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Abstract A new two-parameter lifetime distribution is proposed and numerically studied. The new model has a flexible
failure rate shapes such as “monotonically increasing” , “monotonically decreasing” , “bathtub” , “constant” , “upside
down” and “J-shape” . Various of its statistical properties are derived. A numerical analysis of skewness and kurtosis are
presented. Many bivariate and multivariate extensions are also presented via Farlie Gumbel Morgenstern copula, Renyi
entropy copula, modified Farlie Gumbel Morgenstern copula and Clayton copula. Several estimation methods such as the
maximum likelihood, Cramer-von-Mises, L-moment estimation, Anderson Darling, right Tail-Anderson Darling estimation
and left tail-Anderson Darling are presented and considered. Numerical simulations are performed to assess the performance
of estimation methods. An environmental data set is employed to measure flexibility of the new model also to compare the
estimation methods.
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1. Introduction and motivation

Lemonte [20] proposed a new three-parameter distribution with cumulative distribution function (CDF) presented
as

G%T,/\(Z) ={l—exp[l—(1+ Z)\)T]}7 | (2>0,7>0,7>0 and A>0)>»

which called the exponentiated Nadarajah-Haghighi (ENH). By considering the scale parameter A\ = 1, the above
CDF reduces to two-parameter ENH

Gy r(2) = [1 = 6.2 (2)]7 | (250,450,750 and A>0)5 (D

where ¢, 7z (z) = exp [1 — (1 4 2)7] and the corresponding probability density function (PDF) is

Grz(2) (14271
[1 —Sr,Z (Z)]li’Y

The parameter v and 7 control the shape of the ENH distribution. For v = 1, the ENH model reduces to the NH
model (Nadarajah and Haghighi [30]). For 7= 1, the ENH model reduces to the generalized exponential (GE)

g%T(z) =0T | (2>0,7>0and 7>0)- (2)
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model (Gupta and Kundu [16]). For v =7= 1, the ENH model reduces to the standard exponential (Exp) model.
Recently, Yousof and Korkmaz [33] presented and studied the Topp-Leone Nadarajah-Haghighi distribution,
Alizadeh et al. [5] presented the extended exponentiated Nadarajah-Haghighi model, Nascimento et al. [31]
presented a new family called the odd Nadarajah-Haghighi family based on (1), Ibrahim [19] studied the odd
log-logistic NH (OLLNH) model and finally Yousof et al. [38] proposed and studied a new lifetime model called
the Topp Leone Generated Nadarajah Haghighi model. In this paper, we shall refer to the new distribution using
(1) and (2) as the Lindley exponentiated Nadarajah Haghighi (LENH) model using the Lindley G (L-G) family of
distributions which introduced by Silva et al. [37]. The PDF of the OL-G family of distributions are given by

g9x ()
z)= ——= exp |—O~ (2 - , €]
frx (2) 2 ()] p[~0x (2)] | zer+) )
where O~ (z) = %8 | (zer+) refers to the odd ratio, G (z) is the CDF of the baseline model and G (z) =

1 — G~ (z) is the survival function of the baseline model and the corresponding PDF of (3) can be expressed as

14+ G~y (2
Pr(2) = 1= e e [-02 ()] | e @
respectively. In this paper, a new two-parameter lifetime distribution called the LENH model is proposed and
studied. The new LENH model has a flexible hazard rate function (HRF). The HRF of the LENH model can be
“monotonically increasing”, “monotonically decreasing”, “bathtub” and “upside down (reversed U)” (see Figure
2). The variance (V(Z2)), skewness (S(Z)) and kurtosis (K(Z)) measures of the LENH model can be calculated
from its ordinary moments and the well-known relationships. Explicit mathematical expressions are derived for
all its properties. Many bivariate LENH extensions are also presented. Several estimation methods such as the
maximum likelihood estimation method, Cramér-von-Mises estimation method, L-moment estimation method,
Anderson Darling estimation method, right tail-Anderson Darling estimation method, left tail-Anderson Darling
estimation method are presented and considered. Numerical simulations are performed to assess the performance
of estimation methods. Illustration of an environmental data set is employed to measure flexibility of the new model
also to compare the estimation methods. Using (1), (2) and (3), we obtain the two-parameter LENH PDF as follows

sz G-z I T e ()
(I-[1—ez@]} 1—[1—¢ 7 (2)]

where z > 0,v >0 and 7 > 0. For v = 1, the LENH reduces to the Lindley NH (LNH) (Yousof et al. [42]).
For v =7=1, the LENH model reduces to the Lindley generalized exponential (LGE) model. For v =7=1,
the LENH model reduces to the Lindley exponential (LE) model. The proposed LENH distribution in (5) has a
major advantage of having only two parameters v and 7, consequently it provides an easier path in estimating
its parameters, however many competitive models have three (or more) parameters as shown in Table 8. The
corresponding CDF is given by

_ 1+ (]‘ — []' — Sz (Z)]’y) ex { 1 [1[; irj_ (ZZEL’;]’Y } | (2>0,y>0and 7>0)- (6)

fr(z) = sy (14 2)

2 7| (5)

Fy(z) =1 2{1—[1 -6z (2)]"}

The LENH density function can be expressed as an infinite mixture of ENH PDF as follows

fl(z) = Z £h17h2g')’*77' (Z) ‘7*=’y(ﬁ1+ﬁ2+1)a (7
ﬁ17ﬁ2=0

where
e — (=)™ T () + hy +3)
ol = 5 By + By + 1) T IT (ia + 3)°
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Figure 1. Plots of the LENH PDF for some parameter values.

grr (2) =7 Tz () 142 =Gz ()],

represents the ENH PDF with power parameter v* > 0. The CDF of LENH model can be given by integrating (7)

as

Fr(2)= Y &nmGyr(2), (8)

h1,ha=0

where G- - (2) =[1 — ¢, 2 (z)]“Y is the CDF of the ENH model with power parameter v* > 0. Figure 1 shows
some plots of the LENH PDF for some parameter values. Figure 2 shows some plots of the LENH HRF for some
parameter values.

