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2State University of Maringá, Master Program in Biostatistics, Maringá, Brazil

Abstract Cure fraction models have been widely used to analyze survival data in which a proportion of the individuals is
not susceptible to the event of interest. This article considers frequentist and Bayesian methods to estimate the unknown
model parameters of the exponentiated Weibull (EW) distribution considering right-censored survival data with a cure
fraction and covariates. The EW distribution is as an extension to the Weibull distribution by considering an additional
shape parameter to the model. We consider four types of cure fraction models: the mixture cure fraction (MCF), the non-
mixture cure fraction (NMCF), the complementary promotion time cure (CPTC), and the cure rate proportional odds (CRPO)
models. Bayesian inferences are obtained by using MCMC (Markov Chain Monte Carlo) methods. A simulation study was
conducted to examine the performance of the maximum likelihood estimators for different sample sizes. Two real datasets
were considered to illustrate the applicability of the proposed model. The EW distribution and its sub-models have the
flexibility to accommodate different shapes for the hazard function and should be an attractive choice for survival data
analysis when a cure fraction is present.
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1. Introduction

Survival analysis is a collection of statistical procedures used to investigate the time it takes for an event of interest
to occur. We can find applications of survival analysis in many areas, including economics and finance, engineering,
and medicine. Depending on the area of application, the variable of interest can be the time to failure of an electronic
component, the survival time of patients with cancer, the length of patients’ hospitalization in a healthcare unit,
among many other possible examples. Some of the most popular tools of time-to-event analysis are the Kaplan-
Meier method for estimating the survival function, the log-rank test for comparing two survival distributions, and
the Cox proportional hazards regression for assessing the effects of covariates on the survival time [5, 19, 22].
If T is a random variable denoting the time-to-failure or failure time and t is an observation of T , the survival
function, denoted by S(t) = P (T ≥ t), is the probability that the time to the event of interest is greater than some
specified time t. While the Kaplan-Meier method gives us a non-parametric estimator of the survival function,
alternatively we can obtain parametric estimates of S(t) based on known probability distributions. Common choices
are the Weibull distribution [57, 64], the Gompertz distribution [23], the log-normal distribution [2], and the Pareto
distribution [31, 35].

∗Correspondence to: Edson Zangiacomi Martinez (Email: edson@fmrp.usp.br). Ribeirão Preto Medical School, University of São Paulo,
Av. Bandeirantes 3900, Vila Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil.



E. Z. MARTINEZ, B. C. L. FREITAS, J. A. ACHCAR, D. C. ARAGON, AND M. O. PERES 549

A random variable T follows a Weibull distribution if its cumulative distribution function F (t) can be stated as

F (t) = P (T < t) = 1− exp

[
−
(
t

β

)γ]
,

where t > 0, γ > 0 is the shape parameter and β > 0 is the scale parameter of the distribution. The corresponding
survival function is given by

S(t) = 1− F (t) = exp

[
−
(
t

β

)γ]
, (1)

the probability density function (pdf ) is given by

f(t) =
γ

β

(
t

β

)γ−1
exp

[
−
(
t

β

)γ]
and the hazard function h(t) is given by

h(t) =
f(t)

S(t)
=
γ

β

(
t

β

)γ−1
. (2)

The hazard function is known as the instantaneous rate of occurrence of a time-related event. In the case of
the Weibull distribution, a value of γ = 1 indicates that h(t) is constant over time. In this situation, the Weibull
distribution reduces to an exponential distribution. In addition, the Weibull distribution has a monotone increasing
hazard for γ > 1 and a monotone decreasing hazard for 0 < γ < 1 [73]. Classical methods used to estimate the
parameters of the Weibull are discussed by [72]. In a Bayesian framework, Ramos et al. [62] proposed the necessary
and sufficient conditions to verify when improper priors lead to proper posteriors for the parameters of the Weibull
distribution in the presence of complete or right-censored data. Although the Weibull distribution is widely used
in a variety of applications, in some situations we may have data with non-monotone hazard rates, which may
require the use of models based on more complex distributions. Useful distributions with three or more parameters
are given by the generalized modified Weibull distribution [9], the beta modified Weibull distribution [69], and
the Kumaraswamy modified Weibull distribution [16], among many other generalizations and extensions of the
Weibull distribution [4, 6, 52, 61].

The three-parameter exponentiated Weibull (EW) distribution was introduced by Mudholkar and Srivastava [48]
as an extension of the Weibull distribution. The EW distribution can accommodate both decreasing and increasing
failure rates, as well as unimodal and bathtub shaped failure rates, and this can be very useful in some applications
[47, 54].

In the present article, we consider frequentist and Bayesian methods to estimate the unknown model parameters
of the EW distribution considering right-censored survival data with a cure fraction and covariates. This article is
organized as follows. In Section 2, we present the EW distribution and the estimation of its parameters. Under a
Bayesian approach, the parameter estimation is based on Markov Chain Monte Carlo (MCMC) methods. Section 3
presents a simulation study illustrating the performance of the frequentist approach when applied to samples from
an EW distribution with a cure fraction. Section 3 also describes two applications of the model based on the EW
distribution to real data. Some concluding remarks are provided in Section 4.

2. Methods

2.1. The exponentiated Weibull (EW) distribution

Let us assume that T is a continuous nonnegative random variable with probability density function (pdf ) f(t) and
cumulative distribution function F (t). The random variable T follows an exponentiated Weibull (EW) distribution
if its survival function is given by

S(t) = 1− F (t) = 1−
{

1− exp

[
−
(
t

β

)γ]}α
, (3)
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Figure 1. Survival and hazard functions of the EW distribution for different values of α, β and γ.

where t > 0, α > 0, β > 0 and γ > 0. In (3), α and γ are two shape parameters and β is a scale parameter. Hereafter,
we write EW (α, β, γ) to denote an EW distribution with survival function given in (3). The corresponding pdf is
given by

f(t) =
αγ

β

(
t

β

)γ−1{
1− exp

[
−
(
t

β

)γ]}α−1
exp

[
−
(
t

β

)γ]
, (4)

and the hazard function h(t) is given by

h(t) =
αγ

β

(
t
β

)γ−1 {
1− exp

[
−
(
t
β

)γ]}α−1
exp

[
−
(
t
β

)γ]
1−

{
1− exp

[
−
(
t
β

)γ]}α . (5)

We can note that the EW distribution reduces to a standard Weibull (SW) distribution when α = 1. In addition,
the EW distribution covers the exponentiated exponential (EE) distribution as a special case when γ = 1 [29],
and the exponentiated Rayleigh (ER) distribution when γ = 2 [71]. Mudholkar et al. [49] showed that for the EW
family, the hazard function (5) is

(a) monotone increasing for γ ≥ 1 and αγ ≥ 1,

(b) monotone decreasing for γ ≤ 1 and αγ ≤ 1,

(c) bathtub-shaped for γ > 1 and αγ < 1,

(d) unimodal for γ < 1 and αγ > 1, and

(e) constant for α = γ = 1.

