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Abstract Bivariate lifetime distributions are of great importance in studies related to interdependent components,
especially in engineering applications. In this paper, we introduce two bivariate lifetime assuming three-parameter Weibull
marginal distributions. Some characteristics of the proposed distributions as the joint survival function, hazard rate function,
cross factorial moment and stress-strength parameter are also derived. The inferences for the parameters or even functions of
the parameters of the models are obtained under a Bayesian approach. An extensive numerical application using simulated
data is carried out to evaluate the accuracy of the obtained estimators to illustrate the usefulness of the proposed methodology.
To illustrate the usefulness of the proposed model, we also include an example with real data from which it is possible to see
that the proposed model leads to good fits to the data.
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1. Introduction

Multivariate survival data are usual in many areas of application. A special characteristic of multivariate data
is the presence of a dependence structure between the random variables. This usually occurs when an individual
response is reported by a vector related to the occurrence of two or more events of interest, or when different
individuals have dependent event times (see [16], [17] and [18]). A popular technique to model this dependence,
is the use of frailty models proposed by [64]. In these models, one or more random effects (latent non-observed
variables) are included to model the dependence between the observations. As an alternative for this approach,
we could assume different existing multivariate or bivariate parametric lifetime distributions introduced in the
literature where some parameters are related to the dependence structure between the lifetimes, see for example,
[34], [9],[26], [4], [33], [18], [3], [19] and [41].

Other possibility in the statistical data analysis of dependent lifetime data is the use of models constructed using
different copula functions, described for example by [40] and [25]. Copula functions are used to build multivariate
probability distributions with different dependence structures assuming specified marginal probability distributions
for the random variables [56]. In the special case of only two lifetimes, bivariate models derived from copula
functions have been used by many authors,see for example, [29], [35], [2], [43], [39], [52], [65] and [20].
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Considering the special case of only two lifetimes, the literature presents many different techniques to construct
a bivariate distribution as using copula functions, using trivariate reductions or specifying conditional and marginal
distributions ([31]; [6]). In this paper, we consider two methods to construct new bivariate Weibull distributions
with univariate marginal Weibull distributions: the use of the Morgenstern family proposed by [37] and the use
of the bivariate dependence model proposed by [53]. A primary advantage of both methods is that the resulting
form of the distribution function is less complex when compared to other existing methods introduced in the
literature. It is important to point out that both methods can be used when we assume different marginal probability
distributions for the lifetimes and we have some information on the dependence structure between the observations.
The literature presents many studies on the Morgenstern type distributions (see for example [21], [24], [54],
[13], [14], [60] and [43]). However, in the best of our knowledge, the literature does not introduce new bivariate
distributions obtained using the Roy’s method. Some details of both methods to construct a bivariate distribution
are presented by [23].

Let X and Y be two continuous random variables having cumulative distribution functions given, respectively,
by FX(x) = P (X ≤ x) and FY (y) = P (Y ≤ y). Based on the Morgenstern copula function, the joint cumulative
distribution function (cdf )is given by,

F (x, y) = FX(x)FY (y)[1 + λSX(x)SY (y)] (1)

where SX(x) = 1− FX(x) and SY (y) = 1− FY (y). Thus, the corresponding joint probability density function
(pdf ) is given by,

f(x, y) = fX(x)fY (y)[1 + λ(1− 2SX(x))(1− 2SY (y))] (2)

where the parameter λ defined in the interval [−1, 1] denotes the dependence parameter which indicates the degree
of association between the random variables X and Y . More details about the Morgenstern copula function can
be seen in [55] and [42]. It can be seen that when λ = 0, X and Y independent random variables. In addition, the
corresponding joint survival function (sf ) is given by

S(x, y) = SX(x)SY (y)[1 + λFX(x)FY (y)] (3)

Most of the properties and extensions of the Morgenstern family of distributions were studied by [5]. The
conditional density function for the random variable Y given X = x under the Morgenstern family is defined
as,

f(y | x) = fY (y)[1 + λ(1− 2SX(x))(1− 2SY (y))] (4)

Alternatively, based on the Roy’s bivariate dependence model for a bivariate system, the joint sf and the
corresponding joint pdf are given respectively by,

S(x, y) = SX(x)SY (y) exp(−γHX(x)HY (y)) (5)

and

f(x, y) = SX(x)SY (y)hX(x)hY (y) [{1 + γHX(x)}{1 + γHY (y)} − γ] exp(−γHX(x)HY (y)) (6)

where HX(x) = − logSX(x) and HY (y) = − logSY (y) are the cumulative hazard functions for X and Y ,
respectively. The parameter 0 ≤ γ ≤ 1 denotes the dependence parameter that indicates the degree of dependence
between the random variables X and Y . It can be seen that when γ = 0, X and Y are independent random variables.
[53] presented most of the properties for this probability model. The Roys model is also regarded as the Gumbel-
Barnett copula model [47]. The conditional density of X given Y = y under Roy’s bivariate dependence model is
defined as,

f(x | y) = hX(x)SX(x)[{1 + γHX(x)}{1 + γHY (y)} − γ] exp(−γHX(x)HY (y)) (7)
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Remark 1. Observe that, if the term exp(−γHX(x)HY (y)) is approximated in the form,

exp(−γHX(x)HY (y)) ≈ exp(−γ[log(1− FX(x)) log(1− FY (y))])

≈ [1 + γFX(x)FY (y)]

that is, with λ = −γ, where 0 ≤ γ ≤ 1, we get (3) from (5). In this paper, we use both methods described above to
construct a bivariate Weibull distribution. From the Weibull distribution properties, the resulting distribution may
be a good alternative to data analysis with easily obtained mathematical expression for the correlation coefficient
leading to a simple interpretation for the dependence structure between two random variables X and Y . This paper
is organized as follows: in Section 2, it is presented the bivariate Weibull distributions obtained under both methods
and its basic properties. Some properties, the dependence structure and a mathematical expression to compute
the cross-factorial moments are also provided in this section. Maximum likelihood and Bayesian estimators for
the parameters of the proposed models are also presented. In Section 3 it is presented the results of an extensive
numerical study using simulated data to illustrate the usefulness of the proposed methodology. Section 4 introduces
a real data application of the proposed methodology. Finally, Section 5 closes the paper with some concluding
remarks.