We are motivated to present the LENH model for the following reasons:

The LENH model has only two parameters among many other competitive model which have more than two
parameters with less flexibility.

The PDF of the LENH distribution can be “right skewed with heavy tail and one peak™, “right skewed with
heavy tail and no peak”, “symmetric” and “semi-symmetric” (see Figure 1). Hence, the new model could be
useful in modeling the right skewed real data with heavy tail and one peak, right skewed real data with heavy
tail and no peak, symmetric and semi-symmetric real data sets.

The new HRF accommodates “monotonically increasing”, “monotonically decreasing”, “J-HRF”, “bathtub”,
“upside down” and “constant” (see Figure 2).

The novel density can be simplified and re-expressed as a mixture representation of the ENH model which
means that the properties of the novel density can be derived from the corresponding properties of the ENH
model (see equation 7).

The skewness (S(Z)) of the LENH can range in the interval (0.4455, 33.07), whereas the S(Z) of the ENH
varies only in the interval (0.51335, 3.5726). The kurtosis (K(Z)) of the LENH is ranging from 2.8786 to
3749, whereas the K(Z) for the ENH only varies from 3.419 to 32.041. So it is clear that the new model is

more flexible than the base line model (see Tables 1 and 2).

e The entropy index under the Rényi entropy confirm the wide flexibility of the LENH model.
e The new model proven its superiority in modeling the bimodal right skewed real data set (see subsection

6.2).
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Figure 2. Plots of the LENH HRF for some parameter values.

Figure | shows that the LENH distribution has various PDF shapes such as “right skewed with heavy tail and one
peak”, “right skewed with heavy tail and no peak”, “symmetric” and “semi-symmetric” densities. Figure 2 shows
that the LENH model produces flexible hazard rate shapes such as “monotonically increasing”(y = 1,7 =0.2),
“monotonically decreasing (v = 1,7 =0.05)", “J-HRF (v = 1000, 7 =10)”, “bathtub (or reversed upside down)
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(v = 0.5, 7 =0.4)”, “upside down (reversed bathtub) (v = 1.65, 7 =0.25)” and “constant (v = 0.5, 7 =0.4)”. These
plots indicate that the LENH model is very useful in fitting different data sets with various shapes.

2. Properties

2.1. Moments and generating function

Table 1: E(Z), V(Z), S(Z) and K(Z) of the LENH distribution.

gl T | E(2) V(2) S(2) K(2)
1.25 0.15 | 242.2539 188510.9  4.322433  33.86712
0.20 | 50.09063 4324717  2.758123  14.48364
0.25 | 20.01207 458.0912  2.016948  8.687948
0.35 | 20.01207 458.0912  2.016948  8.687948
3 0.2 207.5201 48891.94  2.046808  8.951579
0.25 | 65.26315 3202.609  1.4921140 5.842854
0.30 | 30.41397 510.8262  1.1459840 4.435005
035 | 17.61411 1347768  0.905572  3.686336
0.035 0.25 | 0.0021574 0.0001847 17.11736  529.9131
0.05 0.0102973  0.0019566  10.64658  199.1414
0.1 0.1107511  0.0788771  5.792837  59.0411
0.5 4.407403 35.82801  2.816552  14.97952
1 1439430  255.1699  2.235054  10.03103
2 38.84068 1372.081 1.7112010 6.913076
5 117.9359 8316.892  1.2643050 4.901819
20 443.3004 67313.37  0.8387366 3.593372
50 896.2675 200394.2  0.6576252 3.207016
150 1834.271 601698.1  0.5021189  2.953407
250 2465.136 945190.5  0.4454982 2.878647
0.10 0.10 | 0.4873103 5.6566140 33.07044  3749.32
0.10 0.20 | 0.1494102 0.1661664  7.055457 94.48604
020 0.10 | 7.512419  1524.4640 28.89366  2294.686
025 0.15 | 3.728038  94.410400 8.414384  142.7792
0.15 0.25| 0.3346136 0.4716986  4.603960  37.79379
0.10  0.50 | 0.04829055 0.0118380 4.247585  28.83613
055 0.15 | 32.63375  5228.0410 6.105494  69.34496
The rth moment of Z, say ., ,, follows from (7) as
Co_mi— NN o (Ba
Mr,Z*E(Z)* Z Zfﬁl,ﬁzn F<T+1,1+FL3>,

where

() _
Mhig by =

~v* (—1)‘"””"7'&”4 (1+ ﬁg)_<ﬁ74+1) exp (1 + hg) (

hi1,h2,h3=0 hiy=0

fiz,ha
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Or

%) =1 r

*r ﬁ4
/u’:r-,Z =E (Zr) = Z Z Z fhl,hz 77;(1’;7;714)F <T +1,1+ ﬁ3> |(’y*>0 and integer) «

hy,h2=0 h3=0 hy=0

The V(Z), S(Z) and K(Z) measures can be calculated from the ordinary moments in (9) and using well-known
relationships. Table 1 give a numerical analysis for the E(Z), V(Z), S(Z) and K(Z) for the LENH distribution.
Based on Table 2 we note that:

S(Z) of the LENH distribution always positive.

K(Z) of the LENH distribution can be more than three or less than three.

E(Z) of the LENH model increases as -y increases.

E(Z) of the LENH model decreases as T increases.

Based on Tables 1 and 2 we note we can say that, the S(Z) of the LENH can range in the interval ( 0.4455,
33.07), whereas the S(Z) of the ENH varies only in the interval (0.51335, 3.5726). The spread for the LENH
K(Z) is ranging from 2.8786 to 3749, whereas the spread for the ENH K(Z) only varies from 3.419 to
32.041. So it is clear that the new model is more flexible than the base line model.