The graphs in Figure 1 illustrate the survival and hazard functions of the EW family for different values of α, β
and γ. Panel (b) of Figure 1 shows that the EW distribution and its sub-models have the flexibility to accommodate
different shapes for the hazard function and should be an attractive choice for survival data analysis.

Mudholkar and Hutson [47] showed that the r-th moment of a random variable that follows an EW distribution
is given by

µr = E(T r) = αβr
∫ ∞
0

tr/γe−t(1− e−t)α−1dt,
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for r = 1, 2, 3, ... For positive integer values of α, the expression for µr takes the closed form given by

µr = αβrΓ

(
r

γ
+ 1

)[
1 +

α−1∑
j=1

(−1)j
(
α− 1

j

)
1

(j + 1)r/γ+1

]
,

for r = 1, 2, 3, .... Other statistical properties of the EW distribution are presented by [50].

2.2. Maximum likelihood method

In this subsection, we obtain the maximum likelihood (ML) estimators of the EW distribution parameters. Let
t1, t2, ..., tn be observed values of a random sample from EW distribution with parameters (α, β, γ). Based on (4),
the likelihood function can be written as

L(θ) =

n∏
i=1

αγ

β

(
ti
β

)γ−1{
1− exp

[
−
(
ti
β

)γ]}α−1
exp

[
−
(
ti
β

)γ]
,

where θ = (α, β, γ) and n is the sample size. The log-likelihood function `(θ) = logL(θ) is given by

`(θ) = n log (α) + n log (γ)− n log(β) + (γ − 1)

n∑
i=1

log

(
ti
β

)

+ (α− 1)

n∑
i=1

log

{
1− exp

[
−
(
ti
β

)γ]}
−

n∑
i=1

(
ti
β

)γ
.

The first derivatives of `(θ) with respect to α, β and γ, respectively, are given by

∂`(θ)

∂α
=
n

α
+

n∑
i=1

log

{
1− exp

[
−
(
ti
β

)γ]}
,

∂`(θ)

∂β
=
γ

β

−n− α− 1

βγ

n∑
i=1

tγi exp
[
−
(
ti
β

)γ]
1− exp

[
−
(
ti
β

)γ] +

n∑
i=1

(
ti
β

)γ
and

∂`(θ)

∂γ
=
n

γ
+

n∑
i=1

log

(
ti
β

)
+

1

βγ

(α− 1)

n∑
i=1

tγi log
(
ti
β

)
exp

[
−
(
ti
β

)γ]
1− exp

[
−
(
ti
β

)γ] −
n∑
i=1

tγi log

(
ti
β

) .

The ML estimators of the unknown parameters α, β and γ are obtained by solving the following equations
simultaneously: ∂`(θ)/∂α = 0, ∂`(θ)/∂β = 0 and ∂`(θ)/∂γ = 0. It can be seen that these equations do not have
closed form solutions, therefore an iterative numerical procedure such as the Newton-Raphson method can be used
to obtain the estimates. In this article, we use the maxLik package in the statistical software R, which numerically
maximizes the likelihood function [30]. Considering large sample sizes, the ML estimators are asymptotically
normal with mean equal to the true parameter values and variance-covariance matrix equal to the inverse of the
observed Fisher information matrix, defined to be the matrix of the second partial derivatives of the negative
log-likelihood with respect to the model parameters calculated at their respective ML estimators. The asymptotic
variances of the ML estimators are thus given by the diagonal elements of the matrix I−10 , where I0 is the observed
Fisher information matrix. Therefore,

I−10 = −


∂2`(θ)
∂α2

∂2`(θ)
∂α∂β

∂2`(θ)
∂α∂γ

∂2`(θ)
∂β∂α

∂2`(θ)
∂β2

∂2`(θ)
∂β∂γ

∂2`(θ)
∂γ∂α

∂2`(θ)
∂γ∂β

∂2`(θ)
∂γ2


−1

=

 V ar(α̂ML) cov(α̂ML, β̂ML) cov(α̂ML, γ̂ML)

cov(α̂ML, β̂ML) V ar(β̂ML) cov(β̂ML, γ̂ML)

cov(α̂ML, γ̂ML) cov(β̂ML, γ̂ML) V ar(γ̂ML)

 ,
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where α̂ML, β̂ML and γ̂ML are the ML estimators of the parameters α, β and γ, respectively. Based on the
asymptotic normality of the ML estimators, approximate (1− δ)100% Wald-type confidence intervals for the
parameters α, β and γ are given by

α̂ML ∓ zδ/2
√
V ar(α̂ML), β̂ML ∓ zδ/2

√
V ar(β̂ML) and γ̂ML ∓ zδ/2

√
V ar(γ̂ML), (6)

respectively, where zδ/2 is the (δ/2) th percentile of the standard normal distribution.
However, the confidence intervals in (6) may lead to negative lower bounds sometimes. To overcome this

problem, we can use the logarithmic transformation and the delta method [51] to get the asymptotic normal
distributions for log(α̂ML), log(β̂ML) and log(γ̂ML) given by

√
n [log(α̂ML)− log (α)]

D−→ N

(
0,
σ2
α

α2

)
,

√
n
[
log(β̂ML)− log (β)

]
D−→ N

(
0,
σ2
β

β2

)
and

√
n [log(γ̂ML)− log (γ)]

D−→ N

(
0,
σ2
γ

γ2

)
,

respectively, where D−→ denotes convergence in distribution, σ2
α = nV ar(α̂ML), σ2

β = nV ar(β̂ML), and σ2
γ =

nV ar(γ̂ML). Asymptotic (1− δ)100% confidence intervals for log (α), log (β) and log (γ) are respectively given
by

log(α̂ML)∓ zδ/2

√
V ar(α̂ML)

α̂ML
≡ (Lα, Uα) ,

log(β̂ML)∓ zδ/2

√
V ar(β̂ML)

β̂ML

≡ (Lβ , Uβ)

and

log(γ̂ML)∓ zδ/2

√
V ar(γ̂ML)

γ̂ML
≡ (Lγ , Uγ) . (7)

Using the inverse logarithmic transformation, the approximate confidence intervals for α, β and γ are
respectively obtained as

(
eLα , eUα

)
,
(
eLβ , eUβ

)
and

(
eLγ , eUγ

)
.