2. The Bivariate Weibull Distribution

Lifetime distributions have been extensively studied in the literature due to its medical and engineering
applications. One such distribution which is very popular in the analysis of survival data is the Weibull distribution
introduced Waloddi Weibull in 1951 (for more details, see [66]). The mathematical properties and its applicability
and generalizations were studied by [15], [62], [45], [46], [67], [58], [10], [48], [38], [30], [11], [44], [49], among
many others. The probability density function (pdf) of a continuous random variable X with a Weibull distribution
with three parameters is given by,

fW (x | η, β, α) = α

β

(
x− η

β

)α−1

exp

{
−
(
x− η

β

)α}
(8)

where x ≥ η, −∞ < η < ∞ is the location parameter where, depending on the context, can be interpreted as a
delay, guarantee time, minimum lifetime, safe lifetime, shelf age, more generally it is termed origin or threshold.
The parameter β > 0 is the scale parameter (or characteristic life in the lifetime context) and α > 0 is the shape
parameter (or Weibull-slope). A power transformation of x is given by,

x
α,β,η−−−→

(
x− η

β

)α

= uα (9)

which helps the mathematical proof that the integral of fW (x | η, β, α) with respect to x is equal to 1. The
corresponding cumulative distribution function (cdf ) and survival function (sf) are given, respectively, by,

FW (x | η, β, α) = 1− exp

{
−
(
x− η

β

)α}
(10)

and

SW (x | η, β, α) = exp

{
−
(
x− η

β

)α}
(11)

Remark 2. It is important to point out that one can replace the location parameter by the smallest order statistic,
say X(1) = min(X1, X2, . . . , Xn) for a random sample of size n and then consider a model Y = X −X(1) having
location to be zero at the origin. This approach is commonly used in applications given some existing difficulties
to get inferences for the location parameter.

Stat., Optim. Inf. Comput. Vol. 9, September 2021



532 A BAYESIAN INFERENCE APPROACH FOR BIVARIATE WEIBULL DISTRIBUTIONS

Usually the adequacy of a Weibull probability distribution could be verified from the following transformation
of the cdf given in (10):

1− FW (x | η, β, α) = exp

{
−
(
x− η

β

)α}
log[− log(1− FW (x | η, β, α))]︸ ︷︷ ︸

=:ỹ

= α log(x− η)︸ ︷︷ ︸
=:x̃

−α log(β)︸ ︷︷ ︸
=:β̃

that is, a linear relationship with slope α and intercept β̃ = −α log(β). The full interpretation of this linear model
is presented by [49].

The hazard function (hf ) and cumulative hazard function (chf ) for the three parameter Weibull distribution are
given, respectively, by,

hW (x | η, β, α) = α

β

(
x− η

β

)α−1

and HW (x | η, β, α) =
(
x− η

β

)α

(12)

The hazard function of the Weibull distribution is monotonically increasing, decreasing or constant and does not
allow to model bathtub hazard forms which is often found in practice. However, in many applications related
to lifetimes of equipments or maintenance times with increasing or decreasing hazard function, the Weibull
distribution is a useful alternative for lifetime modeling in engineering studies. The non-central moments for the
three-parameter Weibull distribution with density (8) are given by,

E [Xr] =

r∑
j=0

(
r

j

)
ηjβr−jΓ

(
r − j

α
+ 1

)
(13)

where E[X] = η + βΓ(1 + 1/α) = µX and Var[X] = η(η − 1) + β[(2η + 1)Γ(1 + 1/α) + βΓ(1 + 2/α)].
It is important to point out that usually there are some difficulties to get inferences for the parameters of this

model under a classical likelihood inference approach. For this model, the log-likelihood function is given by,

ℓ(η, β, α) = n[log(α)− α log(β)] + (α− 1)

n∑
i=1

log(xi − η)−
n∑

i=1

(
xi − η

β

)α

(14)

which satisfies the constraints 0 ≤ η ≤ min{xi}, 1 ≤ i ≤ n;α, β > 0. According to [49], when α, β and η are all
unknown, the log-likelihood function is not bounded and the regularity conditions are not satisfied. However, when
η is known, the maximum likelihood estimation procedure follows the same procedure used for the two parameter
Weibull distribution. Another point of interest is that if α, β and η are all unknown but α is restricted to α ≥ 1, then
when there is no solution for the likelihood equations, the maximum value for the log-likelihood function occurs
at the border of the parameter space (for more details, see [51]), that is,

η̂ = min(xi), β̂ =
1

n

n∑
i=1

(xi − η̂), α̂ = 1 (15)

2.1. A Bivariate Weibull distribution Derived From the Morgenstern’s Method
Let X and Y be two random variables each one having three parameter Weibull distributions with respective

parameters (η1, β1, α1) and (η2, β2, α2). Let SX , SY denote the corresponding sf ’s given by (11) and fX , fY be
the corresponding pdf ’s given by (8). Using (3) and (2), the sf and pdf of the Morgenstern type bivariate Weibull
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distribution, hereafter denoted as BW-Type M, are obtained as,

S(x, y) = exp

{
−
(
x− η1
β1

)α1

−
(
y − η2
β2

)α2
}

×
[
1 + λ

(
1− exp

{
−
(
x− η1
β1

)α1
})(

1− exp

{
−
(
y − η2
β2

)α2
})]

(16)

and

f(x, y) =
α1α2

β1β2

(
x− η1
β1

)α1−1(
y − η2
β2

)α2−1

exp

{
−
(
x− η1
β1

)α1

−
(
y − η2
β2

)α2
}

×
[
1 + λ

(
1− 2 exp

{
−
(
x− η1
β1

)α1
})(

1− 2 exp

{
−
(
y − η2
β2

)α2
})]

(17)

where −∞ < η1, η2 < ∞, β1, β2, α1, α2 > 0 and −1 ≤ λ ≤ 1. Plots for the joint pdf and the joint sf of the BW-
Type M distribution for different parameter values are illustrated in Figure 1.
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Figure 1. Behavior of the pdf (left panel) and of the sf (right panel) for the BW-Type M distribution assuming different
parameter values.