Table 2: E(z), V(z), S(z) and K(z) of the ENH distribution.

vt | E( V(z) S(2) K(z)

1 1 1 1 2 9

2 1.5 1.25 1.609969 7.08

5 2.283333 1.463611 1.339221  6.025973
10 2.928968 1.549768 1.241416  5.703086
20 3.597740 1.596163 1.190993  5.548813
50 4.499205 1.625133 1.160248  5.458834
75 4.901356 1.631689 1.153366  5.439116
100 5.187378 1.634984 1.149918  5.429296
200 5.878031 1.639947 1.144738  5.414611
500 6.792823 1.642936 1.141626  5.405815

100 035 | 203.6261 21037.49  3.572594  32.04097
0.40 | 102.1248 3740.145 2.886795  20.84275

0.45 | 59.77733 964.0727 2453066  15.39329

0.50 | 38.91862 321.711 2.153882  12.30458

0.75 | 10.46292 10.47627 1.437076  6.893606

1.00 | 5.187378 1.634984 1.149918  5.429296

2.00 | 1.475057  0.0614697 0.7767964 4.056221

3 0.8277548  0.0146344 0.6639387  3.750942

5 0.4352452  0.0032054 0.5769205 3.548918

10 | 0.1977865 0.0005529  0.5133473 3.419141

10 10 | 0.1419304 0.0011704 0.3408162 3.095872
0.1 10 | 0.01060546 0.0006629  3.506997  17.17571

1 30 | 0.02017738 0.0002059 0.2755712  3.52802
30 1 3.994987 1.612150 1.173958  5.498575
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Bowley’s S(z) and the Moors” K(z) can be calculated and then sketched using the quantile function (QF) (Q)).
The Bowley’s S(z) is based on quartiles given by

S(z) = Q% _QQ( )_|_Q(
Q1 — QW)
and the Moor’s K(z), see Moors (1998), is given by
Q® — Q¥ + Q¥ —Q®
Q®) —Q®

where Q(.) is the QF. Figure 3 indicates that S(z) and depend very much on the shape parameters v and 7. Here,

K(z) =

)

we provide two formulae for the MGF M (t) = E (exp (e’ #)) of z. Clearly, the first one can be derived using (7)

as
h
My (t) = Z anl,nz lnh3,h4 (T"‘+1,1+ﬁ3>.

h1,h2,h3,r=0 hy=0
Or

¥ =1 r

r ﬁ4
— Y S Gt (CERRER [T—

fi1,Fin,r=0 Fi3=0 fig=0

2.2. Incomplete moments

The rth incomplete moment, say I, z (Z), of Z can be expressed using (7) as

h
S T (% 41,1+ Fg)
L.z (2) = e Ofﬁhhznﬁg Tia [ r (% 1,1 +ﬁ3) (1 +bZ)T) . (10)

Or

o0 -1 r

2= 5 5 S et | @l F I e somsimn

1,2 kg A _ ha . T ~*>0 and integer) -
i sl | T (% +1,(1+hs) (1+b2)7)

The mean deviations about the mean [01,7 = E(|z — 117 »|)] and about the median [d,7 = E (|Z — M])] of 2
are given by d; 7 = 2#;,ZF(U/1,Z) = 2L z(p) z) and b2, 7z = py 5 — 211,z (M), respectively, where pi} , = E (Z),
M =Median(Z) = Q (3) is the median, F(u} ,) is easily calculated from (6) and I,  (z) is the first incomplete
moment given by (10) with r= 1.
2.3. Moment of residual life and reversed residual life

The rth moment of the residual life I z(t) = E[(Z — t)*] | (z>tandr=1,2,...)- The rth moment of the residual life

of Z is given by
1 oo
= Z —t)"dF .
le,z(t) lFr(t)/Z (Z —t)"dFx(z)

Therefore
1 = ( fig
)= s Y e, oo (T IR h3> ,
I hl,hz,hg Oh4 0
where

1 - n—h (™) n—nh
§h17h2 - Eﬁl,fb Z(_l) <h> < .

h=0
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Or

o y*—=1 r

r h4
lr’Z(t) Z Z Z §h1,h2nh3,h4 <7- +1,1+ h?’) |('Y*>0 and integer) «

ﬁ1 ho=0 h3=0 hy=0
The rth moment of the reversed residual life

Ly z(t) =E[(t = Z2)"](z<t, t>0andr=12,...)-

Then. we have

Los(t) = F;(Z) /0 (4= Z)dFy(2).

Then, the rth moment of the reversed residual life of Z becomes
U (5 41,1+ h)
Ly - 77 or) T
2= F) >3l [ P (B (4 ) (L b2)7) |

hi,h2,hiz3=0 hy=0

where .
(2) _ h n n—h
2, = e 0" ()
h=0
Or
oo y*=1 r Fia
@ (v M(2+1,1+n0;
Lr,Z( Z Z Z £ﬁ17h2 h37h4 { _F (% _’_(17 (1 + h3) (1 —)1— bz)T) |(’Y*>O and integer)-

- ﬁl,ﬁg 0 A3=0 hy=0

2.4. Order statistics

Suppose Z1, Zs, . .., Zy is arandom sample from an LENH model. Let Z;.,, denote the +th order statistic. The PDF
of Z;.,, can be expressed as

fx(2) i —i

fin(2) = g iy e [ - Fx(z)]"". (1)
We can write the density function of Z;.,, in (11) as
vo+n—i
finl) = 3D Vo Br Dy iasisn (12)

v1,p=0 v3=0

”il (—1)"2t v\ (fia+n—i\[i—1
Vvy,v = - - .
Lrsp B(i,n—i+ !y +1]\vs+ 11 V3 Vs

120} =0

where

Equation (12) is the main result of this section. It reveals that the PDF of the LENH order statistics is a linear
combination of ENH density functions. So, several mathematical quantities of the LENH order statistic such as
ordinary, incomplete and factorial moments, mean deviations and several others can be determined from those
quantities of the ENH distribution. The pth moment of Z;.,, is given by

vo+n—i r
Z ZZ ZUVI,V?”P m(:z’r r (7[_ +1,1+ w) . (13)

vy,p,w=0 v2=0 [=0

Or

oo votn—i r vy —1

Z Z Z Z Yvi,vs,p 77V3 i F (71_ + 1,1+ w> |('y'>0 and integer) -

i1,p=0 v3=0 [=0 w=0
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2.5. Entropy index

