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Abstract In this article, a test statistic for testing the validity of the Lindley model based on the informational energy is
proposed. Consistency of our test is shown. Through a simulation study, we obtain the critical values of the test statistic and
then the power of the test is computed by Monte Carlo method against various alternatives. The performance of the proposed
test with some competing tests is compared. Our results show that our test is superior to the classical nonparametric tests and
can apply to a testing problem in practice. A real medical data set is presented and analyzed.
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1. Introduction

The density function of a Lindley distribution is given by

f(x; θ) =
θ2

θ + 1
(1 + x)e−θx , x > 0,

where θ is the parameter. The distribution function is given by

F (x; θ) = 1− θ + 1 + θx

θ + 1
e−θx .

The mean and variance of the distribution are

µ = E(X) =
θ + 2

θ(θ + 1)
,

and

σ2 = V ar(X) =
θ2 + 4θ + 2

θ2(θ + 1)
2 .

[1] conducted a detailed study about various properties of Lindley distribution including skewness, kurtosis,
hazard rate function, mean residual life function, stochastic ordering, stress-strength reliability, among other things;
estimation of its parameter and application to model waiting time data in a bank.
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373 TESTING THE VALIDITY OF LINDLEY MODEL

In the literature of survival analysis and reliability theory, the exponential distribution is widely used as a model
of lifetime data. However, the exponential distribution only provides a reasonable fit for modeling phenomenon
with constant failure rates. Distributions like gamma, Weibull and lognormal have become suitable alternatives
to the exponential distribution in many practical situations. [1] found that the Lindley distribution can be a better
model than one based on the exponential distribution.

[2] discussed a comparative study of Lindley and exponential distributions for modelling various lifetime data
sets from biomedical science and engineering, and concluded that there are lifetime data where exponential
distribution gives better fit than Lindley distribution and in majority of data sets Lindley distribution gives better fit
than exponential distribution.

Since for computing the proposed test statistic, we need to estimate the parameter θ, we apply the maximum
likelihood estimate (MLE) approach to estimate the unknown parameter.

SupposeX1, ..., Xn is a random sample from the Lindley distribution, the estimator for both maximum likelihood
estimate (MLE) and method of moments estimate of the parameter θ is

θ̂ =
−
(
X̄ − 1

)
+

√(
X̄ − 1

)2
+ 8X̄

2X̄
, X̄ > 0.

[1] showed that the estimator θ̂ of θ is positively biased: E(θ̂)− θ > 0 , and it is consistent and asymptotically
normal

√
n
(
θ̂ − θ

)
→ N(0, 1

/
σ2).

In complete sample case, [1] developed different distributional properties, reliability characteristics and some
inferential procedures for the Lindley distribution. [3] discussed reliability estimation in Lindley distribution with
progressively type II right censored sample. [4] gave parameter estimation of Lindley distribution with hybrid
censored data. Also, [5] studied inferences on stress-strength reliability for Lindley distribution with complete
sample information. [6] discussed estimation of stress-strength reliability using progressively first failure censoring.
These studies suggest that in many real-life situations Lindley distribution serves as a better lifetime model than
the so far popular distributions like exponential, gamma, Rayleigh, Weibull etc. Other properties of the Lindley
distribution can be found in [7], [8], [9], and [10].

Therefore, it is a clear need to check whether the Lindley model is a satisfactory model for the observations.
Suppose that the random variable X has a distribution function F (x) and a continuous density function f(x).

The informational energy ε(f) of X is defined as

ε(f) =

∫ ∞
−∞

f(x)
2
dx.

Estimation of informational energy from a random sample has been considered by [11]. Based on spacing of order
statistics, [11] suggested a nonparametric estimator of the informational energy. [11] expressed ε(f) as

ε(f) =

1∫
0

(
d

dp
F−1(p)

)−1
dp

and then he used the empirical distribution function Fn and a difference operator and then proposed an estimator.
He also estimated the derivative of F−1(p) by a function of the order statistics. Assuming that X1, . . . , Xn is a
random sample, Pardos estimator is

εmn =
1

n

n∑
i=1

2m

n
(
X(i+m) −X(i−m)

