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Abstract Fitting of the exponential modified Gaussian distribution to model reaction times and drawing conclusions from
its estimated parameter values is one of the most popular method used in psychology. This paper aims to develop a Bayesian
approach to estimate the parameters of the ex-Gaussian distribution. Since the chosen priors yield to posterior densities that
are not of known form and that they are not always log-concave, we suggest to use the adaptive rejection Metropolis sampling
method. Applications on simulated data and on real data are provided to compare this method to the standard maximum
likelihood estimation method as well as the quantile maximum likelihood estimation. Results shows the effectiveness of the
proposed Bayesian method by computing the root mean square error of the estimated parameters using the three methods.
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1. Introduction

One of the most commonly used measure in scientific psychology is reaction time (RT) ([25]; [26]), i.e., the time
taken by a human being to make a response to a stimulus. The scientific psychology interest on this measure
stems from the fact that it allows to explore human cognition thanks to the experimental manipulation of the
characteristics of the stimuli used (see [5]). It is generally accepted that reaction times reflects the length of
the time taken to realise three activities: perception, cognitive processing and the preparation of motor response.
Assume that a psychologist makes the assumption that words of a language are organized in memory according
to their frequency of occurrence. The experimental manipulation of this factor should have an impact on cognitive
processes. In particular, a human being should be more efficient and so faster to process high frequency words
(e.g., maison [house]) than low frequency words (e.g., ornithorynque, [platypus]). In an experimental task, (e.g.
handwrite on a graphic tablet a word as soon as it is auditory presented) it should be reflected by shorter reaction
times for the first type of item compared to the second type. Durations necessary to perceive the stimulus and to
prepare the motor responses being constant, the comparison of reaction times between lexical frequency conditions
allows researchers to test the hypothesis of a word organization in memory in function of their frequency in the
language (e.g., [17]).

Based on Fisher’s proposals ([19]), experimental psychology bases its conclusions on the use of hypothesis
testing. Although virtuous, this practice causes several difficulties for studies using reaction times. As early as 1956,
[13] drew the attention of researchers to the presence of a large number of very long RTs compared to the number of
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shortest values. The positive skewness of RT distributions is well documented in the literature (e.g., [24]; [10]; [28];
[20]; [16]; [18]; [29]; [21]; [25], [26]). Another well described aspect is the impact of this positive skewness on
parameter estimates ([21]) and thus on hypothesis testing (i.e., t-tests, ANOVA, etc.). This issue is mostly managed
in scientific psychology using strategies to normalize the RT distribution, such as data transformation using link
functions ([6]) or as a procedure for right-censoring the distribution (e.g., [22]; [14]) without, however, ignoring all
the problems that these strategies can generate (e.g., [9]). Another approach has been to describe the distribution of
RTs from the sum of two stochastically independent random variables where one of these two variables is sampled
from an exponentially distribution and the second is Gaussian distributed. This exponential modified Gaussian
(ex-Gaussian), (see [24]) allows psychologists to work with a theoretical distribution function closer to those of
reaction times. Whereas, as an alternative, [32] used the ex-Wald distribution, while [3], [11], [12] and [16] used
the Wald, the Weibull and the log normal distributions.

The aim of this work is to estimate the parameters of the exponential modified Gaussian distribution (ex-
Gaussian). The experimental conditions of scientific psychology are a constraint for these estimates. To thread
the previous example, a researcher may make the same assumption but this time focusing on a population of
young children. With this kind of participants, it is difficult to extract more than 40/50 RT. Most of the solutions
proposed to estimate the parameters of the exponential modified Gaussian distribution (ex-Gaussian) are based
on frequentist approaches from the maximization of the log-likelihood function. However, it is well known that
this approach works effectively with n > 100 samples (see [25] and [26]). The aim of this work is to explore the
effectiveness of alternative approaches for the estimation of the parameters of the exponential modified Gaussian
distribution with n < 100 samples. We suggested a Bayesian parametric approach in which these parameters are
considered as random variables. Thus, we choose a prior density for each of the variables and we compute the
likelihood of the data. Then, we calculate the conditional posterior of each parameter using the chosen priors and
the likelihood. Since the computing posteriors are not of known densities form neither log-concave, we propose to
use the adaptive rejection Metropolis sampling method to sample from these conditional posteriors.