An entropy is a measure of variation or uncertainty of a random variable Z. Two popular entropy measures are due
to Rényi [35] and Shannon [36]. The Rényi entropy of a random variable with PDF f(z) is defined by

1 (o] 5
1_510g(/0 f (Z)d2>,
for 6 > 0 and 6 # 1. Then

CRE N Y NI} B A N | S O N
. / S TR p{ 51—[1—<T,Z<z>]”}d |

Instead of the mathematical analyzing the above equation, we can graphically analyze it. Figure 3 gives graphical
entropy index under the Rényi entropy. Based on Figure 3, the Rényi entropy of the new distribution can have some
useful shapes. The plots of Figure 3 are sketched using different combinations of parameters.

Rz(0) =

Rz(6) =

3. Copula

Following Al-babtain et al. [4], Yousof et al. [41], Mansour et al. ([23],[24],[25],[26],[271,[27]), Elgohari and
Yousof ([28], [14]), Ali et al. ([2],[3]), we derive some new bivariate type LENH (Biv-LENH) model using Farlie
Gumbel Morgenstern (FGM) Copula(see Morgenstern [29], Gumbel [ 17] and Gumbel [18]), modified FGM Copula
(see Rodriguez-Lallena and Ubeda-Flores [34]), Clayton Copula and Renyi’s entropy (Pougaza and Djafari [33]).
The Multivariate LENH (MvVLENH) type is also presented. However, future works may be allocated to study these
new models. First, we consider the joint CDF of the FGM family, where

Co(p,v) = v (14 Vi'v*)

pr=1—p»

where the marginal function u= Fy, v = Fy, V € (—1,1) is a dependence parameter and for every p,v €
(0,1), C(p,0) = C(0,v) = 0 which is “grounded minimum” and C(y, 1) = p and C(1, ) = v which is “grounded
maximum”, C (p1, 1) + C (p2, v2) — C (p1, v2) — C (p2, 1) > 0.

3.1. Via FGM Copula

A Copula is continuous in x and v; actually, it satisfies the stronger Lipschitz condition, where

IC (p2,v2) = B (pa,01) | < lpa — pa] + |v2 — 1]
ForO<p; <ps <land0 <1y <wvy <1, wehave

Pr(p < p < po,vn <W <) =0 (1, 1) + 0 (p2,12) = C (1, v2) — B (p2,11) > 0.

Then, setting 1" =1 — Fy (21)|jur=(1—p)e(o,1)) and v* =1 — F (22)|-=1-v)e(0,1))- We can esaily get the get
the joint CDF of the FGM family. The joint PDF can then derived from cv (14, v) = 1+ V' v (4 —1—24 and v =1—20)

or from f(z1,x2) = C(F1, F2) fifa.

3.2. Via modified FGM Copula
The modified FGM copula is defined as

Co (i, v) = [1+ Vo (1) 0 (v)] [ve(-1,1)

or
Co(p,v) = pv + Viudy|ve—1,1),

Stat., Optim. Inf. Comput. Vol. 10, June 2022
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Figure 3. Graphical entropy index under Rényi entropy.
where @/’u = (p), and 9, = v (v). Where ¢ (1) and 9 (v) are two continuous functions on (0,1) where
w(0>:w<> ?(0) =9 (1) = 0. Let

b1 = inf {7?9;

0 ~ ~ 9 ~
aluilﬂgl} < 0,as = sup {1/1# : Wwﬂhjl} <0

0 ~ ~ 0~
81/191/'02} > 0,by = sup {191, : aV15‘,,|02} >0

Then, 1 < min (ajaz, b1b2) < co, where

o1 = {,u YIRS (07 1) ‘%%‘ exists}

0

Hou

Y (p) =

0

o

Un

- (n),
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and

o2 ={v:v e O] a5, i
3.2.1. Biv-LENH-FGM (Type-I) model Consider the following functional form for both ¢ (¢1) and ¥ (v). Then, the
Biv-LENH-FGM (Type-I) can be derived from Cv (11, v) = pv + Vo0, [ve(—1,1) where ¢, = pu [1 — Py (1))
and 9, = v [1 - Fy, ()]

3.2.2. Biv-LENH-FGM (Type-II) model Let ¢ (1) and 9 (v) be two functional form for satisfy all the conditions
stated earlier where

. -v
V()" |(vis0) = pV (1 - p) v

and o
* 1—
G (W) [(vys0) =vV2 (1—w) 2.

Then, the corresponding Biv-LENH-FGM (Type-II) can be derived from

Co.vuve(p,v) = v [1+ VY ()" 9 ()]
3.2.3. Biv-LENH-FGM (Type-1II) model Let ¢* (i) = p[log (1 + p*)] and ¥* (v) = v [log (1 4+ v*)] for all ) (u)
and ¥ (v) which satisfies all the conditions stated earlier. In this case, one can also derive a closed form expression
for the associated CDF of the Biv-LENH-FGM (Type-III) from

P

Co (u,v) = o (14 V6% () 0* (v))

3.3. Via Clayton Copula

The Clayton Copula can be considered as

Clvr, ) = [(1/1/1)v + (/)Y — 1} - |ve(0,00)-

Setting vy = Fx (t) and vy = Fy (z). Then, the Biv-LENH type can be derived from Clvr,10) =
C(Fy, (t), Fy, (z)). Similarly, the MVLENH (m-dimensional extension) from the above can be derived from

m v
C(V;J(lengrlm) .
h=1

3.4. Via Renyi’s entropy
Using the theorem of Pougaza and Djafari (2011) where

Clu,v) = zop + x1v — 2129,

Then, the associated Biv-LENH will be C(u, v) = 0(Fy | (21), Fx, (z2)).