) ,
where m is a positive integer smaller than n/2, X(i) = X(1) if i < 1 , X(i) = X(n) if i > n. Also, X(1) ≤ X(2) ≤
... ≤ X(n) are order statistics of a random sample of size n. Pardo showed that his estimator is consistent, i.e.,
εmn → ε(f) as n→∞ , m→∞ , m/n→ 0.
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It is shown that among all distributions with support (0,1), that possess a density function f , the informational
energy ε(f) is minimized by the uniform distribution. By using this property of informational energy, Pardo
introduced a test for the uniformity. Its test statistic is given as

εmn =
1

n

n∑
i=1

2m

n
(
X(i+m) −X(i−m)

) ,
where large values of εmn indicate that the sample follows a non-uniform distribution. The critical points and
power values of the test are given in [11] and also a power comparison with other tests is presented.

[12] applied the informational energy and constructed a test of fit for the normal distribution. They also compared
power of this test with the competing tests and found that the test based on the informational energy has a good
performance.

Recently, based on the informational energy, [13] and [14] proposed tests for Laplace and Cauchy distributions,
respectively. Also, [15] applied the informational energy and introduced a goodness of fit test for the exponential
distribution. Then, they showed that their test has a higher power than the competitors.

The goal of this paper is to suggest a goodness of fit test for the Lindley distribution using the informational
energy. In Section 2, we construct a test statistic using an estimator of the informational energy. In Section 3, the
critical points and the power of the suggested test are obtained. Then power values of the test are compared with
those of the competitors. Section 4 contains an application of the test in a real example. Some conclusions are
presented in Section 5.

2. The test statistic

Suppose X1, ..., Xn are a random sample from a population with the cumulative distribution function F and a
density function f . We interest to test the null hypothesis

H0 : {X1, ..., Xn} is a sample from Lindley Lin(θ),

where θ is unknown. The alternative hypothesis is

H1 : {X1, ..., Xn} is not a sample from Lindley Lin(θ).

If f0(x; θ) denotes the density of Lindley distribution, then the hypothesis of interest is

H0 : f(x) = f0(x; θ), for some θ ∈ Ω ,

where Ω = R+. The alternative to H0 is

H1 : f(x) 6= f0(x; θ), for any θ ∈ Ω .

Let F0 indicates the distribution function of Lindley distribution, without loss of any generality, we reduce
the above testing hypothesis, by the probability integral transformation U = F0(X), to testing the hypothesis of
uniformity on the interval (0,1).
Suppose that Ui = F0(Xi) , i = 1, 2, ...., n are the transformed sample, the hypothesis of interest becomes

H0 : f(u) = 1, 0 < u < 1,

against
H1 : f(u) 6= 1, 0 < u < 1.

Consequently, test for Lindley distribution converts to uniformity test on (0,1). Under the null hypothesis, each
Ui has a uniform distribution, and it seems to be appropriate to use Pardos test (mentioned in pervious section) to
test the uniformity of the distribution of Uis and thus Lindley assumption of the distribution of Xis. Therefore, a
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summary of the test procedure can be shown as

X1, . . . , Xn → Ui = F0(Xi) → T =
1

n

n∑
i=1

2m

n
(
U(i+m) − U(i−m)

) ,
where the order statistics of transformed sample indicated by U(1) ≤ U(2) ≤ ... ≤ U(n) and also if i < 1, U(i) =
U(1), if i > n, U(i) = U(n).

Since large values of the test statistic T favour the alternative hypothesis to H0, we reject the null hypothesis H0,
if the test statistic T is large, i.e. reject H0 if T ≥ C(α) for some critical values.
The proposed test statistic can be stated as

T =
1

n

n∑
i=1

2m

n
(
U(i+m) − U(i−m)

) =
1

n

n∑
i=1

2m

n
(
F0(X(i+m); θ)− F0(X(i−m); θ)

) ,
where X(1) ≤ X(2) ≤ ... ≤ X(n) are order statistics and if i < 1, X(i) = X(1), if i > n, X(i) = X(n) and m is a
positive integer less than n/2.

Since the parameters θ is unknown, we estimate θ by the maximum likelihood estimator. Then, the estimator is

θ̂ =
−
(
X̄ − 1

)
+

√(
X̄ − 1

)2
+ 8X̄

2X̄
, X̄ > 0.