In this article, we use the Akaike information criterion (AIC) to compare the fit of different models to a particular
data set [10]. The AIC was proposed by Akaike [3] as an asymptotic approximate estimator of the Kullback-Leibler
information between the model generating the data and a candidate model fitted by the ML method. The AIC value
is given by AIC = 2 log(L) + 2k, where L is the maximum value of the likelihood function for each candidate
model, and k is the number of estimated parameters of a candidate distribution function. The AIC allows for a
direct comparison between models, with lower values indicating a better model fit.

The TTT-plot can be used to examine trends of the hazard function h(t) before we fit a model to the data
and then assist us to choose the best model [36]. For uncensored data, the TTT statistic is given by TTT 0

i =∑i
k=1 (n− k + 1) (T ∗k − T ∗k−1), where T ∗ is the time-to-event variable T in ascending sorted order and T0 is

defined to be zero. The scaled TTT is then defined as TTTi = TTT 0
i /TTT

0
n and it is ranged from 0 to 1. The TTT

plot is then a plot of TTTi against i/n. For an exponential distribution (with h(t) constant), the TTT plot is close
to the diagonal from (0,0) to (1,1). The TTT plot suggests an increasing h(t) when it concaves downward, and a
decreasing h(t) when it concaves upward. An upside down “S” shaped curve suggests an unimodal h(t) function
and a “S” shaped curve suggests a bathtub-shaped h(t) function. In these last two cases, a model based on the
standard Weibull distribution may not be appropriate for the data, since its hazard function (2) does not have these
shapes. These situations can justify the use of models based on more complex distributions.

Statistics Opt. Inform. Comput. Vol. 10, March 2022.
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2.3. Maximum-likelihood estimation in presence of censored data

Censoring occurs when we have some information on the individual survival time, but we do not know the
exact survival time [70]. Among different types of censoring mechanisms, right censoring is considered the
most common. Right-censored data refers to observations for which the corresponding individuals have not yet
experienced the event of interest at the end of the follow-up period. Given a sample of n individuals, the contribution
of the ith subject for the likelihood function under a right-censoring mechanism is given by

Li = [f(ti)]
di [S(ti)]

1−di ,

where di = 1 denotes a complete observation and di = 0 denotes a censored observation (i = 1, ..., n) [37].
Assuming a model based on the EW distribution and from (4) and (3), the likelihood function is given by

L(θ) =

n∏
i=1

[
αγ

β

(
ti
β

)γ−1{
1− exp

[
−
(
ti
β

)γ]}α−1
exp

[
−
(
ti
β

)γ]]di [
1−

{
1− exp

[
−
(
ti
β

)γ]}α]1−di
,

where θ = (α, β, γ), and the log-likelihood function `(θ) is given by

`(θ) = log (α)

n∑
i=1

di + log (γ)

n∑
i=1

di − log(β)

n∑
i=1

di + (γ − 1)

n∑
i=1

di log

(
ti
β

)

+ (α− 1)

n∑
i=1

di log

{
1− exp

[
−
(
ti
β

)γ]}
−

n∑
i=1

di

(
ti
β

)γ
+

n∑
i=1

(1− di) log

[
1−

{
1− exp

[
−
(
ti
β

)γ]}α]
.

To find the ML estimators, we derive the log-likelihood function `(θ) with respect to the three parameters (α,
β and γ) and we equate these derivatives to zero. As expected, the ML estimators cannot be obtained in closed
form, and numerical procedures are required. Asymptotic (1− δ)100% confidence intervals for α, β and γ can be
obtained in a way analogous to that presented in the previous subsection.

2.4. Cure fraction models

Cure models are defined by Lambert [38] as “a special type of survival analysis model where it is assumed that
there are a proportion of subjects who will never experience the event of interest and thus the survival curve
will eventually reach a plateau”. The standard survival analysis techniques assume that all subjects have the same
susceptibility to the event of interest, and at some point, everyone will experience it within a sufficiently long
period of time. Mathematically speaking, this implies that S(t) approaches zero as t goes to infinity. However,
this assumption may not be true in many practical situations. For example, in randomized clinical trials of cancer
treatments, we can have a fraction of patients who will be cured and consequently will not die due to cancer. Several
articles were published in medical journals that use cure fraction models in their data analysis (see, for example,
Smoll et al. [68]; Jácome et al. [33]; Meshkat et al. [46]; Looha et al. [41]; Omer et al. [53]; Ricci et al. [63]).
A simple way to identify the presence of cured or immune patients in a dataset is to visualize the shape of the
Kaplan-Meier curve corresponding to the time-to-event variable. If the survival curve shows a plateau at the end,
then a cure model may be appropriate to these data. However, expert opinion is also important to state that a model
with a cure fraction is suitable for a given data set. For example, when analysing data from a clinical trial, it is
essential to use medical arguments to justify whether a cure for the disease under study can actually occur. Mixture
and non-mixture cure fraction models are the two most common forms of cure fraction models [21, 42, 56], but we
can find some alternatives in the literature, as we will discuss below.

