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Abstract In this work, we derive and study a new weighted G family of continuous distributions called the new weighted
generated family (NW-G). We study some basic properties including quantile function, asymptotic, the mixture for cdf
and pdf, residual entropy, and order statistics. Then, we study half-logistic distribution as a special case with more details.
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are analysed to demonstrate the objectives.
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1. Introduction

Modelling and analysing lifetimes are important in engineering, medicine, economics, etc. In many areas such
as the reliability analysis, finance, insurance and engineering, we need novel extended distributions for statistical
modeling. So, many new methods have been defined and studied for generating new families of distributions. A
huge efforts have been made for defining new G families for expanding the well-known families. Among them, the
generalized G-classes of distributions say G are used in which one or more parameter(s) are added to a baseline
distribution. The exponentiated G family (Exp-G type-I) was introduced by Lehmann (1953). The cumulative
distribution function (cdf) of Exp-G type-I is given by

FI,α,ϵ(y) = Gα
ϵ (y)|α∈R+,y∈R,

where ϵ refers to the parameters vector for any baseline cdf G(·). Proportional hazard rate family or Exp-G type-II
was studies by Gupta et al. (1998). The cdf of Exp-G type II can be written as

FII,α,ϵ(y) = 1− [1−Gϵ(y)]
α|α∈R+,y∈R,

The various extensions of the Exp-G type-I and Exp-G type-II distribution have been studied by several authors.
For example: Beta family (beta-G) by Jones (2004), Kumaraswamy family (Kw-G) by Cordeiro and Castro. (2011),
Generalized beta G (GB-G) by Alexander et al. (2012), Exponentiated generalized family by Cordeiro et al.
(2013) and Extended Exp-G type-I by Alizadeh et al. (2018). In this paper we introduce a new weighted class
of distributions. The cdf of new weighted generated family is given by

FB(y) = Gα
ϵ (y)/

[
2−Gβ

ϵ (y)
]

|α,β∈R+,y∈R, (1)
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where B = (α, β, ϵ) . The related probability density function (pdf) and hazard rate function (hrf) are given by

fB(y) = gϵ(y)G
α−1
ϵ (y)

2α+ (β − α)Gβ
ϵ (y)[

2−Gβ
ϵ (y)

]2 |α,β∈R+,y∈R, (2)

and

hB(y) = gϵ(y)G
α−1
ϵ (y)

[
2−Gβ

ϵ (y)
]−1 (β − α)Gβ

ϵ (y) + 2α[
2−Gα

ϵ (y)−Gβ
ϵ (y)

] |α,β∈R+,y∈R, (3)

Let w(y) be a positive function with E(w(Y )) < ∞, the pdf of the weighted random variable (RV) Yw was
introduced by Patil and Rao (1986) is given by

fw(y) =
w(y) f(y)

E(w(Y ))
,

where E(w(Y )) denote the expectation of w(Y ). By taking gϵ(y) as pdf of continuous distribution with cdf G(·)
and

w(y) =
Gα−1

ϵ (y)
[
2α+ (β − α)Gβ

ϵ (y)
][

2−Gβ
ϵ (y)

]2 |α,β∈R+,y∈R,

equation (2) define a new weighted generated family of distributions. We denote the new family by NW-G(B),
where ϵ denote the vector of parameters for baseline cdf G(.) and α, β ∈ R+ are two shape parameters. The key
goal of this research is to introduce two extra parameters to a family of lifetime distribution for generating more
flexibility ones. Furthermore, the key motivations for using NW-G family in the practice are the followings:

1. A simple method for generating new flexible distributions.

2. For improving the flexibility of the existing distributions.

3. For introducing new extended versions whose cdf and hrf have closed form.

4. For providing better fits than the existing models.

The rest of this paper is organized as follows: In the above, new family of distributions was proposed. Various
properties of the proposed distribution are explored in Section 2. These properties include quantile function,
asymptotic, mixture for cdf and pdf, residual entropy and order statistics. In section 3, we consider Half-Logistic
as special case and studied it with more details. The maximum likelihood estimation of parameters are compared
with various methods of estimations by conducting simulation study in section 4. Real data sets are analysed to
show the performance of the new family in Section 5. In Section 6, some concluding remarks are considered.

