13. Comparison of errors, Example 3, Cases 3(a) and 3(b).

5. Conclusion

An alternative method is introduced to find the optimal control, state and performance index of different types of
linear time-varying tracking systems with delays. In the proposed procedure, we can easily change the weighting
matrices and impose the combined constraints. When we increase the value of the error weighted matrix, then the
output is able to track the reference input better with lower output error, but we have to pay higher cost for larger
control effort of the designed system. As can be seen, to better tracking we must try various values of the control
weighted matrix. The new optimal tracker presented by this paper can be applied to the tracking system regardless
of the system stability, minimum phase properties, the dimension and order of the system, equal number of input
and output, the number of delays, the types of desired states and initial functions, and fractional order dynamics.
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