The hazard function (hf ) of the BW-Type M distribution according to Basu’s definition [8] is given by,

h(x, y) =
α1α2 (x− η1)

α1−1
(y − η2)

α2−1
[1 + λ (1− Sw(x | η1, β1, α1) (1− Sw(y | η2, β2, α2))]

βα1
1 βα2

2 [1 + λ (1− 2Sw(x | η1, β1, α1)) (1− 2Sw(y | η2, β2, α2))]
(18)

where Sw(·) is given in (11). According to [63], a primary limitation of the definition for the hazard function
defined according to Basu’s definition is that this function is defined from R2 → R, that is, h(x, y) is not a vector
quantity. To overcome this limitation, [27] defined the bivariate hazard rate function in vector form as follows,

h(x, y) =

(
−∂ logS(x, y)

∂x
,−∂ logS(x, y)

∂y

)
(19)
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Assuming the BW-Type M distribution, the vector components of the joint hazard rate function are given by,

∂ logS(x, y)

∂x
=

α1λ

(
x− η1
β1

)α1

Sw(x | η1, β1, α1) (1− Sw(y | η2, β2, α2))

(x− η1) [1 + λ (1− Sw(x | η1, β1, α1)) (1− Sw(y | η2, β2, α2))]
−

α1

(
x− η1
β1

)α1

x− η1
(20)

and

∂ logS(x, y)

∂y
=

α2λ

(
y − η2
β2

)α2

Sw(y | η2, β2, α2) (1− Sw(x | η1, β1, α1))

(y − η2) [1 + λ (1− Sw(x | η1, β1, α1)) (1− Sw(y | η2, β2, α2))]
−

α2

(
y − η2
β2

)α2

x− η1
.(21)

Let (X,Y ) be a random vector following a BW-Type M distribution. The conditional distribution of Y given X
= x and the cross factorial moment E[XY ] for the random vector (X,Y ) are given, respectively, by,

f(y | x) =
α2

β2

(
x− η2
β2

)α2−1

exp

{
−
(
y − η2
β2

)α2
}

×
[
1 + λ

(
2 exp

{
−
(
x− η1
β1

)α1
}

− 1

)(
2 exp

{
−
(
x− η2
β2

)α2
}

− 1

)]
(22)

and,

E[XY ] = λ

[
η1 + β1Ω11(α1)−

β1Ω11(α1)

21/α1
− η1

2

] [
η2 + β2Ω21(α2)−

β2Ω21(α2)

21/α2
− η2

2

]
+ [η1 + β1Ω11(α1)] [η2 + β2Ω21(α2)] (23)

where Ωi1(αi) = Γ(1 + 1/αi) for i = 1, 2. It is important to point out that the mathematical results for the iterated
integrals in (23) are obtained from [61], that is,

α

β

∫ ∞

0

(z + η)

(
z

β

)α−1

exp

{
−
(
z

β

)α}
dx = η + βΓ(1 + 1/α) (24)

and,

− α

β

∫ ∞

0

(z + η)

(
z

β

)α−1

exp

{
−2

(
z

β

)α}
dx = −η

2
− βΓ(1 + 1/α)

21+1/α
(25)

From (23), the covariance and the Pearson’s correlation coefficient between the random variables X and Y are
given, respectively, by

cov(X,Y ) = λ

[
(η1 + β1Ω11(α1))−

β1Ω11(α1)

21/α1
− η1

2

] [
(η2 + β2Ω21(α2))−

β2Ω21(α2)

21/α2
− η2

2

]
(26)

and,

ρ =

[
(η1 + β1Ω11(α1))−

β1Ω11(α1)

21/α1
− η1

2

] [
(η2 + β2Ω21(α2))−

β2Ω21(α2)

21/α2
− η2

2

]
{η1(η1 − 1) + β1 [(2η1 + 1)Ω11(α1) + β1Ω12(α1)]}1/2

× λ

{η2(η2 − 1) + β2 [(2η2 + 1)Ω21(α2) + β2Ω22(α2)]}1/2
(27)

where Ωi2(αi) = Γ(1 + 2/αi), i = 1, 2.
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A measure in bivariate analysis that plays an important role is the positive quadrant dependence (PQD) property.
PQD is a form of dependence between random variables introduced by [32]. In our case, let (X,Y ) be a random
vector following a BW-Type M distribution.In this case, X and Y are said to be PQD if S(x, y) ≥ S(x)S(y). In
fact, observe that, if 0 ≤ λ ≤ 1, then,[

1 + λ

(
1− exp

{
−
(
x− η1
β1

)α1
})(

1− exp

{
−
(
y − η2
β2

)α2
})]

> 1

which implies that S(x, y) ≥ S(x)S(y). However, if −1 ≤ λ ≤ 0, then,

0 <

[
1 + λ

(
1− exp

{
−
(
x− η1
β1

)α1
})(

1− exp

{
−
(
y − η2
β2

)α2
})]

< 1

which implies that S(x, y) ≤ S(x)S(y). That is, the condition of PQD only holds for positive values of λ.
Otherwise, the condition S(x, y) ≤ S(x)S(y) implies negative quadrant dependence which holds for negative
values of λ.

Another measure that plays an important role in lifetime studies is the stress-strength parameter denoted by R.
In this context, R is considered as a measure of reliability of a system and it gives the probability of strength (X)
exceeding the stress (Y ). Assuming that the strength (X) and the stress (Y ) are jointly distributed according to a
BW-Type M distribution with dependence parameter λ, R is obtained as,

R =
α1α2

β1β2

{∫ ∞

η1

∫ ∞

x

(
x− η1
β1

)α1−1(
y − η2
β2

)α2−1

exp

{
−
(
x− η1
β1

)α1

−
(
y − η2
β2

)α2
}

×
[
1 + λ

(
1− 2 exp

{
−
(
x− η1
β1

)α1
})(

1− 2 exp

{
−
(
y − η2
β2

)α2
})]}

dydx (28)

which has no closed form, however, it is equal to 1/2 when α1 = α2, β1 = β2 and η1 = η2.