2. Properties

2.1. Quantile function (qf)

Let QG(.) = G−1(.) represent the qf of G(.), for α ̸= β, if U ∼ U(0, 1),
Gα

ϵ (y)

2−Gβ
ϵ (y)

= u have cdf (1). For α = β, if

U ∼ U(0, 1), then QF (u) = QG

((
2u
1+u

) 1
α

)
.
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2.2. Asymptotic

In this subsection we study the asymptotic of cdf, pdf and hrf of NW-G. Let c = inf{y|F (y) ∈ R+}, the asymptotic
of equations (1), (2) and (3) as y → c are given by

FB(y)|y→c ∼ 1

2
Gα

ϵ (y),

fB(y)|y→c ∼ α

2
gϵ(y)G

α−1
ϵ (y),

hB(y)|y→c ∼ α
gϵ(y)G

α−1
ϵ (y)

2−Gα
ϵ (y)

. (4)

The asymptotic of equations (1), (2) and (3) as y → ∞ are given by

1− FB(y)|y→∞ ∼ α
[
1−Gϵ(y)

]
,

fB(y)|y→∞ ∼ α gϵ(y),

hB(y)|y→∞ ∼
gϵ(y)

1−Gϵ(y)
. (5)

In these equations, we see the influence of parameters on the right tail and left tail of the new model.

2.3. Mixture for cdf and pdf

For any parent distribution Gϵ(y), put V ∼ Expd(G), we represent the Exp-G type-I distribution if V has pdf and
cdf as:

πd(y) = d gϵ(y)Gϵ(y)
d−1 and Πd(y) = Gϵ(y)

d,

respectively. Now, We are able to obtain an extension for F (y). Using generalized binomial expansion for any real
α, β ∈ R+, The generalized binomial expansion is written as follows

FB(y) =
Gα

ϵ (y)

2−Gβ
ϵ (y)

=
Gα

ϵ (y)

[1−Gβ
ϵ (y)] + 1

= Gα
ϵ (y)

∞∑
ζ1=0

(−1)ζ1
[
1−Gβ

ϵ (y)
]ζ1

=

∞∑
ζ1=0

ζ1∑
ζ2=0

(−1)ζ1+ζ2

(
ζ1
ζ2

)
Gϖ∗

ϵ (y) =

∞∑
ζ2=0

∞∑
ζ1=ζ2

(−1)ζ1+ζ2

(
ζ1
ζ2

)
Gϖ∗

ϵ (y)

=

∞∑
ζ2=0

νζ2 G
ϖ∗

ϵ (y) =

∞∑
ζ2=0

νζ2 Πϖ∗(y) (6)

where ϖ∗ = β ζ2 + α, Gϵ(x)
α = Πα(x) refers to the cdf of Exp-G type-I with power parameter α and

νζ2 =

∞∑
ζ1=ζ2

(−1)ζ1+ζ2

(
ζ1
ζ2

)
.

The pdf of Z follows by differentiating (6) as

fB(y) =

∞∑
ζ2=0

νζ2 πϖ∗(y), (7)

where πϖ∗(y) = dΠϖ∗(y)/dy is the Exp-G density function with power parameter ϖ∗. The NW-G density
function is a simple linear combination of Exp-G type-I densities, as shown by Equation (7).

Stat., Optim. Inf. Comput. Vol. 10, September 2022



1146 A NOVEL WEIGHTED G FAMILY OF PROBABILITY DISTRIBUTIONS

2.4. Residual Entropy

Residual Entropy is important measure of information. The Residual entropy of Y is given by

E(Y ) = −
∫ ∞

0

FB(y) log(FB(y))dy

After some simple algebra using geometric expansion and generalized binomial expansion, for NW-G(B) we
can obtain,

−FB(y) log(FB(y)) =
Gα

ϵ (y)

2−Gβ
ϵ (y)

[
α log(Gϵ(y)) + log(2−Gβ

ϵ (y))
]

=
Gα

ϵ (y)

2−Gβ
ϵ (y)

α ∞∑
ζ1=0

Gϵ(y)
ζ1+1

ζ1 + 1
+

∞∑
ζ1=0

(−1)ζ1
[
1−Gβ

ϵ (y)
]ζ1

ζ1 + 1


= Gα

ϵ (y)