To prove the validity of the method and to highlight its main features, we set some applications of the proposed
approach by using first simulated data and then real data sets. We compare the root mean square error (RMSE) of the
three parameters of the ex-Gaussian obtained by applying the proposed Bayesian method, the quantile maximum
likelihood (QML) method proposed by [3], [23] and [2] and the frequentist maximum likelihood estimation (MLE)
method proposed by [7] on simulated data. Results shows that the RMSE of the three parameters obtained using the
proposed Bayesian method is closer to zero than those obtained by using the quantile maximum likelihood and the
maximum likelihood estimation methods which prove the effectiveness of our method.

In this paper, we define the ex-Gaussian distribution in section 2. The section 3, which presents a Bayesian
parametric approach to estimate the parameters of the ex-Gaussian, is divided into the two subsections 3.1 and
3.2. In subsection 3.1, since the parameters are considered as random variables in the Bayesian framework, a
prior density is chosen for each parameter then, the conditional posteriors of these parameters are computed using
these priors and the likelihood. The subsection 3.2 presents the algorithm used to estimate the parameters of the
ex-Gaussian based on the rejection Metropolis sampling method. In section 4, we recall the quantile maximum
likelihood and the maximum likelihood estimation approaches in order to compare them to the proposed Bayesian
approach. In section 5, we provide some applications of the proposed method. Indeed, we set some applications
of the proposed method by introducing some simulated data in subsection 5.1, then an application on real dataset
in subsection 5.2 to prove its effectiveness and highlight its main features. We compare the results obtained by
the proposed method to those obtained by using the quantile maximum likelihood and the maximum likelihood
estimation method. The final section is a conclusion of the paper.

2. Ex-Gaussian distribution

The ex-Gaussian is a well-known distribution in cognitive psychology (see [20]). It is the sum of independent
normal and exponential random variables. An ex-Gaussian random variable Z may be expressed as Z = X + Y ,
where X and Y are independent, X is Gaussian with mean µ and variance σ2, and Y is exponential of rate λ.
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The probability density function of the ex-Gaussian is
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where x = (x1, . . . , xn) is the data vector of length n and Φ(z) is the cumulative standard Gaussian distribution,
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and the parameters µ, σ and τ are the mean, the standard deviation of the Gaussian and the scale of the exponential,
respectively. Note that σ > 0 and τ > 0.

In the sequel, to simplify the computation, we take ζ = σ2 and λ = 1
τ . Let θ be the set of the model parameters,

thus θ = (µ, ζ, λ).

3. Bayesian parametric approach

In frequentist statistical inference, the parameters of the model are assumed to be fixed quantities and the data
is random. In this case, probability distributions is used to represent the data. However, in Bayesian inference,
probability distributions are often used to represent more than just the data. They also represent the uncertainty of
the prior in model parameters. Then, these get updated with current data using Bayes’ theorem to produce posterior
probability distributions.

3.1. Bayesian estimation

In Bayesian inference, we start by choosing a prior probability distribution for the parameters of interest θ. To
simplify the computations, we use conjugate prior for the model parameters.. This prior quantifies the existing
knowledge about θ:

µ ∼ N (α1, α2),

ζ ∼ IG(β1, β2),

λ ∼ G(γ1, γ2),

where N , IG and G are the Gaussian, Inverse Gamma and Gamma distribution respectively.
The prior distribution is then updated by the incoming data (i.e., likelihood) to yield a posterior probability

distribution under Bayes’s rule:

f(µ, ζ, λ|x) =
f(x|µ, ζ, λ)f(µ)f(ζ)f(λ)

f(x)
, (2)

where f(µ), f(ζ) and f(λ) are the prior densities for the parameters µ, ζ and τ respectively and f(x|µ, ζ, λ) is the
joint distribution defined in (1) by considering ζ = σ2 and λ = 1

τ . The marginal likelihood f(x) is the probability
of the observed data x and does not involve the parameters of interest. Hence, the equation (2) can be expressed as

f(µ, ζ, τ |x) ∝ f(x|µ, ζ, τ)f(µ)f(ζ)f(τ). (3)

The symbol ∝ denotes proportionality.
The likelihood function is the joint density of the data given the parameters, viewed as a function of the

parameters:
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Now, to find the joint density of x and the parameters, we multiply f(x|µ, ζ, λ) by the prior distributions
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According to (3), the full conditional posterior distribution is proportional to the joint density (4)

f(µ, ζ, λ|x) ∝ f(x, µ, ζ, λ). (5)

Thus, the conditional distribution of µ is given by

f(µ|x, ζ, λ) =
f(µ, ζ, λ|x)

f(ζ, λ|x)

∝ f(x, µ, ζ, λ). (6)

The equality (6) is obtained by using the equation (5) and by noticing that the denominator f(ζ, λ|x) does not
involve the parameter µ.