2.4.1. The mixture cure fraction (MCF) model The mixture cure fraction (MCF) model introduced by Boag [7]
assumes that the population of interest is divided into two groups [42]. The first group is composed of “cured”
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or “immune” individuals with probability η, and the second group is composed of susceptible individuals with
probability 1− η. In this model, the survival function is given by

S(t) = η + (1− η)S0(t),

where η is a parameter which represents the proportion of “long-term survivors” or “cured patients”, regarding
the event of interest (0 < η < 1), and S0(t) is the baseline survival function for the susceptible individuals [45].
We can note that if limt−→∞ S0(t) = 0, thus S(t) approach η as t goes to infinity. The corresponding pdf for the
lifetime T is

f(t) =
dF (t)

dt
= (1− η)f0(t),

where f0(t) is the baseline pdf for the susceptible individuals and F (t) = 1− S(t). The MCF model is also called
Bernoulli cure rate model by some authors such as Davies et al. [18]. An MCF model where S0(t) corresponds
to the survival function of a standard Weibull distribution (1) was described by Achcar et al. [1]. Considering a
random sample (ti, di) of size n, i = 1, . . . , n, the contribution of the ith subject for the likelihood function is given
by

Li = [f(ti)]
di [S(ti)]

1−di = [(1− η)f0(ti)]
di [η + (1− η)S0(ti)]

1−di ,

where di is the censoring indicator variable. The likelihood function for the parameters of the MCF model based
on the EW distribution is given by

L(θ) =

n∏
i=1

[
(1− η)

αγ

β

(
t

β

)γ−1{
1− exp

[
−
(
t

β

)γ]}α−1
exp

[
−
(
t

β

)γ]]di

×
[
η + (1− η)

[
1−

{
1− exp

[
−
(
t

β

)γ]}α]]1−di
,

where θ = (α, β, γ, η). On differentiating the log-likelihood function `(θ) = logL(θ) with respect to α, β, γ and
η and equating to zero, we obtain the estimating equations. These non-linear equations do not have an explicit
solution and they are solved by means of numerical methods.

2.4.2. The non-mixture cure fraction (NMCF) model The non-mixture cure fraction (NMCF) model defines an
asymptote for the cumulative hazard and hence for the cure fraction [75]. In this case, the survival function is given
by

S(t) = ηF0(t) = exp [log (η)F0(t)] ,

where F0(t) = 1− S0(t) is the proper baseline cumulative probability function for the susceptible individuals and
0 < η < 1 represents the cure fraction. The corresponding pdf for the lifetime T is

f(t) =
dF (t)

dt
= − log (η) f0(ti) exp [log (η)F0(t)] ,

where F (t) = 1− S(t), and the hazard function h(t) is given by

h(t) =
f(t)

S(t)
= − log (η) f0(ti).

Given a sample of n individuals, the contribution of the ith subject for the likelihood function is thus given by

Li = [h(ti)]
di S(ti) = [− log (η) f0(ti)]

di exp [log (η)F0(ti)] ,
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i = 1, ..., n, where di is the censoring indicator variable. The likelihood function for the parameters of the NMCF
model based on the EW distribution is given by

L(θ) =

n∏
i=1

[
− log (η)

αγ

β

(
t

β

)γ−1{
1− exp

[
−
(
t

β

)γ]}α−1
exp

[
−
(
t

β

)γ]]di
× exp

[
log (η)

{
1− exp

[
−
(
t

β

)γ]}α]
.

As in the previous cases, ML parameter estimates are obtained by first differentiating the log-likelihood function
`(θ) = logL(θ) with respect to the parameters and then by equating those derivatives to zero. Numerical methods
should be used to solve the estimating equations. Lambert [38] claims that one of the advantages of the NMCF
model is that it has a proportional hazards model as a particular case. The identifiability of the MCF and NMCF
models is discussed by Li et al. [40].

2.4.3. Alternatives to the mixture and non-mixture cure fraction models Some alternatives to the mixture and non-
mixture cure fraction models are the complementary promotion time cure (CPTC) model [79] and the cure rate
proportional odds (CRPO) model studied by Gu et al. [27]. The promotion time cure (PTC) model proposed by
and Tsodikov [78] and Chen et al. [11] is analogous to the NMCF model described in the previous subsection. The
survival function S(t) of the CPTC model is given by

S(t) = 1 + η − ηS0(t),

and the correspondent pdf is given by
f(t) = − log (η) f0(t)ηS0(t),

where f0(t) and S0(t) are the baseline pdf and the baseline survival function for the susceptible individuals,
respectively, and 0 < η < 1 represents the cure fraction.

In the CRPO model, the survival function is given by

S(t) =
1

1 +
(

1
η − 1

)
F0(t)

, (8)

where F0(t) = 1− S0(t). The pdf and the hazard function corresponding to (8) are given, respectively, by

f(t) =

(
1
η − 1

)
f0(t)[

1 +
(

1
η − 1

)
F0(t)

]2 and h(t) =

(
1
η − 1

)
f0(t)

1 +
(

1
η − 1

)
F0(t)

.

Under the CRPO model, the contribution of the ith subject for the likelihood function is thus given by

Li = [h(ti)]
di S(ti) =

[(
1
η − 1

)
f0(t)

]di
[
1 +

(
1
η − 1

)
F0(t)

]1+di ,
where di is the censoring indicator variable (i = 1, ..., n).

We can note that the cure fraction of each of these models is given by η = limt−→∞ S(t). Models based on
defective distributions are also alternatives to the mixture and non-mixture models, but they will not be considered
in the present paper. Interest readers can find details in Rocha et al. [65], Martinez and Achcar [44] and Scudilio et
al. [66].
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2.5. Simulating samples from an EW distribution with a cure fraction

Based on the Algorithms 6 and 7 presented in the article from Ramos et al. [60], we can simulate a sample of size
n from the EW distribution with right-censoring and a cure fraction following the steps:

Step 1. Fix values of α, β, γ and η.

Step 2. Generate n random samples from ui ∼ Uniform(0, 1).

Step 3. Consider t′0i = F−1(ui, α, β, γ), where

F−1(ui, α, β, γ) = β
[
− log

(
1− u1/αi

)]1/γ
.

Step 4. Generate n random samples from a Bernoulli distribution with parameter η, denoted by bi ∼ Bernoulli(η).

Step 5. If bi = 1, then t′i =∞. Otherwise, t′i = t′0i.

Step 6. Generate n random samples from ci ∼ Uniform (0,max (t′0i)). This variable controls the censorship
mechanism.

Step 7. Pairs of values (ti, di), i = 1, ..., n, are thus obtained, where di is the censoring indicator variable. If t′i ≤ ci,
then ti = t′i and di = 1. Otherwise, ti = ci and di = 0 (the censored observations).