2.2. A Bivariate Weibull distribution Derived From the Roy’s Bivariate Dependence Model

Let X and Y be two random variables each one having a three parameter Weibull distribution with parameters
(η1, β1, α1) and (η2, β2, α2). Let SX , SY denote the corresponding sf ’s given by (11) and fX , fY be the
corresponding pdf ’s given by (8). Using (5) and (6), the sf and pdf of the Roy type bivariate Weibull distribution,
hereafter denoted as BW-Type R distribution, are given, respectively, by,

S(x, y) = exp

{
−
(
x− η1
β1

)α1

−
(
y − η2
β2

)α2

− γ

(
x− η1
β1

)α1
(
y − η2
β2

)α2
}

(29)

and

f(x, y) =
α1α2

β1β2

(
x− η1
β1

)α1−1 (
y − η2
β2

)α2−1

exp

{
−
(
x− η1
β1

)α1

−
(
y − η2
β2

)α2
}

×
[{

1 + γ

(
x− η1
β1

)α1
}{

1 + γ

(
y − η2
β2

)α2
}
− γ

]
exp

{
−γ

(
x− η1
β1

)α1
(
y − η2
β2

)α2
}

(30)

where −∞ < η1, η2 < ∞, β1, β2, α1, α2 > 0 and 0 ≤ γ ≤ 1. Plots of the joint pdf and the joint sf of the BW-Type
R distribution for different parameter values are illustrated in Figure 2.
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Figure 2. Behavior of the pdf (left panel) and of the sf (right panel) for the BW-Type R distribution assuming different
parameter values.

The vector hazard function for this model is given with the components,

−∂ logS(x, y)

∂x
=

α1

(
x− η1
β1

)α1
[
1 + γ

(
y − η2
β2

)α2
]

x− η1

−∂ logS(x, y)

∂y
=

α2

(
y − η2
β2

)α2
[
1 + γ

(
x− η1
β1

)α1
]

y − η2

which have simpler forms than the vector hazard function for the BW-Type M model. Now, let (X,Y ) be a random
vector following a BW-Type R distribution. The conditional distribution of Y given X = x is given by,

f(x | y) =
α1

β1

(
x− η1
β1

)α1−1

exp

{
−
(
x− η1
β1

)α1
}[{

1 + γ

(
x− η1
β1

)α1
}

×
{
1 + γ

(
y − η2
β2

)α2
}
− γ

]
exp

{
−γ

(
x− η1
β1

)α1
(
y − η2
β2

)α2
}

(31)

An disadvantage of this model is related to the analysis of the dependence structure. For this model, the cross
factorial moment E[XY ] as well the correlation coefficient for the random vector (X,Y ) has no closed form and it
is needed to use numerical methods to obtain them. In the same way, there is no closed form for the stress-strength
parameter although when α1 = α2, β1 = β2 and η1 = η2, the stress-strength parameter is equal to 1/2.

For positive and negative quadrant dependence, different of the BW-Type M model, only the condition S(x, y) ≤
S(x)S(y) holds for all values of γ assuming the BW-Type R model since −γ

(
x−η1

β1

)α1
(

y−η2

β2

)α2

< 0 which
implies in negative quadrant dependence.
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2.3. A Classical Approach for the Two Models

Let (x1, y1), (x2, y2), . . . , (xn, yn) be a random sample of size n of a BW-Type M distribution. The contribution
of the ith observation to the log-likelihood function for the parameter vector θ = (α1, α2, β1, β2, η1, η2, λ) is given
by,

ℓ(θ) ∝ (α1 − 1) log

(
xi − η1

β1

)
+ (α2 − 1) log

(
yi − η2
β2

)
+

{
−
(
xi − η1

β1

)α1

−
(
yi − η2
β2

)α2
}
+ log

[
1 + λ

(
1− 2 exp

{
−
(
xi − η1

β1

)α1
})

×
(
1− 2 exp

{
−
(
yi − η2
β2

)α2
})]

In the same way, the contribution of the ith observation to the log-likelihood function for the vector of parameters
θ = (α1, α2, β1, β2, η1, η2, γ) of the BW-Type R is given by,

ℓ(θ) ∝ (α1 − 1) log

(
xi − η1

β1

)
+ (α2 − 1) log

(
yi − η2
β2

)
+

{
−
(
xi − η1

β1

)α1

−
(
yi − η2
β2

)α2
}

+ log

[{
1 + γ

(
xi − η1

β1

)α1
}{

1 + γ

(
yi − η2
β2

)α2
}
− γ

]
+

{
γ

(
xi − η1

β1

)α1
(
yi − η2
β2

)α2
}

In both cases, the MLEs have no closed form, they are obtained using standard numerical optimization algorithms
as the Newton-Raphson or the Nelder-Mead methods since the MLE of the parameters η1 and η2 depends on order
statistics since x ≥ η1 and y ≥ η2. It is observed that the needed regularity conditions for the determination of
the Fisher’s information matrix are not verified, which is a limitation of the proposed models under a classical
approach. Due to this limitation, it is considered a Bayesian approach in this study.

2.4. A Bayesian Approach for the Two Models

In this section we introduced a Bayesian approach for both models. Similar to what occurs in the classical
maximum likelihood approach, the Bayes estimators cannot be obtained in explicit forms and it is used MCMC
(Markov Chain Monte Carlo) methods to get the posterior summaries of interest. In this way, based on the
observations and considering the mean square error loss function to get the Bayesian estimators, it is assumed
Uniform(0,k) (where k is a known constant) prior distributions for the parameters αi, βi, i = 1, 2, λ (BW-Type
M model) and γ (BW-Type R model); an Uniform(0,x) (where x = min(x1, . . . , xn)) prior distribution for the
parameter η1 and an Uniform(0,y) (where y = min(y1, . . . , yn)) prior distribution for the parameter η2. These
values for the hyperparameters were chosen in order to reflect prior knowledge of the parameters and better
performance of the MCMC algorithm in terms of good convergence and computation stability. Observe that
empirical Bayesian methods have been used in the elicitation of the prior distributions for the location parameters
η1 and η2 of the proposed models (see for example, [12]). The joint posterior density function for the vector of
parameters θ = (α1, α2, β1, β2, η1, η2, λ) of the BW-Type M distribution is given by,

π(θ | data) =

L(θ)

2∏
i=1

πi(αi)

4∏
j=3

πj(βj)

6∏
k=5

πk(ηk)π7(λ)

∫ k

0

∫ y

0

∫ x

0

∫ k

0

∫ k

0

∫ k

0

∫ k

0

L(θ)

2∏
i=1

πi(αi)dαi

4∏
j=3

πj(βj)dβj

6∏
k=5

πk(ηk)dηkπ7(λ)dλ

(32)

Assuming the BW-Type R distribution, the joint posterior distribution of interest is obtained in the same way.
Therefore, the Bayes estimator of any function of θ = (α1, α2, β1, β2, η1, η2, λ), say ω(θ), assuming the squared
error loss function is given by,