According to (6) and by ignoring all the factor that does not involve µ, we obtain
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Now, we are interested in computing the conditional posterior of ζ. By proceeding in the same way, f(ζ|x, µ, λ)
can be expressed as follows
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Likewise, the conditional posterior of λ can be expressed as follows

f(λ|x, µ, λ) ∝ λnexp
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Sampling from the conditionals posterior given in (7), (8), and (9) is somewhat complex since they are not
functions of known densities. Since the chosen priors do not yield to conditional densities that are always log-
concave (Recall that a density is log concave if d2

dl2 (log f(l)) ≤ 0 for all l). We suggest to use the adaptive
rejection Metropolis sampling (ARMS) technique proposed by [30] which provides a reasonably efficient method
for sampling from the conditional posterior distributions. This algorithm is used for sampling from densities that
do not have a closed form. Note that this sampling method is available in the package “HI” (see [8]) of the software
R under the name arms.
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3.2. Algorithm of sampling from the posterior functions

We presented in this section the algorithm of sampling from the conditional posterior distributions (7), (8) and (9)
based on the ARMS algorithm (see [30],[31]).

Algorithm 1: Sampling algorithm based on the ARMS algorithm, N is the number of iterations and M is
the burn-in value.
REQUIRE: M and N .

1: Random initialization of θ(0) = (µ(0), ζ(0), λ(0)).
2: for j = 1, . . . , N do
3: µ(j) ∼ f(µ|x, ζ j-1, λj-1), {using arms command of the HI package on the software R ([8])} (f is given in

(7))
4: ζ(j) ∼ f(ζ|x, µj, λj-1), {using the arms command of the HI package} (f is given in (8))
5: λ(j) ∼ f(λ|x, µj, ζ j), {using arms command of the HI package} (f is given in (9))
6: end for
7: µ̂ = (N −M)−1

∑N
j=M µ(j), ζ̂ = (N −M)−1

∑N
j=M ζ(j), λ̂ = (N −M)−1

∑N
j=M λ(j) {average all

estimates after the burn-in period}
Ensure: θ̂ = (µ̂, ζ̂, λ̂).

In the following section , we recall the quantile maximum likelihood (QML) estimation method proposed by [3],
[23] and [2] to estimate the ex-Gaussian distribution and the frequentist approach based on the maximum likelihood
estimation (MLE) (see [7]) in order to compare them later to the proposed Bayesian approach.

4. Recall on the QML and the MLE approaches

In this section, we recall the MLE and the QML estimation methods. First, the MLE consists in computing the
log-likelihood function of the data vector x = (x1, . . . , xn) sampled from an ex-Gaussian distribution then, in
maximizing this function to estimate the parameters µ, σ and τ of the ex-Gaussian. Note that the algorithm is
available on the package “emg” of the R software under the name emg.mle.

Now, we show how the QML method work to estimate these parameters. This method is a variant of the MLE
which combine the robustness of quantiles and the efficiency and consistency of MLE. Following [3], for the QML
approach, we transform the data vector x = (x1, . . . , xn) sampled from an ex-Gaussian distribution and of length
n into a vector of quantile estimates (q̂) and a vector of counts (N ) of the length of the portions of the data vector x
taking place in the inter-quantile range. Using these vectors, we compute the quantile log-likelihood function, then
we maximize it to estimate the parameters of the ex-Gaussian distribution. The full algorithm can be found in [3].
Furthermore this algorithm is available in the package “QMLE.zip” (see [27]) of the Matlab software.

In the following, we present numerical experimental application of the Bayesian, the frequentist and the quantile
maximum likelihood applications to compare them.

5. Numerical experimental

This section aims at comparing the proposed Bayesian method to the QML and the MLE methods listed above with
application on simulated data first, then on real data set.