α ∞∑
ζ1,ζ2=0

(−1)ζ2Gϵ(y)
ζ1+1

[
1−Gβ

ϵ (y)
]ζ2

ζ1 + 1
+

∞∑
ζ1,ζ2=0

(−1)ζ1+ζ2
[
1−Gβ

ϵ (y)
]ζ1+ζ2

ζ1 + 1



= α

∞∑
ζ1,ζ2=0

ζ1+1∑
ζ3=0

(−1)ζ2+ζ3

(
ζ1 + 1

ζ3

)
Gα+ζ3

ϵ (y)
[
1−Gβ

ϵ (y)
]ζ2

ζ1 + 1

+

∞∑
ζ1,ζ2=0

ζ1+1∑
ζ3=0

(−1)ζ1+ζ2+ζ3

(
ζ1 + ζ2

ζ3

)
Gβζ3+α

ϵ (y)

ζ1 + 1

= α

∞∑
ζ1,ζ2=0

ζ1+1∑
ζ3=0

ζ2∑
l=0

(−1)ζ2+ζ3

(
ζ1 + 1

ζ3

)(
ζ2
l

)
Gα+ζ3+l

ϵ (y)

ζ1 + 1

+

∞∑
ζ1,ζ2=0

ζ1+1∑
ζ3=0

(−1)ζ1+ζ2+ζ3

(
ζ1 + ζ2

ζ3

)
Gβζ3+α

ϵ (y)

ζ1 + 1

= α

∞∑
ζ1,ζ2=0

ζ1+1∑
ζ3=0

ζ2∑
l=0

Vζ1,ζ2,ζ3,lG
α+ζ3+l
ϵ (y) +

∞∑
ζ1,ζ2=0

ζ1+1∑
ζ3=0

Uζ1,ζ2,ζ3 G
βζ3+α
ϵ (y)

(8)

where

Vζ1,ζ2,ζ3,l =
(−1)ζ2+ζ3

ζ1 + 1

(
ζ1 + 1

ζ3

)(
ζ2
l

)
,

and

Uζ1,ζ2,ζ3 =
(−1)ζ1+ζ2+ζ3

ζ1 + 1

(
ζ1 + ζ2

ζ3

)
.

Then

E(Y ) = α

∞∑
ζ1,ζ2=0

ζ1+1∑
ζ3=0

ζ2∑
l=0

Vζ1,ζ2,ζ3,l × ζ(α+ ζ3 + l) +

∞∑
ζ1,ζ2=0

ζ1+1∑
ζ3=0

Uζ1,ζ2,ζ3 × I+∞
−∞(β ζ3 + α, Y ),
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where

I+∞
−∞(λ, Y ) =

∫ ∞

−∞
Gλ

ϵ (y)dy.

2.5. Order Statistics

Let Y1, Y2, · · · , Yn is a random sample (RS) from Eq. (1). Suppose Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n indicates to the
corresponding order statistics. Then, the pdf corresponding to the ith order statistic can be derived from

Fi:n(y) =

n∑
ζ1=i

(
n

ζ1

)
F (y)ζ1 [1− FB(y)]n−ζ1 =

n∑
ζ1=i

n−ζ1∑
ζ2−0

(−1)ζ2
(
n

ζ1

)(
n− ζ1
ζ2

)
FB(y)ζ1+ζ2

(9)

We can reformulate it using generalized binomial expansion as follows:

FB(y)ζ1+ζ2 =
G

α(ζ1+ζ2)
ϵ (y)

[2−Gβ
ϵ (y)]ζ1+ζ2

= Gα(ζ1+ζ2)
ϵ (y)

∞∑
l=0

(
−ζ1 − ζ2

l

)[
1−Gβ

ϵ (y)
]l

=

∞∑
l=0

l∑
ζ3=0

(−1)ζ3
(
−ζ1 − ζ2

l

)(
l

ζ3

)
Gβ ζ3+α(ζ1+ζ2)

ϵ (y). (10)

Then

Fi:n(y) =

n∑
ζ1=i

n−ζ1∑
ζ2=0

∞∑
l=0

l∑
ζ3=0

(−1)ζ2+ζ3

(
n

ζ1

)(
n− ζ1
ζ2

)(
−ζ1 − ζ2

l

)(
l

ζ3

)
Gω∗

ϵ (y)

=

n∑
ζ1=i

n−ζ1∑
ζ2=0

∞∑
l=0

l∑
ζ3=0

wζ1,ζ2,ζ3Πω∗(y) (11)

where ω∗ = α(ζ1 + ζ2) + β ζ3 and

wζ1,ζ2,ζ3 = (−1)ζ2+ζ3

(
n

ζ1

)(
n− ζ1
ζ2

)(
−ζ1 − ζ2

l

)(
l

ζ3

)
.