4. Estimation

In this Section we will consider the following estimation methods:

e Maximum likelihood estimation (MLE) method.
e Cramér-von-Mises estimation (CVME) method.

Stat., Optim. Inf. Comput. Vol. 10, June 2022



736 IMAGE RECONSTRUCTION FROM INCOMPLETE CONVOLUTION DATA

L-moment estimation method.

Anderson Darling estimation (ADE) method.

Right Tail-Anderson Darling estimation (RADE) method.
Lest Tail-Anderson Darling estimation (LADE) method.

4.1. MLE

Let 21, 29, . . ., 2, be a random sample from this distribution with parameter vector Y= (-,7)7. The log-likelihood
(Log-L) function for Y, say ¢(X), is given by

1
(X)) = nlog<2)+n10g( )+ nlog (7 +Z 1= (1+25n)7]
h=0

+(r=1)> log(l+zpm) + (y— 1) log (1 =6z, (2nn))
h=0

n n 1-¢ 2 (Zh ")]’Y
-3 log[l—(1—ap)] - [ SR 14 !
ﬁZ:O Og[ ( ah) } ;) 1-— []‘ — ST, Zkom (Zﬁ'v”)]’Y v

The last equation can be maximized either by using the different programs like R (opt im function), SAS (PROC
NLMIXED) or by solving the nonlinear likelihood equations obtained by differentiating (14). The score vector

e oae\T . .
elements, X = 5y oy ) »are easily to be derived.

4.2. CVME

MacDonald [22] proposed the CVME method based on the theory of minimum distance estimation. The CVMEof
the parameter «y and 7 are obtained by minimizing the following expression with respect to (wrt) to the parameters
~ and 7 respectively.

n 2
CVMy = —+Z (o) (2hin) = €]
h=1
where ¢y, ,, = 22=1 and
L1, )]} i
B 2{1-[1¢r z, , (zr.n)] '}
CVMy) = 5+ Z e (152, (z1.0)] ~ Chim
P 1—[1—§7—‘zh,"(Zﬁ,n)]AY

Then, CVME of the parameters ~ and 7 are obtained by solving the two following non-linear equations

: 1+{1-[1-¢; 7,  Gzr.n)]"}

1 _
2{1-[1—< 7, znn)] }
Z [1—<T,zz (znn)]” —Chn | Ny (257, T) = 0,
2 xexpd -

—[1=sr.z4, (znn)]”

and
1+{1-[1-¢- 7, . (zn.n)]"}

n 1-
T e
Z [1*9,2& (zn n)}“’ — Crn | () (Zf“"’ 7 T) =0,
=1 X exp {_ 1 P— }

—[l—cT,zﬁ,n (Zn,n)rY

where 1, (2#,n,7,7) and 9¢;) (25,0, 7,7) are the values of the first derivatives of the cdf of OLENG distribution wrt
~ and 7 respectively.
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4.3. L-moment estimation

Based upon the moments of the order statistics, we can derive explicit expressions for the L-moments of Z as
infinite weighted linear combinations of the means of suitable OLENG order statistics. The L-moments for the
population can be obtained from

r =

1 r—1
; O(_l)m( m )E(Zr—m:m)| (r>1)-

The first four L-moments are given by
1(7,7) = E(Z1a1) = py = b,

1 1
2(1,7) = 5B (Z22 = Z12) = 5 (8200 — p1:2) = Lo,

where £j(5—1.2) is the L-moments for the sample. Then The L-moments estimators ¥ -moment) aNd T(-moment) Of
the parameters -y and 7 can be obtained by solving the following four equations numerically

1 (:V\(L»momem) and ﬁL—moment)) = {1,
and

2 (a(L-momem) and ?(L-moment)) =L,
4.4. ADE
The ADE of Y4 pp) and 7 4 p ) are obtained by minimizing the function

n

ADE (vy,7) = —n—n"" Z (28— 1) {log Fy ) (2h,n) +log [1 = Fiy r)(2—414nm) ] } -
h=1

The parameter estimates of 3( ApEg) and ?( apg) follow by solving the nonlinear equations
2 [ADE (v,7)] =0
a,y 77 - b

and 5
-

4.5. RADE

The RTADE of 4gapg) and T(rapg) are obtained by minimizing the function

n

n
1
RADE (7’ T) = g -2 Z F(%T)(Zh,n) n Z (Zh - 1) {log [1 - F(v,‘r)(zfﬁJrlJrn:n)} } :
h=1 h=1

The parameter estimates of ﬁ(R ADE) and ’?(RADE) follow by solving the nonlinear equations

7]
oy [RADE (v,7)] =0,

and

% [RADE (v,7)] = 0.
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4.6. LADE

The RTADE of 51 apg) and 7(;apE) are obtained by minimizing the function

n

3n - 1
LADE (’777—) = _7 +2 E F('y,‘r)(zﬁ,n) - ﬁ E (2h - 1) log F('y,r)(zﬁ,n)'
h=1 h=1

The parameter estimates of ¥ apg) and 7(apg) follow by solving the nonlinear equations

0

5 [LADE (v,7)] =0,
and 5

9 [LADE (v, 7)] = 0.