Therefore, the proposed test statistic is

T =
1

n

n∑
i=1

2m

n
(
U(i+m) − U(i−m)

) =
1

n

n∑
i=1

2m

n
(
F0(X(i+m); θ̂)− F0(X(i−m); θ̂)

) ,
where Ui = F0(Xi; θ̂) , i = 1, 2, ...., n.

Proposition 1. If the parameters of the distribution be known as θ = θ0, (that is the null hypothesis is simple)
the test statistic can be write as

T =
1

n

n∑
i=1

2m

n
(
F0(X(i+m); θ0)− F0(X(i−m); θ0)

) .
Proposition 2. Let the null hypothesis is composite, if θ̂ → θ0 as n→∞ , the distribution of the test statistic T

tends to the distribution of T under the simple hypothesis.

Theorem 1. Let X1, ..., Xn be a random sample from an unknown continuous distribution F with a probability
density function f(x) . We have

T ≥ 1 .

Proof. The proof of this theorem is similar to the proof of Theorem 1 in [11] and therefore it is omitted.

Theorem 2. Let F be a completely unknown continuous distribution and F0 be the null distribution with
unspecified parameter. Then under H1 , T is a consistent test.

Proof. As n→∞, θ̂ → θ, and also, by of LLN,

1

n

n∑
i=1

2m

n
(
F0(X(i+m); θ̂)− F0(X(i−m); θ̂)

) → 1

n

n∑
i=1

2m

n
(
F0(X(i+m); θ)− F0(X(i−m); θ)

) .
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Moreover, [11] established that

εmn → ε(f) as n→∞, m→∞, m/n→ 0 ,

and consequently, the proof of this theorem is complete.

Theorem 3. Suppose X1, ..., Xn are a random sample from the Lindley distribution, if m = o(n) and m 6= 1,
then

T → 1 as n→∞ ,m→∞.

Proof. The proof is similar to the proof of Theorem 1 in [11]. Therefore, we omit it.

It is clear that under the null hypothesis, the value of the test statistic will be close to one. Therefore, for large
values of the test statistic the null hypothesis H0 will reject. Next section presents the critical points of our test
statistic.

3. Critical points and power comparison

At the significance level α, we reject H0 if the value of the test statistic is greater than C(α), where the critical
value C(α) is obtained by the α−quantile of the distribution of the test statistic under the null hypothesis H0. For
different sample sizes, we applied Monte Carlo simulations with 100,000 replicates from the standard Lindley
distribution (θ = 1) to compute the critical points of the proposed test statistic. The critical points of T statistic for
different sample sizes are tabulated in Table 1.

Table 1. Critical points of the T statistic with α = 0.05

m
n 1 2 3 4 5 6 7 8 9 10
5 15.518 4.514
6 13.723 4.031 3.219
7 12.259 3.690 2.881
8 10.971 3.440 2.677 2.566
9 10.213 3.254 2.508 2.376
10 9.615 3.065 2.410 2.236 2.244
15 7.154 2.580 2.054 1.894 1.837 1.841 1.884
20 6.149 2.310 1.872 1.734 1.683 1.661 1.663 1.686 1.723 1.764
25 5.492 2.139 1.765 1.635 1.583 1.561 1.556 1.561 1.576 1.599
30 5.024 2.034 1.683 1.565 1.516 1.492 1.487 1.488 1.493 1.506
40 4.373 1.893 1.583 1.475 1.429 1.406 1.397 1.395 1.396 1.404
50 4.024 1.802 1.518 1.419 1.374 1.351 1.340 1.336 1.338 1.342

The estimated density function of our test statistic based on 100,000 Monte Carlo simulations under the Lindley
hypothesis for various sample sizes is shown in Figure 1. From the figure, we found that the values of the proposed
test statistic are close to one as increases. Therefore, with increasing n the bias of the test statistic T decreasing.
Also, we see that variance of our statistic decreases when n increases.