By differentiating from equation 11 with respect to Y , the density function of the ith order statistic of any NW-G
distribution can be expressed as

fi:n(y) =

n∑
ζ1=i

n−ζ1∑
ζ2−0

∞∑
ζ3=0

wζ1,ζ2,ζ3πω∗(y),

where πω∗(y) is the exp-G type-I density function with parameter ω∗.

3. Half-Logistic case

In this section we study Half-Logistic by taking Gϵ(y) =
1−exp[−y]
1+exp[−y] and gϵ(y) =

2 exp[−y]
(1+exp[−y])2 for y ∈ R+ as half-

logistic cdf and pdf in equations (1,2 and 3). We denote it by NW-HL(α, β). The cdf, pdf and hrfof NW-HL(α, β)
are given by

Fα,β(y) =

[
1−exp[−y]
1+exp[−y]

]α
2−

[
1−exp[−y]
1+exp[−y]

]β ,
Stat., Optim. Inf. Comput. Vol. 10, September 2022
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fα,β(y) =

2 exp [−y] (1− exp [−y])α−1

[
2α+ (β − α)

[
1−exp[−y]
1+exp[−y]

]β]
(1 + exp [−y])α+1

[
2−

[
1−exp[−y]
1+exp[−y]

]β]2 ,

and

hα,β(y) =

2 exp [−y] (1− exp [−y])α−1

[
2α+ (β − α)

[
1−exp[−y]
1+exp[−y]

]β]
(1 + exp [−y])α+1

[
2−

[
1−exp[−y]
1+exp[−y]

]β] [
2−

[
1−exp[−y]
1+exp[−y]

]β
−
[
1−exp[−y]
1+exp[−y]

]α]
Figures 1 and 2. provide the pdf and the hrf of NW-HL(α, β) for selected parameter values. These graphs

show that the pdf of NW-HL(α, β) is unimodal, right skew or almost symmetric. The hrf of NW-HL(α, β) can
be decreasing, increasing and bathtub shape.
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Figure 1. Plots of density function of NW-HL(α, β) for some subset value of parameters.

3.1. Moments

Here, we give lemma, which will be used later.

Lemma 1
For ς1, ς2, ς4 ∈ R+ and ς3 > −1, let

Q(ς1, ς2, ς3, ς4) =

∫ ∞

0

yς1 e−ς2 y (1− e− y)ς3

(1 + e− y)ς4
dy.
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Figure 2. Plots of hazard rate function of NW-HL(α, β) for some subset value of parameters.

Then with using some algebra, we obtain

Q(ς1, ς2, ς3, ς4) =

∫ ∞

0

yς1 e−ς2 y (1− e− y)ς3

(1 + e− y)ς4
dy

=

∞∑
ζ1=0

(
−ς4
ζ1

) ∫ ∞

0

yς1 e−(ς2+ζ1) y (1− e− y)ς3dy

=

∞∑
ζ1,ζ2=0

(−1)ζ2
(
−ς4
ζ1

)(
ς3
ζ2

)∫ ∞

0

yς1 e−(ς2+ζ1+ζ2) ydy

=

∞∑
ζ1,ζ2=0

(−1)ζ2
(
−ς4
ζ1

)(
ς3
ζ2

)
Γ(ς1 + 1)

(ζ1 + ζ2 + ς2)ς1+1
.

where Γ(·) is the well-know gamma function.

Next, the n-th moment of the NW-HL model is given as follows:

E(Y n) = 2

∞∑
ζ2=0

ϖ∗νζ2 Q(n, 1, ϖ∗ − 1, ϖ∗ + 1). (12)
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For integer values of n, Let µ
′

n,Y = E(Y n) and µ
′

1,Y = E(Y ), then one can also find the n-th central moment of
the NW-HL distribution as

µn,Y = E(Y − µ
′

1,Y )
n =

n∑
ζ1=0

(
n

ζ1

)
µ

′

ζ1,Y (−µ
′

1,Y )
n−ζ1 .