Stat., Optim. Inf. Comput. Vol. 9, September 2021



538 A BAYESIAN INFERENCE APPROACH FOR BIVARIATE WEIBULL DISTRIBUTIONS

ω̂B =

∫ k

0

∫ y

0

∫ x

0

∫ k

0

∫ k

0

∫ k

0

∫ k

0

ω(θ)L(θ)

2∏
i=1

πi(αi)dαi

4∏
j=3

πj(βj)dβj

6∏
k=5

πk(ηk)dηkπ7(λ)dλ

∫ k

0

∫ y

0

∫ x

0

∫ k

0

∫ k

0

∫ k

0

∫ k

0

L(θ)

2∏
i=1

πi(αi)dαi

4∏
j=3

πj(βj)dβj

6∏
k=5

πk(ηk)dηkπ7(λ)dλ

(33)

The posterior summaries of interest are computed using the package R2jags [59] from R software considering
a “burn-in sample” of size 1,000 to eliminate the effect of the initial values and a final Gibbs sample of size
2,000 taking every 10th sample from 20,000 simulated Gibbs samples. Furthermore, the convergence of the Gibbs
Sampling algorithm was monitored using standard graphical methods as the trace plots of the simulated samples.

For comparison between the Bayesian models we considered the deviation information criterion (DIC) proposed
by [57]. The DIC value is given by

DIC = D(θ̂) + 2np = 2D̄ −D(θ̂), (34)

where D(θ̂) is the deviance evaluated in the posterior mean of the parameter of interest obtained using MCMC
simulation methods and np is the effective number of parameters in the model, with np = D̄ −D(θ̂), where
D̄ = E[D(θ)] is the posterior mean of the deviance. Lower values of DIC indicate better model fit.

3. A Simulation Study

In this section, it is presented an extensive numerical experiment considering various different scenarios of
simulated datasets assuming different sample sizes to evaluate the performance of the Bayesian estimators of
the proposed models introduced in Section 2. Moreover, to show the performance of the obtained Bayesian
estimators we generated data sets with sample sizes equal to n = 20, 50, 100, 150, 300 and fixed values for the
parameters α1, α2, β1, β2, η1, η2, λ (BW-Type M),γ (BW-Type R) for different scenarios. The considered scenarios
are presented in Table 1.

Table 1. Fixed parameter values for each considered scenario to generate the simulated datasets for each sample size.

Scenario α1 α2 β1 β2 η1 η2 λ (BW-Type M) γ (BW-Type R)

1 1.50 1.50 1.20 1.20 2.00 2.00 -0.20 0.20
2 1.50 1.50 1.20 1.20 2.00 2.00 -0.60 0.60
3 1.50 1.50 1.20 1.20 2.00 2.00 -0.95 0.95
4 0.75 0.75 1.15 1.15 0.50 0.50 0.20 0.20
5 0.75 0.75 1.15 1.15 0.50 0.50 0.60 0.60
6 0.75 0.75 1.15 1.15 0.50 0.50 0.95 0.95

The data sets were generated from a BW-Type M distribution using the generation algorithm of the random
values for the random vector (X,Y ), given in the following steps:

• Step 1. Generate a random sample from u1 ∼ U(0, 1) and put this value as u1 = FW (x | η1, β1, α1), given
in (10), that is, x = β1(− log(1− u1))

1/α1 + η1 to generate a random observation on X;
• Step 2. Generate a random sample from w ∼ U(0, 1) and put this value as w = u1(1 + λ (1− u1)(1− u2))−
u1u2λ (1− u2) (this expression is the derivative of (1) with respect to u1, when Fx(x) = u1 and Fy(y) = u2);
then solve this equation in relation to u1, generating a random observation u2, from u2 ∼ U(0, 1), where u1

is obtained from step 1;
• Step 3. Considering u2 obtained from step 2, put u2 = FW (y | η2, β2, α2), given in (10), that is, y =
β2(− log(1− u2))

1/α2 + η2 to generate a random observation on Y;
• Step 4. Return (X,Y ) = (x, y).
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In the same way, the data sets were generated from a BW-Type R distribution using the generation algorithm of
the random values for the random vector (X,Y ), according to [53], given in the following steps:

• Step 1. Generate a random sample from u1 ∼ U(0, 1) and put this value as u1 = exp(−HY (y)), that is,
y = H−1

Y (− log(u1)) to generate a random observation on Y;
• Step 2. Generate a random sample from u2 ∼ U(0, 1) and put this value as u2 = (1 +
γHX(x)) exp{−HX(x)(1− γ log(u1))} to generate a random observation on X;

• Step 3. Return (X,Y ) = (x, y).

3.1. Obtained results under the BW-Type R Model

As a first statistical analysis for the simulated data sets, it is assumed the BW-Type R model. For a Bayesian
approach, it is assumed k = 10 for the uniform prior distributions U(0,k) for the parameters αi, βi, i = 1, 2 and
k = 1 for the uniform prior distribution U(0,k) for the parameter γ. Since the results are quite similar among the
different assumed scenarios, only the second scenario will be illustrated here.

The posterior summaries of interest for the second scenario are presented in Table 2. From the results in Table
2, we could conclude that the standard deviation values of the posterior means approaches to zero and the Bayes
estimates get closer to the true parameter values when the sample size increases. Another point of interest is that
the true parameter values are contained in the the 95% credible intervals for the parameters considering every
sample size in each considered scenario. Moreover, Figure 3 shows the plots of the posterior distributions from
where it could be seen that the Bayesian estimators under MSE risk are asymptotically unbiased and converge in
distribution to the normal distribution for large sample sizes.

As an alternative to check the goodness of fit for the bivariate BW-Type R distribution, it is considered the use of
marginal survival plots. If the marginal survival functions are well fitted for the data, then the bivariate BW-Type R
distribution is adequate to the data (for more details, see [7], [50]). In this way, the plots of the empirical marginal
survival functions and the Bayesian estimates for the marginal survival functions are presented in Figures 4 and 5,
from where it could be seen the good fit of the BW-Type R probability distribution for the data sets.