Table 3: Simulation results for parameters 7 = 0.3 and v = 0.9.
n BIAS BIAS.,) RMSE(;y RMSE(,) D-abs D-max

MLE 20 0.00473 —0.00128 0.02482  0.15916  0.00886 0.01439
CVME 0.01504 0.15410 0.06820  0.52117 0.03298 0.04917
L-moment 0.00470  —0.00174 0.02627  0.14546  0.00903 0.01456
ADE 0.00004 0.05892 0.05117 036210 0.02424  0.03377
RADE 0.00466 0.10184 0.05284  0.45873  0.03254 0.04543
LADE 0.01254 0.09170 0.06455  0.40016 0.01526 0.02490
MLE 60  0.00229 —0.00556 0.01352  0.09339 0.00643 0.00976
CVME 0.00577 0.04493 0.03447  0.20409 0.00849 0.01349
L-moment 0.00188  —0.00267 0.01418  0.08550  0.00447 0.00696
ADE 0.00082 0.01823 0.02773  0.16925 0.00624 0.00870
RADE 0.00265 0.03123 0.02778  0.18466  0.00837 0.01202
LADE 0.00103 0.01322 0.03474  0.18199 0.00377 0.00536
MLE 100  0.00128  —0.00202 0.01065  0.07658 0.00314 0.00486
CVME 0.00422 0.02960 0.02443  0.13867 0.00509 0.00838
L-MOMENT 0.00071 0.00085 0.01071 0.06603  0.00091 0.00165
ADE 0.00125 0.01512 0.02039  0.12088  0.00419 0.00599
RADE 0.00207 0.02178 0.02167  0.13518 0.00552 0.00803
LADE 0.00085 0.01225 0.02717  0.13770  0.00369 0.00521
MLE 200  0.00042 0.00021 0.00716  0.05173  0.00066 0.00113
CVME 0.00092 0.00845 0.01763  0.09965 0.00195 0.00292
L-moment 0.00025 0.00099 0.00753  0.04673  0.00014 0.00027
ADE —0.00052  0.00157 0.01485  0.08804 0.00158 0.00238
RADE —0.00027  0.00379 0.01523  0.09535 0.00209 0.00298
LADE 0.00171 0.01170 0.01981  0.100038 0.00201 0.00332

5. Simulation studies for comparing estimation methods

In this section, we perform a numerical simulation in order to compare the estimation methods. The simulation
study is based on 1000 generated data sets from the LENH distribution for different sample sizes (n =
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20, 60, 100 and 200) and different values of parameters as follows

I
II
IIT

o v

0.3 0.9
04 2.0
0.2 0.7

739

The estimates are compared in terms of their bias (BIAS,.)), the root mean-standard error (RMSE.)), the mean
of the absolute difference between the theoretical and the estimates (D-abs) and the maximum absolute difference
between the true parameters and estimates (D-max) given by

and

1 n
BIAS() = & > (n—-), RMSE(, =
h=1

1 n n
D-abs = — S P (zn5) = Faz (trg)]

1 n
D-abs = — > max [Fo.r) (2n5) = Fiq.2) (2r5 )|

h=1j=1

h=1

1 n
E Z (/'\ﬁ - ')Qa
h=1

Table 4: Simulation results for parameters 7 = 0.4 and v = 2

n BIAS(T) BIAS(A/) RMSE(T) RMSE(V) D-abs D-max

MLE 20 0.00402  —0.01721 0.02060  0.33785 0.01240 0.01885
CVME 0.01188 0.37288  0.05670  1.18611  0.03723 0.05330
L-moment —0.00346  0.01299  0.01450  0.31305 0.01046 0.01590
ADE —0.00135  0.12839  0.04475  0.83397 0.02694 0.03788
RTADE 0.00376 0.28602  0.04999  1.19537 0.04218 0.05866
LEADE 0.01097 0.36370  0.06462  1.13433  0.03808 0.05390
MLE 60  0.00166  —0.01130 0.01151  0.20354  0.00600 0.00893
CVME 0.00586 0.14362  0.03218  0.53921 0.01305 0.01932
L-moment —0.00112  0.00364  0.00931  0.18177  0.00327 0.00501
ADE 0.00171 0.07361  0.02645  0.43795 0.00995 0.01384
RADE 0.00336 0.11205  0.02753  0.50223  0.01318 0.01856
LADE 0.00231 0.07360  0.03221  0.46851 0.00856 0.01211
MLE 100 0.00062 0.00079  0.00899  0.16224  0.00126  0.00205
CVME 0.00241 0.06383 0.02388  0.36720  0.00651 0.00944
L-moment —0.00058  0.00233 0.00784  0.14181  0.00178 0.00272
ADE —0.00016  0.02535  0.02030  0.31823  0.00520 0.00728
RADE 0.00050 0.04265 0.02155  0.36074  0.00696 0.00966
LADE 0.00187 0.05046  0.02486  0.36018  0.00526 0.00759
MLE 200  0.00031  —0.00013  0.00606  0.10972  0.00073 0.00116
CVME 0.00132  0.03926  0.01674  0.25589  0.00442 0.00630
L-moment —0.00011  0.00106  0.00583  0.09760 0.00046 0.00068
ADE 0.00024 0.02174  0.01415  0.22299  0.00360 0.00500
RADE 0.00119 0.03294  0.01502  0.24789  0.00353 0.00506
LADE 0.00070  0.02157  0.01672  0.23368  0.00252 0.00357
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Table 5: Simulation results for parameters 7 = 0.2 and v = 0.7
n BIAS(T) BIAS(,Y) RMSE(T) RMSE(V) D-abs D-max
MLE 20  0.00450 —0.00554 0.01957 0.122421 0.01277 0.02003L

CVME 0.01401  0.11141 0.05329  0.36718 0.02573  0.04115
L-moment 0.00504 —-0.00842 0.02040  0.12373  0.01543  0.02396
ADE 0.00213  0.04348 0.03824  0.25034 0.01841  0.02570
RADE 0.00668  0.08084 0.03901 0.31553  0.02708  0.03883
LADE 0.00788  0.07403 0.05619  0.32343  0.02096  0.03166