Using (12), the measures of skewness and kurtosis of the NW-HL model can be obtained as

Skew(Y ) =
−3µ

′

2,Y µ
′

1,Y + µ
′

3,Y + 2µ
′

1,Y
3(

µ
′
2,Y − µ

′
1,Y

2
) 3

2

,

and

Kurt(Y ) =
µ

′

4,Y − 4µ
′

1,Y µ
′

3,Y + 6µ
′

1,Y
2µ

′

3,Y − 3µ
′

1,Y
4

µ
′
2,Y − µ

′
1,Y

2
,

respectively. The moment generating function of NW-HL model can then be written as

E[et Y] = 2

∞∑
ζ2=0

(ϖ∗ + 1)νζ2 Q(0, 1− t, ϖ∗ − 1, ϖ∗ + 1).

Figures 3 shows the behaviour of skewness and kurtosis of NW-HL model.
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Figure 3. 3D plots of Skewness and Kurtosis of NW-HL(α, β) .

3.2. Conditional moments

Here, we intend to determine the conditional moments of the new family. Let

B(ς1, ς2, ς3, ς4, y) =

∫ y

0

yς1 e−ς2 y (1− e− y)ς3

(1 + e− y)ς4
dy,

For ς1, ς2, ς4 ∈ R+ and ς3 > −1. Then, we obtain

B(ς1, ς2, ς3, ς4, y) =

∞∑
ζ1,ζ2=0

(−1)ζ2
(
−ς4
ζ1

)(
ς3
ζ2

)
γ(y(ς2 + ζ1 + ζ2), ς1 + 1)

(ζ1 + ζ2 + ς2)ς1+1
,
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where

γ(y1, y2) =

∫ y1

0

ty2−1 e−t dt

is the incomplete gamma (lower case function). So, the n-th conditional moments of Y can be expressed as

E(Y n|y < Y ) =

2

1− F (y)

∞∑
ζ2=0

ϖ∗νζ2

[
Q(n, 1, ϖ∗ − 1, ϖ∗ + 1)

−B(n, 1, ϖ∗ − 1, ϖ∗ + 1; y)

]
(13)

Therefore

E(Y n|y ≥ Y ) =
2

F (y)

∞∑
ζ2=0

ϖ∗ νζ2B(n, 1, ϖ∗ − 1, ϖ∗ + 1; y).

3.3. Asymptotic

The asymptotic of cdf,pdf and hrf of the NW-HL(α, β) distribution as y → 0+ and the asymptotic of cdf, pdf and
hrf of the NW-HL(α, β) distribution as y → ∞ are, respectively, given as

fα,β(y) ∼
1

2
α yα−1, Fα,β(y) ∼

1

2
yα and hα,β(y) ∼

1

2− yα
α yα−1.

1− Fα,β(y) ∼ 2α exp [−y] ,fα,β(y) ∼ 2α exp [−y] and hα,β(y) ∼ 1.

3.4. Extreme Value

If y = (y1 + y2...+ yn)/n indicates to the mean of the sample. Then, using the central limit (CL) theorem,
n0.5(y − E(Y ))/ [Var(y)]0.5 is the standard normal model as n → +∞. Then, the converges of the relevant extreme
values M[Y ]

1,n = max(y1, y2, ..., yn) and m
[Y ]
1,n = min(y1, y2, ..., yn) could be useful. Then for the (1), we get

yα = lim
t→0

1

FB(t)
FB(ty),

and
e−y = lim

t→+∞

[
1− Fϵ(y τ(t)) + t

] 1

1− FB(t)
.

Thus, according to Leadbetter et al. (2012) (Theorem 1.6.2), there must be constants an, νn, cn ∈ R+ and dn ∈ R+

in order for

Pr

(
1

a−1
n

(
M[Y ]

1,n − νn

)
≤ y

)
→ e− exp[−y],

and

Pr

(
1

c−1
n

(
M[Y ]

1,n − dn

)
≤ y

)
→ 1− exp [−y] ,

as n → +∞. It is possible also to determine the shape of the norming constants.

4. Estimation

This Section is divided into three subsections. The first subsection describes the maximum-likelihood estimation
(MLE) method. The second one describes the least estimation (LS) method, weighted least squares estimation
(WLS) method, Cramer-von-Mises estimation (CM) method, Anderson-Darling (AD) and right-tailed estimations
(RAD). In the third subsection, a comprehensive graphical simulations are performed under some common
estimation methods.
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4.1. MLE method

Suppose y1, y2, . . . , yn be a any RS of size n from the NW-HL(Φ) model. The log-likelihood function (ln (Φ)) for
a vector of parameters can be written as

ln (Φ) = n log(2)−
τ∑

τ=1

yτ + (α− 1)

n∑
τ=1

log(1− exp [−yτ ])− (α+ 1)

n∑
τ=1

log(1 + exp [−yτ ])