Based on the different simulation data scenarios, the correlation coefficient and the stress-strength parameter
can also be estimated. Table 3 shows the nominal correlation coefficient and the stress-strength parameter versus
the Monte Carlo Bayesian estimators based on the simulated Gibbs samples of the parameters of the proposed
model for the correlation coefficient and of the stress-strength parameter of the BW-Type R model under the
second scenario. From the obtained results of Table 3, it could be concluded that the estimated correlation and the
estimated stress parameter get closer to the nominal values when the sample size increases.

3.2. Obtained results under the BW-Type M Model

As a second statistical analysis of the simulated data sets, we assume the BW-Type M model. For a Bayesian
approach, it is assumed k = 10 for the uniform prior distributions for the parameters αi, βi, i = 1, 2 and k = 1 for
the parameter γ. For this model, only the third scenario will be illustrated here (see the Supplementary Material
Appendix for the other results).

The posterior summaries of interest for the third scenario are presented in Table 4. From the obtained results in
Table 4, assuming the BW-Type M model, as it was observed for the results of the BW-Type R model in section 3.1,
we observe that the standard deviation values of the posterior means approaches to zero and the Bayes estimates
get closer to the true parameter values when the sample size increases. Also it is observed that the true parameter
values are contained in the the 95% credible intervals for each parameter assuming different sample sizes in each
considered scenario. The posterior distribution plots are presented in Figure 6. Moreover, from the plots of the
empirical marginal survival functions and the Bayesian estimated survival functions assuming the proposed model
for X and Y presented in Figures 7 and 8, we observe that the BW-Type M estimated marginal distributions show
good agreement with the empirical survival plots, an indication of adequability of the proposed model for the
datasets.

In the same way as considered for the BW-Type R model, Table 5 shows the nominal correlation coefficient and
the stress-strength parameter versus the Monte Carlo Bayesian estimators based on the simulated Gibbs samples
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Figure 3. Posterior density plots of the Bayesian estimates (α1 → γ) for each sample size considered in the Scenario 2
assuming the BW-Type R distribution.
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Table 2. Bayesian estimates for the parameters of the BW-Type R distribution considering the simulated data sets (Scenario
2).

Sample
Size Par. Post. Mean (Std. Dev.) 95% Cred. Int.

20

α1

α2

β1

β2

η1
η2
γ

2.6497 (0.9494)
3.5356 (1.3955)
1.9681 (0.6169)
1.9621 (0.6664)
1.3865 (0.5564)
1.2730 (0.6263)
0.5200 (0.2546)

(1.2812, 4.8540)
(1.4206, 6.5256)
(1.0623, 3.2836)
(0.9462, 3.1866)
(0.1489, 2.0773)
(0.0830, 2.1614)
(0.0516, 0.9638)

50

α1

α2

β1

β2

η1
η2
γ

2.6152 (0.8403)
2.0180 (0.4597)
1.9355 (0.5328)
1.3836 (0.2780)
1.4244 (0.4834)
1.8026 (0.2374)
0.5604 (0.2078)

(1.4745, 4.6584)
(1.3671, 3.1067)
(1.2260, 3.2358)
(1.0197, 2.0797)
(0.2276, 1.9841)
(1.1717, 2.0287)
(0.1480, 0.9428)

100

α1

α2

β1

β2

η1
η2
γ

1.4203 (0.1394)
1.4309 (0.1518)
1.1176 (0.1014)
1.1535 (0.1075)
2.0116 (0.0410)
2.0216 (0.0496)
0.5955 (0.1703)

(1.1733, 1.7132)
(1.1700, 1.7854)
(0.9378, 1.3341)
(0.9667, 1.3856)
(1.9053, 2.0536)
(1.8921, 2.0695)
(0.2604, 0.9312)

150

α1

α2

β1

β2

η1
η2
γ

1.4476 (0.1140)
1.5298 (0.1342)
1.1721 (0.0800)
1.2800 (0.0939)
1.9970 (0.0328)
1.9625 (0.0456)
0.6613 (0.1421)

(1.2459, 1.6873)
(1.3025, 1.8234)
(1.0247, 1.3303)
(1.1132, 1.4848)
(1.9080, 2.0315)
(1.8473, 2.0124)
(0.3885, 0.9380)

300

α1

α2

β1

β2

η1
η2
γ

1.4809 (0.0737)
1.5007 (0.0814)
1.2503 (0.0576)
1.2141 (0.0587)
1.9965 (0.0184)
1.9900 (0.0224)
0.6405 (0.0979)

(1.3447, 1.6262)
(1.3565, 1.6656)
(1.1444, 1.3659)
(1.1076, 1.3348)
(1.9498, 2.0182)
(1.9487, 2.0195)
(0.4472, 0.8367)

Table 3. The estimated correlation coefficients (ρ) and the estimated stress-strenght parameters (R) for each scenario for the
BW-Type R model and the nominal correlation coefficient and the stress-strength parameter.

Sample Size Nominal (ρ) Estimated (ρ) Nominal (R) Estimated (R)

20
50
100
150
300

-0.0208

-0.0588
-0.0439
-0.0285
-0.0343
-0.0383

0.5000

0.4256
0.4090
0.5104
0.5180
0.4895

for the parameters of the model for the correlation coefficient and for the stress-strength parameter assuming the
BW-Type M model under the third scenario. From the obtained results of Table 5, we conclude that the estimated
correlation and the estimated stress parameter are closer to the nominal values when the sample size increases.
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Figure 4. Plots of the empirical marginal survival function versus the Bayesian estimates for the marginal survival function
for X assuming the BW-Type R distribution.
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Figure 5. Plots of the empirical marginal survival function versus the Bayesian estimates for the marginal survival function
for Y assuming the BW-Type R distribution.

3.3. A Comparative Analysis Between Both Models

In this subsection, we present a comparative analysis between both proposed models to evaluate the result
introduced in Remark 1. For this goal, it is generated a sample of size 300 from both models assuming the first three
scenarios discussed in Table 1. The same prior structures discussed previously were considered for both proposed
models. The posterior summaries of interest are presented in Table 6.

From the obtained results of Table 6, we conclude that both models have approximately the same estimates
for the parameters a result in agreement with Remark 1, that is, exp(−γHX(x)HY (y)) ≈ [1 + γFX(x)FY (y)]. In
addition, for the data sets generated from the BW-Type R model, the empirical Pearson correlation coefficients for
each considered scenario in Table 6 are given, respectively, by -0.1566, -0.3806 and -0.5149 from which it could be
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Figure 6. Posterior density plots of the Bayesian estimates (α1 → λ) for each sample size considered in the Scenario 3
assuming the BW-Type M distribution.
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Table 4. Bayesian estimates for the parameters of the BW-Type M distribution considering the simulated data sets (Scenario
3).