5.1. Simulated data

We sample S = 100 data vectors x = (x1, . . . , xn) of size n, for n = {40, 80, 100, 110, 200, 300, 500, 1000}, from
the ex-Gaussian distribution (sum of an independent normal and an exponential distributions).The parameters
used in this simulation are: µ = 13, σ = 7 and τ = 9. Note that for these simulations, we use a burn-in of 2500
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iterations out of 5000 Gibbs samples, then we estimate posteriors from a further 2500 iterations. To use the
proposed Bayesian method (algorithm 1) detailed in section 3.2, We choose the following initialization of the
parameters: µ(0) = mean(x)− (sd(x) ∗ 0.8), ζ(0) = (var(x)− (sd(x) ∗ 0.8)2) and λ(0) = 1/(sd(x) ∗ 0.8).

We present in Table 1 and Table 2, the root mean square error (RMSE) of the three parameters of the ex-Gaussian
for n = {40, 80, 100, 110} and n = {200, 300, 500, 1000} respectively, defined by

RMSE(µ) =

√√√√ 1

S

S∑
s=1

(µ̂(s) − µ)2, RMSE(σ) =

√√√√ 1

S

S∑
s=1

(σ̂(s) − σ)2 and RMSE(τ) =

√√√√ 1

S

S∑
s=1

(τ̂ (s) − τ)2,

where the superscript s labels the estimates obtained in simulation s.

n = 40 n = 80 n = 100 n = 110
RMSE(µ) RMSE(σ) RMSE(τ ) RMSE(µ) RMSE(σ) RMSE(τ ) RMSE(µ) RMSE(σ) RMSE(τ ) RMSE(µ) RMSE(σ) RMSE(τ )

QML 2.6 1.63 2.52 2.15 1.24 2.11 2.12 1.32 1.92 2.32 1.48 2.13
MLE 3.29 2.08 3.29 2.3 1.44 2.33 2.31 1.38 2.2 1.96 1.31 1.9

Bayesian 2.82 1.74 3.5 1.97 1.33 2.8 1.7 1.1 2.4 1.46 1.08 2.19
Table 1. Root Mean square error of the three parameters µ, σ and τ for the simulated data of sizes n = 40, 80, 100 and 110
using the QML, the MLE and the Bayesian approaches.

n = 200 n = 300 n = 500 n = 1000
RMSE(µ) RMSE(σ) RMSE(τ ) RMSE(µ) RMSE(σ) RMSE(τ ) RMSE(µ) RMSE(σ) RMSE(τ ) RMSE(µ) RMSE(σ) RMSE(τ )

QML 1.57 1.05 1.56 1.21 1.15 1.32 0.93 1.05 0.97 0.7 0.72 0.82
MLE 1.17 0.98 1.16 1.06 0.93 1.11 0.73 0.78 0.85 0.59 0.74 0.71

Bayesian 1.09 0.88 1.23 0.93 0.71 1.08 0.58 0.54 0.47 0.38 0.47 0.31
Table 2. Root Mean square error of the three parameters µ, σ and τ for the simulated data of sizes n = 200, 300 ,500 and
1000 using the QML, the MLE and the Bayesian approaches.

Table 1 and table 2 show that the RMSE of the three estimated parameters of the ex-Gaussian obtained using the
proposed Bayesian method is closer to zero than those obtained by using the QML and the MLE methods, when n
is large, which prove the effectiveness of the proposed method. Furthermore, these tables show that for n < 100,
the QML is more efficient then the MLE approach since for n ∈ {40, 80, 100}, the RMSE is closer to zero, while for
n > 100, the RMSE of the ex-Gaussian estimated parameters obtained using the MLE method is closer to zero than
the one obtained using the QML method. Thus, The QML is more efficient than the MLE approach for sample size
less than or equal to 100.

We provide in table 3 the confidence intervals of the three estimators µ̂, σ̂ and τ̂ .

n = 200 n = 300 n = 500
µ̂ [11.22, 11.55] [11.45, 11.69] [11.65, 11.88]
σ̂ [6.63, 6.81] [6.71, 6.86] [6.8, 6.9]
τ̂ [7.25, 8.31] [7.3, 8.69] [7.85, 8.9]

Table 3. Confidence intervals of the three estimators µ̂, σ̂ and τ̂ for the simulated data of sizes n = 200, 300 and 500 using
the Bayesian approach.