+

n∑
τ=1

log
[
2α+ (β − α)qβτ

]
− 2

n∑
τ=1

log(2− qβτ ) (14)

where
qτ =

1− exp [−yτ ]

1 + exp [−yτ ]

The function ln (Φ) can then be maximized directly or by resolving the non-linear equations By differentiating
(14), the components of the common score vector U (Φ) can be derived as

Uα (Φ) =

n∑
τ=1

log(qτ ) +

n∑
τ=1

2− qβτ

βqβτ − αqβτ + 2α
,

and

Uβ (Φ) =

n∑
τ=1

qβτ + βqβτ log(qτ )

βqβτ − αqβτ + 2α
+ 2

n∑
τ=1

qβτ log(qζ1)

2− qβτ

4.2. Different methods

•LS & WLS
Swain et al. (1988) first developed “the LS estimations (LSEs) and WL estimations (WLSEs)” by minimizing

the following two functions, respectively,

SLS (Φ) =

n∑
τ=1

(
FNW−HL (tτ :n; (Φ))− 1

n+ 1
τ

)2

|τ=1,2,...,n

and

SWLS (Φ) =

n∑
τ=1

ξτ (n)

(
FNW−HL (tτ :n;Φ)− 1

n+ 1
τ

)2

,

where

ξτ (n) =
(n+ 1)2(n+ 2)

τ(n− τ + 1)

•CM method
The CM estimations (CMEs) (see Choi and Bulgren (1968)) are determined by minimizing

SCM (Φ) =
1

12n
+

n∑
τ=1

(
FNW−HL (tτ :n;Φ)− 1

2n
(2 τ − 1)

)2

.

•AD and RAD methods
The AD and RTAD estimations (ADEs & RTADEs) (Anderson and Darling (1952)) can be obtained by

minimizing

SAD (Φ) = −n− 1

n

n∑
τ=1

(2τ − 1)
[
logF (tτ ;Φ) + logFNW−HL (tn+1−τ ;Φ)

]
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and

SRAD (Φ) =
n

2
− 2

n∑
τ=1

FNW−HL (tτ ;Φ)− 1

n

n∑
τ=1

(2τ − 1) logFNW−HL (tn+1−τ ;Φ) ,

where F (·) = 1− F (·).

4.3. Simulation study

To examine the above-mentioned estimators, we look at the one model that was applied in this part and look
at the MSE of those estimators for various samples. as example, given what has been described before, for
(Φ) = (0.9, 0.6), (2, 1), (3.1, 0.4).

The review of each way of parameter estimations for the NW-HL model with regards to sample of size of n is
supposed. To do this, a simulation analysis is made based on the steps that follow:

1. Step 1.Create 104 samples of size n from (1) for HL case. This operation is carried out using the quantile
function and generated data of uniform distribution.

2. Step 2. Calculate the estimates for the 104 samples, say
(
α̂τ , β̂τ

)
for τ = 1, 2, ..., 104.

3. Step 3. Calculate the biases and mean squared errors as follows

Biasε(n) =
1

104

104∑
τ=1

(ε̂τ − ε)

and

MSEε(n) =
1

104

104∑
τ=1

(ε̂τ − ε)
2

We computed the biasε(n) and the MSEε(n) for ε = Φ and n = 30, 50, · · · 500 using the optim function and the
well-known Nelder-Mead method by statistical package R. Figures 4-6 display the results.

As can be seen in the figures 4-6, MSE plots for two parameters, as the sample size grows, all methods approach
zero, proving the truth of these numerical computations and estimation methods for the NW-HL model parameters.
Moreover,

• for estimating α, the LSE approach has the least amount of bias, however for large sample size, all methods
have almost same behaviour.

• for estimating β, the RTADE approach has the least amount of bias, however for large sample size, all
methods have almost same behaviour.

• for estimating α,the RTADE approach has the least amount of bias, however for large sample size, all methods
have almost same behaviour.

• for estimating β, the RTADE approach has the least amount of bias, however for large sample size, all
methods have almost same behaviour.

5. Applications

We introduce two applications to real data sets. For the first two examples, the Cramér–von Mises (W∗)
(Balakrishnan and Chen, 1985), Anderson-Darling (A∗) and p-value for Kolmogorov-Smirnov test were chosen
to comparison.