Sample
Size Par. Post. Mean (Std. Dev.) 95% Cred. Int.

20

α1

α2

β1

β2

η1
η2
λ

1.9959 (0.6572)
2.0312 (0.8067)
1.6733 (0.5223)
1.6536 (0.5850)
1.6792 (0.4447)
1.5768 (0.4971)
-0.6797 (0.2860)

(1.1267, 3.7241)
(1.0241, 4.0716)
(0.9910, 3.0365)
(0.8788, 3.1005)
(0.4253, 2.0920)
(0.2585, 2.0437)
(-0.9900, 0.0434)

50

α1

α2

β1

β2

η1
η2
λ

1.2230 (0.1610)
1.6856 (0.3896)
1.1706 (0.1609)
1.2316 (0.2591)
2.0674 (0.0566)
1.9763 (0.1999)
-0.8290 (0.1600)

(0.9542, 1.5796)
(1.1846, 2.7198)
(0.8952, 1.5142)
(0.9037, 1.9320)
(1.9023, 2.1177)
(1.3773, 2.1243)

(-0.9945, -0.4165)

100

α1

α2

β1

β2

η1
η2
λ

1.4725 (0.1419)
1.4398 (0.1327)
1.2004 (0.1016)
1.2113 (0.1064)
2.0544 (0.0454)
2.0094 (0.0433)
-0.8709 (0.1161)

(1.2172, 1.7665)
(1.1996, 1.7166)
(1.0085, 1.4079)
(1.0263, 1.4427)
(1.9364, 2.1025)
(1.9022, 2.0538)

(-0.9953, -0.5673)

150

α1

α2

β1

β2

η1
η2
λ

1.4028 (0.1076)
1.5545 (0.1188)
1.2920 (0.0916)
1.1593 (0.0786)
2.0267 (0.0318)
1.9688 (0.0343)
-0.9228 (0.0718)

(1.2131, 1.6456)
(1.3531, 1.8153)
(1.1262, 1.4884)
(1.0192, 1.3341)
(1.9478, 2.0612)
(1.8809, 2.0069)

(-0.9978, -0.7317)

300

α1

α2

β1

β2

η1
η2
λ

1.4284 (0.0729)
1.4274 (0.0711)
1.1252 (0.0514)
1.1949 (0.0546)
2.0173 (0.0160)
2.0204 (0.0163)
-0.9360 (0.0598)

(1.2976, 1.5825)
(1.2967, 1.5644)
(1.0276, 1.2282)
(1.0938, 1.3121)
(1.9752, 2.0357)
(1.9802, 2.0407)

(-0.9983, -0.7731)

Table 5. The estimated correlation coefficients (ρ) and the estimated stress-strenght parameters (R) for each scenario for the
BW-Type M model and the nominal correlation coefficient and the stress-strength parameter.

Sample Size Nominal (ρ) Estimated (ρ) Nominal (R) Estimated (R)

20
50
100
150
300

-0.2041

-0.1977
-0.1767
-0.1892
-0.1977
-0.2073

0.5000

0.4560
0.5492
0.4846
0.4797
0.5279

seen that using the BW-Type M model we get better estimates for the dependence parameter structures. The same
happens for the data sets generated from the BW-Type M model from where the empirical Pearson correlation
coefficients are given, respectively, by -0.1229, -0.2357 and -0.3330.

Although under the BW-Type model the correlation is better estimated when compared to the empirical Pearson
correlation coefficient, its estimated value is so far away of the nominal Pearson correlation coefficient. For a better
approach in the estimation of the dependence structure, it is also considered the empirical Kendall correlation
coefficient. In this case, for the data generated from the BW-Type R model, the empirical Kendall correlation
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Figure 7. Plots of the empirical marginal survival function versus the Bayesian estimates for the marginal survival function
for X assuming the BW-Type M distribution.
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Figure 8. Plots of the empirical marginal survival function versus the Bayesian estimates for the marginal survival function
for Y assuming the BW-Type M distribution.

coefficients for each considered scenario in Table 6 are given, respectively by, -0.1001, -0.2595 and -0.3843 from
which it is observed that under the BW-Type M model we get better estimators for the dependence structure. The
same happens for the data generated from the BW-Type M model from where the empirical Kendall correlation
coefficients are given, respectively, by -0.0501, -0.1348 and -0.2726.From these obtained results, we conclude that
the BW-Type M model is the best model when compared to the BW-Type R model to deal with the dependence
structure for the bivariate lifetime data.
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Figures 9 and 10 show the plots of the empirical marginal estimated survival functions and the Bayesian estimates
of the marginal survival functions for the assumed models for the lifetimes X and Y from where it could be seen
the similarities between both marginal survival curves for both proposed models. That is, the model derived from
the Morgenstern copula survival function is approximately the same bivariate dependence model survival function
obtained using the [53] approach.
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Figure 9. Plots of the marginal survival function for X (upper panels) and Y (lower panels) assuming both proposed models
for the data generated from BW-Type R distribution.
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Figure 10. Plots of the marginal survival function for X (upper panels) and Y (lower panels) assuming both proposed models
for the data generated from BW-Type M distribution.
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4. A Real Data Application

To illustrate the proposed methodology, we consider in this section, a bivariate lifetime data set introduced by
[36] and also analyzed by [28]. The UEFA football data set reports: (i) there was at least one goal scored by the
home team, and (ii) there was at least one goal scored by either team from the penalty spot, lack of a kick, or any
other meaning unclear. Let X be the time in minutes that the first goal was scored by either team and let Y be the
time in minutes that the first goal of any sort, was scored by the home team.

Table 7 shows the posterior Bayesian estimates for the parameters of the BW-Type M distribution and for the
parameters of the BW-Type R distribution considering the UEFA football data set assuming non-informative prior
distributions for the parameters of the models. Table 7 also shows the estimated values for the correlation ρ between
x and y, and also the DIC value for each fitted model from where it is possible to see that the estimated values
of the parameters models are very close, except for the parameter γ. From the obtained results, we observe that
the estimated correlation between the times x and y is underestimated in the BW-Type R distribution, a possible
indication that the BW-Type R model is not well fitted by the data. In fact, the DIC value suggests a better fit of the
BW-Type M distribution for the real data.