We compute the R̂ convergence diagnostic measure ([1]) for each model parameter. Recall that R̂ compares the
between-chain variability to the within-chain variability. It is available in the package “rstan” of the software R
under the name Rhat. To prove that the chains have properly converged, R̂ should be lower than 1.1. For the model
parameters µ, ζ and λ, R̂ is equal to 1, 0.99 and 0.98 respectively. Thus, all the R̂ values are lower than 1.1 and
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the the chains have properly converged. The coverage probability is equal to 0.942 which show the effectiveness
of our proposed method.

Now, we present in Figure 1, the RMSE of the three estimated parameters of the ex-Gaussian distribution using
the proposed Bayesian method. Figure 1 shows that the RMSE of the three estimated parameters approaches zero
as the sample size n increases.

Figure 1. RMSE of the three estimated parameters of the ex-Gaussian distribution.

To check the convergence of the three estimated parameters of the ex-Gaussian toward the true parameters values,
we present in Figure 2, the values of these three estimated parameters obtained for different sample size n.

Figure 2. Convergence of the three estimated parameters of the ex-Gaussian distribution.
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Figure 2 shows that the three estimated parameters µ, σ and τ converge toward the true values of the parameters
which are 13, 7 and 9 respectively.

5.2. Application on real data

We set here two examples of data, one for n < 100 and the other for n > 100, then we compare the proposed
Bayesian approach to the QML and the MLE methods.

For the first example, we have n < 100. More precisely, the number of participants is n = 52. Reaction times
were recorded in a letter copy task. One undergraduate student had to copy twice in uppercase the 26 letters of the
French alphabet on a graphic tablet (Wacom). Letters were presented randomly. A white sheet on the graphic tablet
allowed collecting the handwritten productions to check responses. The participants could not see and monitor
their production, as a box hided their hand and the graphic tablet.

By applying the Bayesian, the QML and the MLE methods on the first data example, we obtain the results
presented in Table 4.

n = 52
µ̂ σ̂ τ̂

QML 440.74 60.83 106.26
MLE 448.71 53.27 100

Bayesian 366.32 14.17 179.92
Table 4. The three estimated parameters µ̂, σ̂ and τ̂ obtained by applying the QML, the MLE and the Bayesian approaches on
the first data example (n = 52).

We compute the R̂ for the three Bayesian model parameters µ, σ and τ . We obtain that R̂ is equal to 1, 0.99 and
0.99 respectively. Thus, all the R̂ values are lower than 1.1 and the chains have properly converged.

Now, we treat the case of n > 100. In this example, reaction times were recorded in a picture naming task. Two
hundred and thirty-three participants (n = 233) had to handwrite the label of a specific drawing (e.g., Table) on
a graphic tablet (Wacom). A white sheet on the graphic tablet allowed collecting the handwritten productions to
check response.

We apply the three methods on this second data example, results are presented in Table 5

n = 233
µ̂ σ̂ τ̂

QML 828.89 162.62 216.71
MLE 927.88 198.55 100

Bayesian 466.39 180.13 540.46
Table 5. The three estimated parameters µ̂, σ̂ and τ̂ obtained by applying the QML, the MLE and the Bayesian approaches on
the second data example (n = 233).

Now, we compute the R̂ for the three Bayesian model parameters µ, σ and τ . We obtain that R̂ is equal to 1, 1
and 0.99 respectively. Thus, all the R̂ values are lower than 1.1 and the chains have properly converged.

6. Conclusion

Through its experimental approach ([19]), scientific psychology supports these conclusions with hypothesis testing.
Using reaction times as a measure of behavior causes difficulties in this context because of a positive skewness in
the distribution of this measure. It is generally accepted that the distribution of reaction times fits well with an
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exponential modified Gaussian distribution. (ex-Gaussian), (e.g., [24]; [10]; [28]; [20]; [16]; [18]; [29]; [21]; [25];
[26]). As explained in the Introduction, the sample size per experimental condition is a constraint to the use of
the three parameters of ex-Gaussian distributions. Since ML methods require larger samples than those found in
experimental psychology, the reliability of estimates is questionable ([25]; [26]). The constraint of the sample size
is a factor on which the psychologist has little impact regarding the characteristics of the populations with which
he works (patients, children, etc.) and the time necessary to collect reliable data (loss attention of participants if the
experience is too long).