Stat., Optim. Inf. Comput. Vol. 10, March 2022



377 TESTING THE VALIDITY OF LINDLEY MODEL

1.2 1.4 1.6 1.8 2.0 2.2

0
2

4
6

8
10

x

D
en

si
ty

1.2 1.4 1.6 1.8 2.0 2.2

0
2

4
6

8
10

x

D
en

si
ty

1.2 1.4 1.6 1.8 2.0 2.2

0
2

4
6

8
10

x

D
en

si
ty

1.2 1.4 1.6 1.8 2.0 2.2

0
2

4
6

8
10

x

D
en

si
ty

1.2 1.4 1.6 1.8 2.0 2.2

0
2

4
6

8
10

x

D
en

si
ty

n=10

n=20

n=30

n=40

n=50

Figure 1. Empirical probability density function of the test statistic based on 100,000 simulations under the Lindley
hypothesis for different sample sizes.

It is obvious that the power of the test depends on the window size and type of the considered alternative
distribution. Based on a broad Monte Carlo analysis, we determine the values of the window size m which the
proposed test attains good (not best) powers for all alternative distributions. These values of the window size m for
different sample sizes can be obtained from the following heuristic formula.

m =
[n

3

]
+ 1,

where [x] means the integer part of x. We can see that the optimal m increases as n increases and that the ratio
m/n tends to zero.

The goodness of fit tests based on the empirical distribution function (EDF) are widely used in practice, and
therefore we compare the power of the proposed test with them. Methods for assessing the tests based on the
empirical distribution function (EDF) are reviewed by [16]. Here, the considered tests are Cramer von Mises test
W 2, Watson test U2, Kolmogorov-Smirnov test D, Anderson-Darling test A2, and Kuiper test V . The test statistics
of them are as follow:

W 2 =
1

12n
+

n∑
i=1

(
2i− 1

2n
− p(i)

)2

,

U2 =
1

12n
+

n∑
i=1

(
p(i) − p̄+ 0.5− 2i− 1

2n

)2

,

D = max

(
max
1≤i≤n

{
i

n
− p(i)

}
, max
1≤i≤n

{
p(i) −

i− 1

n

})
,

A2 = −n− 1

n

n∑
i=1

(2i− 1)
{

log(p(i)) + log(1− p(n−i+1))
}
,

V = max
1≤i≤n

{
i

n
− p(i)

}
+ max

1≤i≤n

{
p(i) −

i− 1

n

}
,
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where p(i) = F0(x(i), θ̂), and F0 denotes the Lindley distribution function. Also, θ̂ is the maximum likelihood
estimator of θ.

By Monte Carlo simulations, power of the proposed test and the EDF-based tests against various alternatives
are evaluated. The following alternatives are considered in power comparison.

• the Weibull distribution with density θxθ−1 exp
(
−xθ

)
, denoted by W (θ),

• the gamma distribution with density Γ(θ)−1xθ−1 exp (−x), denoted by Γ(θ),
• the lognormal distribution LN(θ) with density (θx)−1(2π)−1/2 exp

(
−(log x)

2
/

(2θ2)
)

,

• the half-normal HN distribution with density Γ(2/π)1/2 exp
(
−x2

/
2
)
,

• the uniform distribution U with density 1, 0 ≤ x ≤ 1,
• the modified extreme value EV (θ), with distribution function 1− exp

(
θ−1(1− ex)

)
,

• the linear increasing failure rate law LF (θ), with density (1 + θx) exp
(
−x− θx2

/
2
)
,

• Dhillons [17] distribution DL(θ), with distribution function 1− exp
(
−(log(x+ 1))

θ+1
)

,

• Chens [18] distribution CH(θ), with distribution function 1− exp
(

2
(

1− exθ
))

.

These alternatives include densities f with decreasing failure rates (DFR), increasing failure rates (IFR) as well
as models with unimodal failure rate (UFR) functions and bathtub failure rate (BFR) functions.

The powers of the considered tests under the above alternatives, are obtained as follows. For each alternative,
100,000 samples with sizes 10, 20, 30, and 50 are generated and by the frequency of the event the value of the test
statistic is in the critical region, the powers of the tests are computed. Tables 2 and 3 show the powers at significance
level α = 0.05.