MLE 60 0.00160 —0.00125 0.01122  0.07858 0.00416  0.00668

CVME 0.00541  0.03850 0.02628  0.15230  0.00890  0.01456
L-moment 0.00119  0.00007 0.01071 0.07131  0.00258  0.00432
ADE 0.00186  0.02082 0.02133  0.12920 0.00719  0.01039
RADE 0.00270  0.02981 0.02129  0.13834 0.01006  0.01462
LADE 0.00251  0.01978 0.02863  0.14331 0.00524  0.00822

MLE 100 0.00100 —0.00191 0.00800  0.05640  0.00322  0.00496

CVME 0.00335  0.01899 0.01997  0.10519 0.00361  0.00622
L-moment 0.00079 —0.00065 0.00804  0.05495 0.00207  0.00333
ADE 0.00101  0.00865 0.01632  0.09268 0.00252  0.00383
RADE 0.00115  0.01145 0.01658  0.10442  0.00371  0.00547
LADE 0.00248  0.01614 0.02052  0.10120 0.00335  0.00591
MLE 200 0.00031  0.00058 0.00565  0.04125 0.00037  0.00076
CVME 0.00163  0.01087 0.01346  0.07328 0.00246  0.00409
L-moment 0.00023  0.00092 0.00570  0.03955 0.00017  0.00029
ADE 0.00038  0.00503 0.01113  0.06503 0.00192  0.00273
RADE 0.00064  0.00769 0.01177  0.07143  0.00280 0.00401
LADE 0.00056  0.00426 0.01504  0.07301 0.00112  0.00177

From Tables 3, 4 and 5 we conclude that:
1-The biases tend to zero when n increases which means that all estimators are non-biased.
2-The RMSE:s tend to zero when n increases which means incidence of consistency property.

6. Data analysis

6.1. Comparing estimation methods

An application to real data sets is introduced for comparing the estimation methods. We consider the Cramér-Von
Mises (W*) and the Anderson-Darling (A*) statistics. The data consist of 72 exceedances for the years 1958—1984,
rounded to one decimal place (Choulakian and Stephens (2001)): 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0,
12.0,9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9,
1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9,
21.5,27.6,36.4,2.7,64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0. From Table 6 we conclude
that the MLE method is the best method with W*=0.11682 and A*=0.66386 then L-moment with W*=0.11809
and A*=0.67000, however all other methods performed well. Figure 4 gives the Kaplan-Meier survival plots for
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Figure 4. Kaplan-Meier survival plots for comparing methods.

50 60

comparing methods. Figure 5 gives the Probability-Probability (P-P) plots for comparing methods.

Table 6: The values of estimators, W* and A*.

Method T B A A*
MLE 0.268 1.047 0.11682 0.66386
CVM 0.237 0.879 0.13626 0.75904

L-moment 0.266 1.032 0.11809 0.67000
ADE 0.246 0916 0.13026 0.72948
RADE 0.262 1.030 0.12058 0.68082
LADE 0.236 0.870 0.13714 0.76359

6.2. Comparing competitive models

We analyze an environmental real data set to show the LENH distribution flexibility. We compare LENH with some
important NH versions. Some competitive models are listed in Table 7.
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Figure 5. P-P plots for comparing methods.

Table 7: Some competitive models

N Model Abbreviation Author

1 Gamma-NH GaNH Ortega et al. [32]

2 Marshall-Olkin-NH MONH Lemonte et al. [21]

3 Generalized-NH GNH (ENH) Lemonte [20]

4 Odd Lindley-NH OLNH Yousof et al. [42]

5  Proportional reversed hazard rate-NH PRHRNH -

6 odd log-logistic-NH OLLNH Ibrahim [19]

7 beta-NH BNH Dias et al. [12]

8 Nadarajah-Haghighi NH Nadarajah and Haghighi [30]
9 Rayleigh-NH RNH Elsayed and Yousof [15]

Figure 6 gives the skewness-kurtosis plot (or the Cullen and Frey plot) for exploring initial fit to the theoretical
distributions such as normal, uniform, exponential, logistic, beta, lognormal and Weibull distributions. Cullen and
Frey plot just compare distributions in the space of (squared skewness, kurtosis), this is a good summary but
still only a summary of the properties of a distribution, heance many other many other graphical techniques are
considered sush ad the “nonparametric Kernel density estimation” approach for exploring initial exceedances of
flood peaks density shape, the “ Quantile-Quantile” plot for exploring “ normality” of the exceedances of flood
peaks data, the “total time in test” plot for exploring the initial shape of the empirical HRF of the exceedances of
flood peaks data, the “box plot” for exploring the extreme exceedances of flood peaks. For revealing the correlation
between any two values of the signal changes as their separation changes,the autocorrelation function (ACF) is
presented for the exceedances of flood peaks. The theoretical ACF is a time domain measure of the stochastic
process memory, and does not reveal any information about the frequency content of the process. The theoretical
ACF provides some information about the distribution of hills and valleys across the surface with Lag=1. The
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Figure 6. Cullen and Frey plot for exceedances of flood peaks data.

theoretical partial ACF with Lag= 1 is also presented. Figure 7 shows the scattergrams, ACF and partial ACF for
exceedances of flood peaks data under Lag= 1.

In the applications, the information about the HRF can help in selecting a particular statistical model. For this
aim, a device called the total time on test (TTT) plot (Aarset [1]) is useful. The TTT plot for the exceedances of flood
peaks data (Choulakian and Stephens [11]) is given in Figure 8 (top left panel). Based on Figure 8 (top left panel),
we conclude that the flood peaks data has a “bathtub” HRF (or U-HRF) which includes the “decreasing”, “constant”
and “increasing” HRF. Checking out Figure 8, we conculde that the our new model incudes the “decreasing”,
“constant” and “increasing” HRF. Figure 8 (top right panel) gives the box for exceedances of flood peaks data.
Statisticians have developed a remarkably powerful set of tools for analyzing normally distributed data. The most
popular one is the “normal quantile-quantile (Q-Q) plot”. If the distribution of the data matched the normal
distribution perfectly, all the quantile points would lie between the two blue lines. Figure 8 (bottom left panel)
gives the Q-Q plot for exceedances of flood peaks data. Nonparametrically, for exploring the initial shape of real
data the kernel density estimation is provided in Figure 8 (bottom right panel). Based on Figure 8 (bottom right
panel), it is noted that the exceedances of flood peaks data is symmetric right skewed.