The exponentiated half-logistic (ESHL) distribution (Kang and Seo, 2011), Kumaraswamy standard Half-
Logistic distribution (KwSHL) (Cordeiro and de Castro, 2011) , the Beta standard Half-Logistic (BSHL) (Jones,
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Figure 4. Bias and MSE of estimations for parameter values (α, β) = (0.9, 0.6)

2004), McDonald standard Half-Logistic (McSHL)distributin (Oliveria et.al, 2016), New Odd log-logistic standard
Half-Logistic (NOLL-SHL) distribution (Alizadeh et al. , 2019), weibull distrbution (W), Generalized Exponential
(GE) distribution (Gupta and Kundu, 1999), Log Normal (LN) distribution, Gamma (Ga) distribution, Lindley (Li)
distribution (Ghitany et al., 2008), Power Lindley (PL) distribution (Ghitany et al., 2013) and Nadarajah-Haghighi
(NH) distribution (Nadarajah and Haghighi, 2011) have been selected for comparison in two examples. The cdf of
these models are given below:

H (y) =
1− exp [−y]

exp [−y] + 1

FSHL(y;α) = (H(y))
α |y,α∈R+ ,

FNOLL−HL(y;α, β) =
(H(y))

α

(H(y))
α
+ (1−H(y))

β
|y,β,α∈R+ ,

FKwSHL(y;α, β) = 1− [1− (H(y))
α
]
β |y,β,α∈R+ ,

FBSHL(y;α, β) =
1

B(β, α)

∫ H(y)

0

t−1+α(1− t)β−1dt|y,β,α∈R+ ,
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Figure 5. Bias and MSE of estimations for parameter values (α, β) = (2, 1)

where B(ϑ1, ϑ2) =
∫ 1

0
uϑ1−1(1− u)ϑ2−1du denote the beta function.

FMcSHL(y;α, β, c) =
1

B(β, α)

∫ (H(y))c

0

t−1+α(1− t)β−1dt|y,β,α,c∈R+ ,

FLi(y;α) = 1−
(
1 +

1

1 + α
α y

)
e−αy|y,α∈R+

FPL(y;α, β) = 1−
(
1 +

1

1 + α
α yβ

)
e−αyβ

|y,β,α∈R+ ,

FGE(y;α, β) = (1− e−αy)β |y,β,α∈R+ ,

FNH(y;α, β) = 1− e1−(1+αy)β |y,β,α∈R+ ,

FLN (y;α, β) = N

(
1

β
(log y − α)

)
|y,β,α∈R+ ,

where N(y) =
∫ y

−∞
1√
2π

e−
1
2 t

2

dt denote the cdf of standard Normal RV.
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Figure 6. Bias and MSE of estimations for parameter values (α, β) = (3.1, 0.4)

FGa(y;α, β) =
1

Γ(α)

∫ y

0

z−1+αe−β zdz|y,β,α∈R+ ,

FW (y;α, β) = 1− e−αyβ

|y,β,α∈R+ .

We used MLE method to estimate the model parameters.

5.1. lifetime data

A first data set is related to lifetimes of 20 electronic components given by Murty (2004, p100). The data are: 0.03,
0.12, 0.22, 0.35, 0.73, 0.79, 1.25, 1.41, 1.52, 1.79, 1.80, 1.94, 2.38, 2.40, 2.87, 2.99, 3.14, 3.17, 4.72, 5.09 .
Table 1 summaries the results of the fitted information criteria and estimated MLEs. One can see, the NW-HL
model is chosen as the best extension. The histogram of data set I, as well as the fitted pdf plots, are shown in
Figure 7 .

5.2. failure time data

A second real data set is failure time of 50 items given by Murty (2004, p195). The data are: 0.008, 0.017, 0.058,
0.061, 0.084, 0.090, 0.134, 0.238, 0.245, 0.353, 0.374, 0.480, 0.495, 0.535, 0.564, 0.681, 0.686, 0.688, 0.921,
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Table 1. Results for lifetime data

model estimatted parameters (se) W ∗ A∗ p− value

NW-HL (α, β) 0.711 2.271 0.022 0.164 0.981
(0.250) (1.412)

NOLL-SHL (α, β) 0.939 0.697 0.067 0.396 0.338
(0.296) (0.712)

ESHL (α) 1.228 0.057 0.345 0.292
(0.274)

KwSHL (α, β) 0.904 0.644 0.058 0.351 0.816
(0.302) (0.177)