For each alternative, the bold values in these tables once again indicate the test achieving the maximal power.
Tables 2 shows a uniform superiority of the proposed procedure to all other competitor tests against IFR

distributions. We can observe that against IFR alternatives our test based on informational energy has a reasonable
and good performance in compared with competing tests. Therefore, the proposed test has the most power against
IFR distributions. The difference of powers between our test and the competing tests are substantial. Consequently,
our test can be confidently recommended in practice.
From Table 3, it is evident that the tests based on A2 and T statistics have the most power against UFR alternatives
and power differences between these tests and the other tests are substantial.
Table 3 reveals a superiority of the test based onA2 statistic to all other tests as we can say that this test outperforms
all other tests against DFR and BFR alternatives.
Although there is no uniformly most powerful test against all alternatives, the tests based on T and A2 statistics
can be recommended in practice. Finally, we summarized the results in Table 4. This table presents the best test in
terms of power against different alternatives.
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Table 2. Empirical powers of the tests against IFR alternatives at significance level 5%.

Alternative n W 2 D V U2 A2 T

W (1.4) 10 0.1303 0.1174 0.1104 0.1170 0.0894 0.1590
20 0.2258 0.1966 0.1761 0.1884 0.1917 0.2672
30 0.3237 0.2691 0.2330 0.2635 0.2967 0.4102
50 0.5098 0.4231 0.3736 0.4167 0.5036 0.5905

Γ(2) 10 0.1175 0.1028 0.1101 0.1188 0.0810 0.1642
20 0.2011 0.1754 0.1772 0.1935 0.1800 0.2796
30 0.2879 0.2412 0.2369 0.2687 0.2827 0.4392
50 0.4745 0.4014 0.3875 0.4408 0.5104 0.6347

HN 10 0.0952 0.0887 0.0844 0.0875 0.0678 0.1071
20 0.1364 0.1234 0.1084 0.1149 0.1076 0.1651
30 0.1835 0.1552 0.1340 0.1446 0.1492 0.2340
50 0.2839 0.2321 0.1960 0.2139 0.2445 0.3562

U 10 0.3386 0.2647 0.3088 0.2957 0.2615 0.4399
20 0.6318 0.4888 0.6071 0.5477 0.5793 0.8354
30 0.8309 0.6764 0.8143 0.7416 0.8056 0.9644
50 0.9756 0.9000 0.9777 0.9417 0.9756 0.9992

CH(1) 10 0.0937 0.0868 0.0772 0.0789 0.0673 0.1041
20 0.1364 0.1220 0.0998 0.1061 0.1074 0.1575
30 0.1826 0.1557 0.1230 0.1332 0.1477 0.2312
50 0.2796 0.2301 0.1810 0.1933 0.2379 0.3549

CH(1.5) 10 0.4268 0.3505 0.3359 0.3553 0.3348 0.4516
20 0.7600 0.6343 0.6239 0.6480 0.7160 0.8066
30 0.9200 0.8205 0.8176 0.8370 0.9071 0.9599
50 0.9943 0.9684 0.9736 0.9763 0.9943 0.9987

LF (2) 10 0.1386 0.1235 0.1113 0.1187 0.0972 0.1543
20 0.2282 0.1943 0.1706 0.1802 0.1851 0.2542
30 0.3292 0.2723 0.2327 0.2527 0.2828 0.3770
50 0.5133 0.4204 0.3663 0.3955 0.4662 0.5647

LF (4) 10 0.2056 0.1790 0.1594 0.1700 0.1469 0.2154
20 0.3777 0.3160 0.2752 0.2980 0.3192 0.3878
30 0.5308 0.4386 0.3864 0.4204 0.4758 0.5720
50 0.7680 0.6595 0.6067 0.6401 0.7313 0.7922

EV (0.5) 10 0.0923 0.0861 0.0749 0.0782 0.0670 0.1021
20 0.1384 0.1221 0.1020 0.1074 0.1068 0.1588
30 0.1833 0.1557 0.1242 0.1345 0.1467 0.2268
50 0.2779 0.2262 0.1803 0.1933 0.2378 0.3561

EV (1.5) 10 0.0923 0.0861 0.0749 0.0782 0.0670 0.2079
20 0.1384 0.1221 0.1020 0.1074 0.1068 0.3989
30 0.1833 0.1557 0.1242 0.1345 0.1467 0.5993
50 0.2779 0.2262 0.1803 0.1933 0.2378 0.8394
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Table 3. Empirical powers of the tests against UFR, DFR and BFR alternatives at significance level 5%.