This work aims at proposing a reliable method for estimating the three parameters of the ex-Gaussian distribution
for this type of experimental context. We first replicated the results of [3], ([23]; [4]; [2]) for small samples
(n < 100): the QML method should be preferred for parameter estimation. Second, for larger samples (n > 100),
our results suggested that estimates are more reliable with the Bayesian approach. This was particularly the case for
very large samples (n > 300). Finally, we tested the three approaches on real data (handwritten production of letters
(n = 52) and of picture names (n = 233)). The values proposed by the ML and QML approaches are relatively close
whatever the size of the samples. The values proposed for the three parameters by the Bayesian approach were
quite far from those of the other two methods. The Bayesian method being the most reliable regarding analyzes on
the simulated data (section 5.1.), it seems legitimate to conclude that at least for the largest sample, the Bayesian
approach provides the estimates closest to the real values, values not-known in an experimental situation.

As an extension of our work, we can applied for extropy in place of informational energy. For more details, see
the definition of extropy in [15].
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A. R Source Code

# Some required packages
require(invgamma)
require(HI) # Contain the "arms" function to perform Adaptive Rejection Metropolis Sampling

# Bayesian Function (input: data size, data, number of Samples, burn-in | output: mu, sigma and tau)
BayesianExgaussian <-function(n,x,nSamples=5000,Ti=2500){

# Initialization of the hyper-parameters
y1 = (0.2)
y2 =(2.6)ˆ2
delta1 = 0.0001
delta2 =0.1
tau1 = 0.1
tau2 = 0.1

# Defining the vectors of the parameters
mu <- rep(NA, nSamples)
zeta <- rep(NA, nSamples)
lambda <- rep(NA, nSamples)

# Initialization of the parameters
mu[1]= mean(x)-(sd(x)*0.8)
zeta[1]=(var(x)-(sd(x)*0.8)ˆ2)
lambda[1]=1/(sd(x)*0.8)

# Lower and upper bounds
minnmu = min(x)
maxxmu = (max(x)/2)+1
minnzeta= 0.01
maxxzeta= ((max(x)-min(x))/4)ˆ2
minnlambda= 0.001/mean(x)
maxxlambda= 100/((max(x)-min(x))/2)

# The posterior functions
mufunc<-function(mu1){return(sum((mu1-x))*lambda[i-1]+sum(log(pnorm(((x-mu1)/(sqrt(zeta[i-1])))
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-(lambda[i-1]*sqrt(zeta[i-1])))))-(((mu1-y1)ˆ2)/(2*y2ˆ2)))}
zetafunc<-function(zeta1){return(((n*lambda[i-1]ˆ2*zeta1)/(2))+sum(log(pnorm(((x-mu[i])/(sqrt(zeta1)))

-(lambda[i-1]*sqrt(zeta1)))))-(delta1+1)*log(zeta1)-(delta2/zeta1))}
lambdafunc<-function(lambda1){return((n*log(lambda1))+(sum((mu[i]-x))*lambda1)

+((n*lambda1ˆ2*zeta[i])/(2))+sum(log(pnorm(((x-mu[i])/(sqrt(zeta[i])))
-(lambda1*sqrt(zeta[i])))))+(tau1-1)*log(lambda1)-(tau2*lambda1))}

# Defining the vectors of the parameters
for(i in 2:nSamples) {
mu[i]<-arms(mu[i-1],mufunc,function(mu1) (mu1>minnmu)*(mu1<maxxmu),1)
zeta[i]<-arms(zeta[i-1],zetafunc,function(zeta1) (zeta1>minnzeta)*(zeta1<maxxzeta),1)
lambda[i]<-arms(lambda[i-1],lambdafunc,function(lambda1) (lambda1>minnlambda)*(lambda1<maxxlambda),1)
}

# The estimation of the parameters
muest=sum(mu[Ti:nSamples])/(nSamples-Ti)
zetaest=sum(zeta[Ti:nSamples])/(nSamples-Ti)
sigmaest=sqrt(zetaest)
lambdaest=sum(lambda[Ti:nSamples])/(nSamples-Ti)
tauest=1/lambdaest
theta=list(mu=muest,sigma=sigmaest,tau=tauest)
return(theta)
}
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