The model selection is applied using the estimated log-likelihood (Z) Akaike information criterion (C),

Consistent Akaike Information Criteria (C'y), Bayesian information criterion (C3), and Hannan-Quinn information
criterion (Cy). All calculations are obtained by maxLik routine in R programme. Figure 9 give the estimated PDF
(EPDF), estimated CDF (ECDF) and estimated HRF (EHRF) plots. Table 8 give the estimates of the competitive
models along with its corresponding standard errors (SEs). Table 9 give statistics of the competitive models. The
results displayed in Table 9 show that the LENH distribution has the lowest C, C3, C5 and C4 and has the biggest
estimated log-likelihood among all the fitted models. So it could be taken as the best one under these criteria among
all the fitted models. Finally, we plot the estimated PDF, estimated CDF and estimated HRF of the LENH for the
exceedances of flood peaks data in Figure 9. Clearly, the LENH distribution provides a closer fit to the empirical
PDF and CDF. The P-P and Kaplan-Meier survival plots of the LENH for the exceedances of flood peaks data are
given in Figure 10.
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Figure 7. Scattergrams and autocorrelation function for peaks data.

7. Conclusions

A new two-parameter lifetime distribution called the odd Lindley exponentiated Nadarajah Haghighi (LENH)
is proposed and numerically studied. The new model has a flexible failure rate shapes such as “monotonically
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Figure 8. TTT, box, Q-Q and Kernel plots for the exceedances of flood peaks data.

LLINT3

increasing”, “monotonically decreasing”, “bathtub”, “constant”, “upside down” and “J-shape”. Various of its
statistical properties are derived. A numerical analysis of skewness and kurtosis are presented and we noted that:

1- The skewness of the LENH model always positive.

2- The kurtosis of the LENH model can be more than three or less than three.

3- The expected value of the LENH model increases as - increases.

4- The expected value of the LENH model decreases as 7 increases.

5-The skewness of the LENH can range in the interval (0.4455, 33.07), whereas the skewness of the ENH varies
only in the interval (0.51335, 3.5726). The spread for the LENH kurtosis is ranging from 2.8786 to 3749, whereas
the spread for the ENH kurtosis only varies from 3.419 to 32.041. So it is clear that the new model is more flexible
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Figure 9. Estimated PDF, estimated CDF and estimated HRF plots for the exceedances of flood peaks data.

than the base line one. Many bivariate and multivariate extensions are also presented via Morgenstern family and
Clayton Copula. Several estimation methods are such as the maximum likelihood, Cramér-von-Mises, L-moment
estimation, Anderson Darling, right tail-Anderson Darling estimation, lest tail-Anderson Darling estimation are
presented and considered. Numerical simulations are performed to assess the performance of estimation methods
and we concluded that the biases tend to zero when n increases which means that all estimators are non-biased
and the RMSE:s tend to zero when n increases which means incidence of consistency property. Illustration of an
environmental data set is employed to measure flexibility of the new model, the new model is the best one among all
selected competitive models. Another application to compare the estimation methods is presented and we conclude
that the MLE method is the best method with W*=0.1168 and A*=0.6639 then L-moment with W*=0.1181 and
A*=0.670, however all other methods performed well. Following Altun [6], [7], [8], [9], Altun et al. [10] and
Yousof [39], the LENH can be used for introducing a new log regression model for the censored real data modeling
and future prediction.
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Table 8: Estimates of the competitive models
fitted to the Choulakian and Stephens data.

Model Estimates (SEs)
LENH(v, 7) 1.04718  0.2679
(0.1623) (0.0188)
Exp(b) 0.082
(0.01)
NH(r, b) 0.841 0.1094
(0.259) (0.059)
RNH(7, b) 0.125 6.28
(0.012) (2.919)
OLLNH(~, 7,b) 0.777 1.501 0.051
(0.105) (0.685) (0.033)
OLNH(~, 7, b) 0.7293 0.2519 1.8065
(0.6059)  (0.052) (3.355)
PRHRNH(~, 7, b) 0.364 1.714 0.031
(0.068) (1.191) (0.031)
GaNH(~, 7, b) 0.7286 1.9299 0.0242
(0.1385) (1.7591) (0.0312)
MONH(~, 7, b) 23.77 0.0011 0.2660
(5.5053) (0.0003) (0.0895)
GaNH(~, 7, b) 0.7289 1.7126 0.0309
(0.1404) (1.2607) (0.0330)
BNH(~, a, 7,b) 0.8381  316.0285 0.6396 0.0003
(0.1215)  (4.2194) (0.8227) (0.0004)
EWNH(y,a,7,b)  2.7591 0.3989 0.4732 0.6129
(1.742) (0.167) (0.158)  (0.959)
Table 9: Statistics of the competitive models
fitted to the Choulakian and Stephens data.
Model LOg-L Ch Cy Cs Cy
LENH —250.036 505.27 50545 509.83 507.085
OLLNH  -250.41 506.82 507.18 513.65 509.54
RNH —251.722 507.44  507.62  513.99 509.7
NH —251.987 507.97 508.15 515.53  509.79
OLNH —250.589 507.18  507.53  514.01 509.9
PRHRNH —-300.83 607.66 608.02 61449  610.38
GaNH —250917 507.834 508.187 514.66  510.55
MONH  —-251.087 508.175 508.53 515.005 510.894
EWNH  —-250.032 508.064 508.66 517.17 511.69
ENH —250.925 507.849 508.202 514.679 510.57
BNH —251.356 510.713 511.31 519.82 51434
Exp —252.128 506.256 506.313 513.533 507.162
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