2.6. Model with cure fraction and covariates

Let ti be an observation of a nonnegative random variable T denoting the time-to-event for the ith individual,
and let xi = (xi1, ..., xiJ) be the observed values of a covariate vector, for i = 1, ..., n. For the ith individual, the
baseline survival function of a model based on the EW distribution with covariates is given by

S0(ti|xi, θ0) = 1−

{
1− exp

[
−
(

ti
β(xi)

)γ(xi)]}α(xi)
, (9)

where

logα(xi) = α0 +

J∑
j=1

αjxij , log β(xi) = β0 +

J∑
j=1

βjxij , log γ(xi) = γ0 +

J∑
j=1

γjxij ,

and θ0 = (α0, α1, ..., αJ , β0, β1, ..., βJ ,γ0,γ1, ..., γJ). According to the complexity of the study, we can also assume
different covariate vectors for each parameter of the EW distribution. The MCF model with covariates is thus given
by

S(ti|xi, θ) = η(xi) + [1− η(xi)]S0(ti|xi, θ0),

where

η(xi) =
exp

(
η0 +

∑J
j=1 ηjxij

)
1 + exp

(
η0 +

∑J
j=1 ηjxij

) , (10)

and θ is the complete vector of parameters given by θ = (α0, α1, ..., αJ , β0, β1, ..., βJ , γ0, γ1, ..., γJ , η0, η1, ..., ηJ)
[77]. In this case, the contribution of the ith subject for the likelihood function is given by

Li = {[1− η(xi)] f0(ti|xi, θ0)}di {η(xi) + [1− η(xi)]S0(ti|xi, θ0)}1−di ,

where f0(ti|xi, θ0) is the correspondent baseline pdf for the susceptible individuals. Similarly, we can specify
models with covariates assuming the other forms of cure fraction described in subsection 2.4.

Cox-Snell residuals can be used to graphically test the fit of the various models to the data. The Cox-Snell
residuals ri corresponding to time ti, are given by ri = − logS(t|x, θ), where θ is the complete vector of parameters
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and θ̂ is the corresponding vector estimate parameter [17]. The estimated Cox-Snell residuals under the MCF model
are thus given by

r̂i = − log
{
η̂(xi) + [1− η̂(xi)]S0(ti|xi, θ̂0)

}
.

Diagnostics based on Cox-Snell residuals are usually based on fitting a Kaplan-Meier curve to ri and comparing
it to that of the standard exponential distribution. However, Peng and Taylor [55] warn that under the MCF model,
the Cox-Snell residuals are not a sample from an unit exponential distribution when the cure model is correctly
specified, given that P [− logS(t|x, θ) > t] = P [S(t|x, θ) ≤ e−t] is equal to e−t if t < − log η(x) and 0 otherwise.
Despite this, Peng and Taylor [55] argue that “the usual approach of checking the estimated cumulative hazard rate
of the (ri, di)’s against the cumulative hazard function of the unit exponential distribution is still appropriate since
the residuals that are equal to − log η(x) are always censored”.

2.7. Bayesian estimation

Under a Bayesian framework, the joint posterior distribution for the model parameters is obtained by combining
the joint prior distribution of the parameters and the likelihood function [14]. The model based on the EW
distribution without the presence of covariates but including a cure fraction has four parameters, α, β, γ and
η. Since α > 0, β > 0, γ > 0 and 0 < η < 1, we assume independent prior distributions α ∼ Gamma(aα, bα),
β ∼ Gamma(aβ , bβ), γ ∼ Gamma(aγ , bγ), and η ∼ Beta(aη, bη), where aα, bα, aβ , bβ , aγ , bγ , aη and bη are
known hyperparameters; Gamma(a, b) denotes a gamma distribution with mean a/b and variance a/b2, and
Beta(a, b) denotes a beta distribution with mean a/(a+ b) and variance ab/[(a+ b)2(a+ b+ 1)] [28].

Considering the model in the presence of cure fraction and covariates introduced in the Subsection 2.6, we
assume independent prior distributions αj ∼ Normal(aαj , b2αj ), βj ∼ Normal(aβj , b

2
βj

), γj ∼ Normal(aγj , b2γj ),
and ηj ∼ Normal(aηj , b2ηj ), j = 1, ..., J , where aαj , b2αj , aβj , b2βj , aγj , b2γj , aηj , and b2ηj are known
hyperparameters, J is the number of covariates, and Normal(a, b2) denotes a normal distribution with mean a
and variance b2.

To simulate samples from the joint posterior distribution, we consider the use of MCMC (Markov Chain Monte
Carlo) algorithms implemented in the package MCMCpack of the R software [43]. Interested readers can refer
to Chib and Greenberg [13] for a review of standard MCMC methods. We generated 1,005,000 samples for each
parameter of interest. The 5,000 first simulated samples were discarded as a burn-in period, which is usually used
to minimize the effect of the initial values. The Bayes estimates of the parameters can be obtained as the mean of
samples drawn from the joint posterior distribution (use of squared error loss function). The 95% highest posterior
density (HPD) intervals were obtained from the simulated posterior distributions for the parameters. HPD intervals
are the shortest possible intervals for any given coverage probability [12]. Convergence was assessed visually from
traceplots of each MCMC chain and quantitatively via Geweke criterion, which is based on a test for equality of the
means of the first and last part of a Markov chain [26]. The Geweke criterion involves calculating a Z-score from
the difference of means between the first 10% and last 50% of the sampled chain divided by their pooled standard
deviation. If the MCMC samples are drawn from a stationary distribution, this Z-score has an asymptotically
standard normal distribution. We calculated Geweke’s convergence diagnostics using the geweke.diag function in
the R package coda [58].

The logarithm of the pseudo-marginal likelihood (LPML) is a well-known Bayesian criterion for model
comparison [25]. This comparison criterion is based on the conditional predictive ordinate (CPO) statistics [24].
In a general manner, let y = {y1, · · · , yn} be an observed sample from f(·|θ). CPO estimates the probability
of observing yi in the future after having already observed y−1, the vector of all observations except the ith
observation. The CPO for the ith observation is given by

CPOi = f(yi|y−1) =

∫
f(yi|θ)f(θ|y−1)dθ,

where yi is each observation, θ is the parameter vector of interest, f(yi|θ) is the probability density function of the
random variable Y and f(θ|y−1) is the joint posterior distribution of θ given y−1. The CPO is easily calculated
using MCMC methods. By considering the inverse likelihood across M iterations, the CPO for each individual i is
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given by

ĈPOi =

{
1

M

M∑
i=1

1

f(yi|θm)

}−1
[20]. The logarithm of the pseudo marginal likelihood (LPML) [32] is defined as

LPML =

n∑
i=1

log ĈPOi.