Table 7. Posterior summaries assuming the BW Type-M and BW Type-R distributions

Model Par. Post. Mean (Std. Dev.) 95% Cred. Int. ρ DIC

BW-Type M

α1

α2

β1

β2

η1
η2
γ

1.8464 (0.2859)
1.2773 (0.1925)

40.8125 (4.4434)
32.6983 (4.5938)
3.6243 (1.8298)
1.7316 (0.8160)
0.6367 (0.2745)

(1.3316, 2.4194)
(0.9336, 1.6687)

(32.0396, 49.4219)
(24.4621, 42.2113)

(0.2824, 6.6065)
(0.1437, 2.9348)
(0.0020, 0.9884)

0.2050 654.7

BW-Type R

α1

α2

β1

β2

η1
η2
γ

1.8247 (0.2963)
1.2367 (0.1960)

41.3383 (4.6089)
33.1537 (4.8310)
3.6580 (1.8535)
1.7804 (0.8363)
0.0683 (0.0685)

(1.2795, 2.4388)
(0.8863, 1.6529)

(32.4739, 50.6872)
(24.1433, 42.9413)

(0.2155, 6.6663)
(0.1319, 2.9512)
(0.0019, 0.2540)

0.0538 661.4

Figure 11 shows the plots of the estimated BW Type-M and BW-Type-R survival functions and the non-
parametric Kaplan-Meier estimates considering the UEFA football data set. From these plots there is indication
of good fit of both models for the data set.

In fact for this application it is difficult to decide which assumed model is more appropriate for the data set, but
there is some indication of better fit of the BW-Type M distribution considering the DIC discrimination criterion.
Both models produce similar fit, however they show differences in the estimation of the dependence parameter γ.

5. Concluding Remarks

In this paper, it was introduced two new bivariate models obtained from marginal three parameter Weibull
distributions using the Morgenstern’s copula function and the bivariate dependence model introduced by [53].
For these new models, it was presented some mathematical properties and an extensive simulation study was
performed to verify the effectiveness of the inferences obtained using a Bayesian approach assuming different fixed
values for the parameters of the model and different sample sizes. It is important to point that the use of Bayesian
methods where the posterior summaries of interest are obtained using MCMC (Markov Chain Monte Carlo)
simulation techniques for bivariate lifetime distributions (see for example, [1], [22]) and the use of informative
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Figure 11. Plots of the marginal survival functions estimated by the Kaplan-Meier method and plots of the marginal survival
functions estimated assuming the BW Type-M and BW Type-R distributions

prior distributions for the parameters η1 and η2 is a suitable way to get the estimators of interest, since these models
do not satisfy some regularity conditions required for the use of standard asymptotic maximum likelihood inference
approach. Moreover, despite the different model structure approaches considered in this study to get inferences of
interest for bivariate lifetime data, it is possible to conclude that the inference results for the parameters of interest
are approximately the same, however, the BW-Type R model has a lower computational cost when compared to
the BW-M model, that could be an advantage for its use in lifetime data analysis.

Finally, based on the marginal survival plots in the simulation section, although the obtained results for each
model are quite similar in terms of point estimators, it is possible to conclude that the use of any one of the proposed
bivariate Weibull models may be a good model alternative for lifetime data analysis especially in engineering,
medical or other applications of interest. In addition, the estimation of the dependence structure showed estimates
close to the nominal values assuming both proposed models when the sample size increases as it was observed in
the simulation study. Censoring data could also be assumed for the use of the proposed models, but this situation
is outside the scope of this study and will be the subject of a future research.

Other important point that should be of interest for a future study: the use of more non-informative prior
distributions for the location parameters of the three-parameter Weibull distribution, although the use of empirical
Bayesian methods has been of great use in applied statistics.
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Appendices

The following R code can be used to obtain the Bayesian estimates, considering R2jags package.

# Create a JAGS model Type-R
model.jags <- function()
{
for (i in 1:n)
{
phi[i] <- -log(L[i])
zeros[i]˜dpois(phi[i])

L1[i]<-(alpha1*alpha2)/(beta1*beta2)*((x[i]-eta1)/beta1)ˆ(alpha1-1)*((y[i]-eta2)/beta2)ˆ(alpha2-1)
L2[i]<-exp(-((x[i]-eta1)/beta1)ˆalpha1-((y[i]-eta2)/beta2)ˆalpha2)
L3[i]<-(1+gamma*((x[i]-eta1)/beta1)ˆalpha1)*(1+gamma*((y[i]-eta2)/beta2)ˆalpha2)-gamma
L4[i]<-exp(-gamma*((x[i]-eta1)/beta1)ˆalpha1*((y[i]-eta2)/beta2)ˆalpha2)
L5[i]<-log(L1[i])

}

eta1˜dunif(0,min(x))
eta2˜dunif(0,min(y))
beta1˜dunif(0,k)
beta2˜dunif(0,k)
alpha1˜dunif(0,k)
alpha2˜dunif(0,k)
gamma˜dunif(0,1)
}

# Create a JAGS model Type-M
model.jags <- function()
{
for (i in 1:n)
{
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phi[i] <- -log(L[i])
zeros[i]˜dpois(phi[i])

L1[i]<-(alpha1*alpha2)/(beta1*beta2)*((x[i]-eta1)/beta1)ˆ(alpha1-1)*((y[i]-eta2)/beta2)ˆ(alpha2-1)
L2[i]<-exp(-((x[i]-eta1)/beta1)ˆalpha1-((y[i]-eta2)/beta2)ˆalpha2)
L3[i]<-(1+gamma*(1-2*exp(-((x[i]-eta1)/beta1)ˆ(alpha1)))*(1-2*exp(-((y[i]-eta2)/beta2)ˆ(alpha2))))
L5[i]<-log(L1[i])+log(L2[i])+log(L3[i])
[i]<-exp(L5[i])

}

eta1˜dunif(0,min(x))
eta2˜dunif(0,min(y))
beta1˜dunif(0,k)
beta2˜dunif(0,k)
alpha1˜dunif(0,k)
alpha2˜dunif(0,k)
gamma˜dunif(-1,1)
}
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