BSHL (α, β) 0.920 0.647 0.058 0.354 0.820
(0.278) (0.180)

McSHL (α, β, c) 168.082 0.652 0.047 0.056 0.339 0.848
(159.066) (0.174) (0.041)

Li(α) 0.803 0.064 0.381 0.848
(0.133)

PL(α, β) 0.761 1.063 0.059 0.354 0.939
(0.174) (0.187)

GE(α, β) 0.559 1.139 0.084 0.493 0.648
(0.154) (0.332)

NH(α, β) 0.071 4.863 0.041 0.256 0.968
(0.030) (2.154)

LN(α, β) 0.712 1.279 0.203 1.152 0.268
(0.286) (0.202)

Ga(α, β) 1.162 0.600 0.083 0.486 0.680
(0.328) (0.210)

W(α, β) 0.426 1.196 0.071 0.418 0.863
(0.135) (0.224)

0.959, 1.022, 1.092, 1.260, 1.284, 1.295, 1.373, 1.395, 1.414, 1.760, 1.858, 1.892, 1.921, 1.926, 1.933, 2.135,
2.169, 2.301, 2.320, 2.405, 2.506, 2.598, 2.808, 2.971, 3.087, 3.492, 3.669, 3.926, 4.446, 5.119, 8.596 .

Table 2 lists the results of the fitted information criteria and estimated MLEs. One can see, the NW-HL model is
chosen as the best model. The histogram of failure time data, as well as the fitted pdf plots, are shown in Figure 8.
Figures 9-10 show the unimodality of profile likelihood functions of parameters for lifetime data and failure time
data.
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Table 2. Results for failure time data

model estimatted parameters (se) W ∗ A∗ p− value

NW-HL (α, β) 0.592 1.233 0.019 0.161 0.983
(0.128) (0.627)

NOLL-SHL (α, β) 0.796 0.743 0.041 0.256 0.715
(0.147) (0.126)

ESHL (α) 0.946 0.035 0.224 0.127
(0.133)

KwSHL (α, β) 0.719 0.668 0.037 0.230 0.910
(0.149) (0.116)

BSHL (α, β) 0.738 0.664 0.038 0.239 0.900
(0.136) (0.119)

McSHL (α, β, c) 91.722 0.677 0.007 0.034 0.218 0.921
(78.442) (0.115) (0.005)

Li(α) 0.910 0.049 0.300 0.865
(0.096)

PL(α, β) 0.994 0.882 0.063 0.375 0.818
(0.127) (0.096)

GE(α, β) 0.560 0.903 0.076 0.448 0.653
(0.105) (0.162)

NH(α, β) 0.463 1.179 0.063 0.379 0.873
(0.276) (0.454)

LN(α, β) −0.123 1.452 0.329 1.902 0.155
(0.205) (0.145)

Ga(α, β) 0.914 0.546 0.077 0.455 0.661
(0.159) (0.125)

W(α, β) 0.610 0.976 0.079 0.468 0.723
(0.105) (0.111)
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Figure 7. Histogram and fitted pdfs for lifetime data.
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Figure 8. Histogram and fitted pdfs for failure time data.

Figure 9. Unimodality of profile likelihood functions of parameters for lifetime data.
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Figure 10. Unimodality of profile likelihood functions of parameters for failure time data.
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6. Conclusions

We introduced a novel weighted G family of distributions with only two parameters called the new weighted
generated (NW-G) family. Some properties of the new family, such as quantile function, asymptotic, mixture
for cdf and pdf, residual entropy and order statistics are obtained. Then, the half -logistic case is studied
with more details. The failure rate of the new family accommodated the ”decreasing-constant-increasing-
constant”, ”monotonically increasing-constant”, ”monotonically decreasing” and ”bathtub-constant” shapes. The
maximum-likelihood estimation method, the least square estimation method, weighted least squares estimation
method, Cramer-von-Mises estimation method, Anderson-Darling, right-tailed Anderson-Darling estimations and
maximum product of spacings method are considered and assessed. The Bias and MSE plots of parameters for all
methods are given, The MSE values approach to zero with the increase in the size of the sample which confirms
the validity of the used estimation methods. The flexibility of novel distribution is illustrated by applying it to
two real data sets. The new model is compared with many other relevant extensions. The results of tables and
figures illustrate the new family provide the best fits against other common competitive extensions. So Applications
demonstrate the wide applicability and importance of the new family.
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