Under a Bayesian framework, models with larger LPML values are preferred over models with lower LPML
values.

3. Results

3.1. Simulation study

In this subsection, we present a simulation study to illustrate the performance of the ML approach when applied
to samples from an EW distribution with a cure fraction. The coverage probabilities of the confidence intervals for
the parameters, bias and mean square error (MSE) were applied to evaluate the simulation results. We generated
B = 1, 000 samples of size n from the EW distribution following the steps described in the Subsection 2.5
and computed the ML estimates for the B samples, say (α̂

(b)
ML, β̂

(b)
ML, γ̂

(b)
ML, η̂

(b)
ML) for b = 1, ..., B. The Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method was used to maximize the likelihood function with respect to the model
parameters [8]. The average bias in the estimation of a parameter θ is estimated by

B̂ias(θ̂ML) =
1

B

B∑
b=1

(
θ̂
(b)
ML − θN

)
and the corresponding MSE is estimated by

M̂SE(θ̂ML) =
1

B

B∑
b=1

(
θ̂
(b)
ML − θN

)2
,

where θ̂ML ∈ (α̂ML, β̂ML, γ̂ML, η̂ML) is the ML estimate for a given parameter, θ̂(b)ML is the ML estimate obtained
for θ considering the b-th simulated sample, θN is the corresponding nominal value for θ, θ ∈ (α, β, γ, η), and B
is the number of simulated samples. We repeated these steps for n = 25, 30, 35, 40, ..., 400 with different values
for α, β, γ and η, including censored data. Figure 2 shows how the coverage probabilities, average biases and
MSE vary with respect to the sample size n, considering a nominal confidence coefficient of 95% and four
sets of arbitrary values for the parameters of the EW distribution and η, given by (a) (α, β, γ) = (1, 0.5, 1) and
η = 0.2, (b) (α, β, γ) = (2, 1, 1) and η = 0.25, (c) (α, β, γ) = (2, 2, 2) and η = 0.2, and (d) (α, β, γ) = (4, 0.2, 0.6)
and η = 0.25.

We can note in Figure 2 that in all simulations the MSE values decrease and the bias values tend to zero as the
sample size increases, as it is expected. In addition, the coverage probability of all parameters approaches to the
nominal value 95% when n increases. In this simulation study, confidence intervals for the parameters α, β and γ
were based on the delta method (7), while confidence intervals for η were obtained by the Wald method (similar
to (6)). For comparison, we also performed a simulation considering all confidence intervals based on the Wald
method (6), and in general the coverage probabilities for all parameters were slightly lower than those shown in
Figure 2.
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Figure 2. Results from the simulation study. The graphs show the estimates of the coverage probabilities of the 95%
confidence intervals for the parameters α, β, γ and η, the average bias, and the mean squared error (MSE).

3.2. Applications to real data sets

In this subsection, we provide two applications to real data to illustrate the potential usefulness of the EW
distribution to analyse lifetime data. In all applications, under the frequentist framework, the BFGS method was
used to maximize the likelihood function with respect to the model parameters [8].

3.2.1. Survival of ESCC patients with radical resection A retrospective study included 124 patients with
esophageal squamous cell carcinoma (ESCC) and radical resection [39]. The patients were treated with
esophagectomy in a hospital in Wuhan, China, between March 2010 and December 2012. The variable of interest
is the length of time (in months) from the date of surgery to the death from any cause. If a patient did not die during
the study period, he/she was treated as censored and the time to the last follow-up was recorded. Approximately
one-third of the observations are censored (41/124). Figure 3 shows the survival function estimated by the Kaplan-
Meier method and the corresponding TTT plot. The reversed S-shape of the TTT plot suggests that a standard
Weibull distribution (without cure fraction) may not be a good choice to be fitted by the data.

Table 1 shows the ML estimates and associated standard errors for all parameters of the mixture cure fraction
(MCF), non-mixture cure fraction (NMCF), complementary promotion time cure (CPTC), and the cure rate
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Figure 3. (a) Survival function estimated by the Kaplan-Meier method for 124 ESCC patients with radical resection, and (b)
the corresponding TTT plot. Data available from [39].

Table 1. ML estimates and associated standard errors (SE) of the model based on the EW distribution and its special cases,
including a cure fraction, fitted to the 124 ESCC patients with radical resection. Data available from Li et al. [39].

ML estimates
Baseline distribution MCF model NMCF model CPTC model CRPO model

and parameters Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)
EW distribution

α 7.4238 (9.1605) 4.9756 (3.4251) 7.4884 (5.4300) 4.2735 (4.4570)
β 4.6984 (7.5051) 8.3273 (6.0021) 4.1429 (3.8000) 11.0194 (11.0329)
γ 0.6024 (0.3565) 0.7153 (0.2702) 0.6051 (0.2077) 0.7684 (0.4705)
η 0.6083 (0.0709) 0.6118 (0.0667) 0.6136 (0.0623) 0.6100 (0.0753)

AIC 464.38 464.36 464.35 464.36
SW distribution

β 24.3646 (3.1641) 26.4089 (2.9267) 22.4209 (3.0238) 28.3995 (4.2929)
γ 1.7285 (0.2481) 1.8016 (0.2542) 1.6460 (0.2395) 1.8859 (0.2678)
η 0.6402 (0.0493) 0.6381 (0.0483) 0.6422 (0.0486) 0.6371 (0.0504)

AIC 463.87 463.56 464.17 463.29
EE distribution

α 2.6848 (0.7663) 2.7040 (0.8097) 2.6151 (0.7826) 2.7261 (0.6955)
β 13.1873 (3.3313) 14.5737 (4.5148) 12.1242 (2.8455) 16.2194 (4.4703)
η 0.6302 (0.0521) 0.6264 (0.0557) 0.6341 (0.0502) 0.6220 (0.0545)

AIC 462.55 462.46 462.67 462.40
ER distribution

α 0.8473 (0.1613) 0.8974 (0.2127) 0.7851 (0.1735) 0.9507 (0.1925)
β 26.1254 (3.0412) 27.4334 (6.0296) 25.1545 (3.5975) 28.8785 (5.6066)
η 0.6438 (0.0467) 0.6406 (0.0505) 0.6474 (0.0466) 0.6376 (0.0501)