Alternative n W 2 D V U2 A2 T

LN(0.8) 10 0.1413 0.1302 0.1279 0.1403 0.1068 0.1766
20 0.2221 0.1968 0.2204 0.2448 0.2110 0.3487
30 0.3180 0.2720 0.3268 0.3652 0.3440 0.5763
50 0.5147 0.4436 0.5541 0.6054 0.6131 0.8363

LN(1.5) 10 0.5140 0.4823 0.3849 0.4001 0.5544 0.2065
20 0.8027 0.7664 0.6690 0.6869 0.8197 0.4925
30 0.9257 0.9020 0.8342 0.8489 0.9306 0.6567
50 0.9900 0.9842 0.9642 0.9697 0.9905 0.8944

DL(1) 10 0.0877 0.0813 0.0809 0.0862 0.0629 0.1077
20 0.1185 0.1064 0.1139 0.1236 0.1041 0.1644
30 0.1486 0.1274 0.1445 0.1619 0.1445 0.2435
50 0.2123 0.1771 0.2245 0.2533 0.2394 0.3590

DL(1.5) 10 0.1999 0.1735 0.1751 0.1937 0.1462 0.2536
20 0.3844 0.3271 0.3228 0.3634 0.3601 0.4736
30 0.5568 0.4783 0.4598 0.5241 0.5677 0.6980
50 0.8123 0.7363 0.7129 0.7832 0.8509 0.8873

W (0.8) 10 0.1960 0.1750 0.1288 0.1366 0.2748 0.0313
20 0.3570 0.3095 0.2295 0.2438 0.4417 0.0542
30 0.4933 0.4319 0.3201 0.3476 0.5752 0.0564
50 0.7062 0.6330 0.5093 0.5395 0.7720 0.1251

Γ(0.4) 10 0.5137 0.4712 0.3701 0.3914 0.7163 0.1147
20 0.8109 0.7663 0.6579 0.6850 0.9222 0.3173
30 0.9354 0.9074 0.8310 0.8551 0.9810 0.3981
50 0.9943 0.9894 0.9697 0.9762 0.9990 0.7051

CH(0.5) 10 0.3912 0.3546 0.2711 0.2860 0.5728 0.0666
20 0.6670 0.6127 0.4979 0.5281 0.8141 0.1796
30 0.8331 0.7839 0.6733 0.7102 0.9251 0.2156
50 0.9669 0.9464 0.8924 0.9137 0.9903 0.4568

Table 4. Powerful tests against different alternatives

IFR UFR DFR-BFR

T A2 &T A2

4. Real data examples

In this section, we applied our proposed procedure to a real data set for illustration purpose.

Example 1. The following original data is a subset of data reported by [19] and [20] represent the survival times
in years of a group of patients given chemotherapy treatment alone.
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Recently, these data are analyzed by [21]. The data consisting of 46 survival times (in years) for 46 patients are:

0.047, 0.115, 0.121, 0.132, 0.164,0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507,
0.529, 0.534, 0.540, 0.570, 0.641, 0.644,0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553,
1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825,2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

Survival times

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 2. Histogram of survival times.

In Figure 2, we depict the histogram of this data set. We test that the data follow the Lindley model and found it
is acceptable for these data. We estimate the parameter θ as

θ̂ = 1.112

. Then, the value of the test statistic is computed as

T = 1.381,

and also the critical value of the test at the significance level 0.05 is obtained from a Monte Carlo simulation as
1.422. Because the value of the test statistic is smaller than the corresponding critical value, the Lindley hypothesis
is accepted for these data at the significance level of 0.05. So, we conclude that the survival times in years of a
group of patients follows Lindley distribution.

5. Conclusions

In this paper, we developed a simple and efficient goodness-of-fit test for Lindley distribution based on the
informational energy. We computed the critical points and power of the proposed test against various alternatives
and different samples sizes. A simulation study shows the performance of the considered tests against different
alternatives. The results from the Monte Carlo simulations demonstrate very good performance of our test from a
power perspective. Therefore, the proposed test can be applied to test for the Lindley distribution as a model for
describing data in practice. Finally, we applied the proposed test in a real data example.
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