AIC 464.40 463.86 465.03 463.41

proportional odds (CRPO) models, with baseline survival functions for the susceptible individuals given by the EW,
the standard Weibull (SW), the exponentiated exponential (EE), and the exponentiated Rayleigh (ER) distributions.
The R code used to obtain the ML estimates and associated standard errors for all parameters of the MCF model
based on the EW distribution is provided in an Appendix at the end of the article. The AIC values for the different
models are also presented in Table 1. The AIC values are close to each other, not suggesting a better model among
those fitted to the data. Panel (a) of Figure 4 compares the estimated values of the survival function obtained by
the Kaplan-Meier method and by the parametric MCF model using the ML approach. This graph visually suggests
that the EW distribution and its special cases are well fitted by the data. In the panels (b) to (e) of Figure 3, we have
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Figure 4. (a) Survival function estimated by the Kaplan-Meier method and assuming the parametric MCF model based on
the EW, SW, EE and ER distributions for the 124 ESCC patients with radical resection; and the corresponding Cox-Snell
residual plots for the MCF models based on the (b) EW, (c) SW, (d) EE and (e) ER distributions. Data available from [39].

the corresponding Cox-Snell residuals plots for the MCF models based on the EW, SW, EE, and ER distributions,
respectively. The estimated cumulative hazard rates are close to the diagonal line, indicating a proper fit of the MCF
models to the data. Cox-Snell residuals plots for the NMCF, CPTC, and CRPO models also suggest a reasonable
fit of these models to the data (for parsimony, we do not show these graphs here).

Table 2. Bayesian estimates and associated 95% highest probability density (HPD) intervals, considering the model based on
the EW distribution and its special cases and including a cure fraction, fitted to the 124 ESCC patients with radical resection.
Data available from Li et al. [39].

Bayesian estimates
Baseline distribution MCF model NMCF model CPTC model CRPO model

and parameters Estimate (95%HPD) Estimate (95%HPD) Estimate (95%HPD) Estimate (95%HPD)
EW distribution

α 6.2243 (3.0193, 10.215) 6.6234 (3.3860, 10.887) 5.7193 (2.7484, 9.4317) 7.0517 (3.6068, 11.355)
β 4.7747 (1.3925, 9.0085) 5.0466 (1.4855, 9.4299) 4.4373 (1.2909, 8.6229) 5.3251 (1.7098, 9.7897)
γ 0.5423 (0.2785, 0.8201) 0.5346 (0.2750, 0.8109) 0.5464 (0.3003, 0.8290) 0.5254 (0.2880, 0.8135)
η 0.5786 (0.2828, 0.7358) 0.5860 (0.3681, 0.7284) 0.5714 (0.2520, 0.7231) 0.5918 (0.4098, 0.7240)

LPML -231.58 -231.65 -231.85 -231.37
SW distribution

β 19.251 (15.522, 23.533) 20.598 (16.740, 24.891) 17.783 (13.851, 21.862) 21.840 (18.083, 26.550)
γ 1.5681 (1.1402, 2.0022) 1.6779 (1.2513, 2.1186) 1.4448 (1.0212, 1.8565) 1.7904 (1.3755, 2.2532)
η 0.6539 (0.5635, 0.7364) 0.6653 (0.5760, 0.7447) 0.6391 (0.5501, 0.7287) 0.6741 (0.5852, 0.7478)

LPML -234.04 -232.93 -234.12 -234.12
EE distribution

α 3.3098 (2.0518, 4.8910) 3.4290 (2.1882, 5.0291) 3.1372 (1.9049, 4.7288) 3.5940 (2.3125, 5.1547)
β 10.204 (7.6164, 13.521) 10.653 (7.9899, 14.239) 9.7886 (7.4011, 12.925) 11.113 (8.1302, 14.739)
η 0.6474 (0.5570, 0.7368) 0.6522 (0.5657, 0.7422) 0.6418 (0.5460, 0.7260) 0.6572 (0.5664, 0.7399)

LPML -231.74 -231.88 -231.69 -232.06
ER distribution

α 1.0892 (0.7106, 1.4845) 1.1626 (0.7572, 1.5718) 1.0079 (0.6307, 1.4078) 1.2435 (0.8529, 1.6907)
β 20.348 (17.244, 24.234) 20.763 (17.498, 24.764) 20.007 (16.906, 23.700) 21.162 (17.660, 25.168)
η 0.6589 (0.5727, 0.7434) 0.6611 (0.5756, 0.7423) 0.6571 (0.5764, 0.7486) 0.6644 (0.5797, 0.7455)

LPML -234.41 -234.30 -234.54 -234.29

Table 2 shows the Bayesian estimates and associated 95%HPD intervals for all parameters of the same models
used in the frequentist analysis. The point estimates were determined by the median of the correspondent posterior
distribution simulated by the MCMC method. Prior distributions of α, β and η were given by Gamma(0.1, 0.1),
Gamma(0.1, 0.1) and Beta(0.5, 0.5), respectively, that is, approximately non-informative priors. The Bayesian
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estimates are approximately equal to the ML estimates. Analogously to the previous analysis, the LPML values
showed in Table 2 are close to each other, not suggesting a better model among those fitted to the data. Since
all absolute Z-scores for each parameter are less than 1.96 (not shown), the Geweke’s diagnostic evidenced
the convergence of the correspondent chains. Trace plots of the simulated samples for each parameter show
convergence of the Gibbs sampling algorithm, and the plots of the auto-correlation function suggest that the
posterior samples are approximately uncorrelated (graphics not shown). The R code used to fit the Bayesian model
to the data is provided in the Appendix.

3.2.2. Treatments for COVID-19 symptoms The year 2020 was historically marked by the global pandemic crisis
caused by the COVID-19 coronavirus [80]. In that year, many studies were conducted in an attempt to investigate
new treatments and therapies for individuals affected with the disease. In a randomized clinical trial of 214 patients
with confirmed SARS-CoV-2 infection receiving outpatient care [74], volunteers were divided into four groups:

Group 1: usual care without any study medications (a control group).

Group 2: 8000 mg of ascorbic acid (to be divided over 2-3 times per day with meals),

Group 3: 50 mg of zinc gluconate at bedtime,

Group 4: both therapies used in Groups 2 and 3.

In all groups, patients were treated for ten days after a positive diagnosis for COVID-19. The variable of interest is
the number of days required to achieve a 50% reduction in disease symptoms. The sample observations are:

Group 1: 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 11,
11, 12, 15, 16, 23, 28+, 28+, 28+, 28+, 28+ and 28+.

Group 2: 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
9, 9, 10, 25, 25, 28+ and 28+.

Group 3: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,
8, 8, 9, 10, 10, 10, 11, 14, 25, 25, 28+, 28+, 28+, 28+, 28+, 28+ and 28+.

Group 4: 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8,
8, 8, 9, 9, 9, 11, 12, 16, 18, 28+, 28+, 28+, 28+, 28+, 28+, 28+ and 28+.

Plus sign indicates censored observations, representing the patients who did not present the event of interest after
28 days of follow-up. Panel (a) of Figure 5 shows the Kaplan-Meier survival curves comparing the time to symptom
reduction between patients submitted to these treatments. As the Figure suggests, the curves reach a plateau at the
right tail. In addition, some medical researchers have shown that patients with COVID-19 can experience persistent
symptoms over a relatively long period [59, 67], which suggests that the use of models with a cure fraction to study
the duration of COVID-19 symptoms is clinically feasible. The corresponding TTT plots are shown in Panel (b)
of Figure 5. The reversed S-shape of these curves suggests that the use of models based on the standard Weibull
distribution may not be suitable for these data, and models based on more complex distributions are required.

Suppose that x1, x2 and x3 are dummy variables, where x1i = 0, x2i = 0 and x3i = 0 if the ith patient
was assigned to receive usual care without any study medications (Group 1), x1i = 1, x2i = 0 and x3i = 0
if the ith patient was assigned to Group 2, x1i = 0, x2i = 1 and x3i = 0 if the ith patient was assigned to
Group 3, and x1i = 0, x2i = 0 and x3i = 1 if the ith patient was assigned to Group 4, for i = 1, ..., n. In this
way, we have a regression model based on the expression (9) where α(xi) = exp(α0 + α1xi1 + α2xi2 + α3xi3),
β(xi) = exp(β0 + β1xi1 + β2xi2 + β3xi3) and γ(xi) = exp(γ0 + γ1xi1 + γ2xi2 + γ3xi3). In addition, considering
the MCF model, from (10) we have

η(xi) =
exp (η0 + η1xi1 + η2xi2 + η3xi3)

1 + exp (η0 + η1xi1 + η2xi2 + η3xi3)
. (11)
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Figure 5. (a) Survival functions estimated by the Kaplan-Meier method, comparing the four treatment groups for COVID-19,
and (b) TTT plots. Data available from [74].

Panels (a) and (c) of Figure 6 compare the Kaplan-Meier and parametric ML estimates of the survival function
for COVID-19 data, considering the frequentist MCF and NMCF models, respectively. The AIC values for these
model are 1122.28 and 1116.91, respectively. In panels (b) and (d) of Figure 6, the Cox-Snell residuals are plotted
against the cumulative hazard function to assess the overall fit of the MCF and NMCF models, respectively [17].
All points on the graph are close to the diagonal line, indicating no evidence of lack of fit in a general sense. Figures
showing the survival curves estimated by the CPTC and CRPO models are similar to those shown in Figure 6, as
are the corresponding Cox-Snell residual plots, and for parsimony, they are not shown.

Table 3 shows the ML and Bayesian estimates of the MCF, NMCF, and CPTC models, and Table 4 shows the
estimates of the CRPO models, all based on the EW distribution. We can observe in these tables that the ML and
the Bayesian estimates are relatively close. In the frequentist analysis, we have no evidence of differences between
the survival curves, given that all p-values are greater than the significance level of 0.05, except the one related to
the η0 intercept. Choices of 0.05 for the significance level are common in applied research [15]. In addition, under
the Bayesian framework, we can see that all 95% HPD intervals include the 0 value except for the η0 intercept in
the MCF, NMCF, CPTC, and CRPO models, and also for the γ0 intercept in the MCF, NMCF, and CPTC models.
All Geweke’s Z-score values were in the range (−1.96, 1.96), suggesting the convergence of the Markov chains
[26].

4. Concluding remarks

In applications of survival analysis methods to medical data, we may find situations where the hazard function
is not a monotonically increasing or decreasing curve. This motivates us to explore the use of distributions with
more flexible shapes of the hazard functions. In this article, we presented a model based on the EW distribution
considering right-censored survival data with a cure fraction and covariates. The hazard function of the EW
distribution can have a bathtub, unimodal, increasing, and decreasing shapes. Maximum likelihood (ML) and
Bayesian approaches were used to estimate the parameters of the model. Bayesian estimation was based on MCMC
methods. The simulation study showed that for small sample sizes, the ML estimates seem to be biased, but the bias
reduction of the estimators occurs as the sample size increases. In addition, the ML method returns good coverage
probabilities as the sample size increases.
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Table 3. ML and Bayesian estimates of the MCF, NMCF and CPTC models based on the EW distribution including
covariates. Data available from Thomas et al. [74].

ML estimates Bayesian estimates
Parameter Estimate Std. Error 95%CI p-value Estimate 95%HPD Z-score

MCF model
α0 2.2606 1.4243 (-0.5310, 5.0522) 0.112 2.5720 ( 1.5260, 3.4660) -0.08
α1 0.5705 1.6877 (-2.7373, 3.8783) 0.735 0.7472 (-0.5039, 1.9430) 0.77
α2 0.1741 1.5670 (-2.8972, 3.2454) 0.912 0.3067 (-0.8014, 1.5400) 0.95
α3 0.3154 1.8937 (-3.3963, 4.0271) 0.868 0.4397 (-0.8918, 1.6070) -0.77
β0 0.2057 1.5693 (-2.8700, 3.2814) 0.896 -0.2659 (-1.4130, 0.8832) 0.24
β1 -0.3709 1.7633 (-3.8268, 3.0850) 0.833 -0.4535 (-1.7990, 0.7302) -1.31
β2 -0.3957 1.7262 (-3.7789, 2.9876) 0.819 -0.5428 (-1.8960, 0.8142) -0.86
β3 -0.1911 1.9461 (-4.0054, 3.6232) 0.922 -0.2349 (-1.5010, 1.0510) 0.89
γ0 -0.4401 0.4892 (-1.3990, 0.5189) 0.368 -0.5789 (-0.9295, -0.2366) 0.46
γ1 0.0292 0.5369 (-1.0231, 1.0814) 0.957 0.0389 (-0.3284, 0.4185) -1.26
γ2 -0.0745 0.5224 (-1.0985, 0.9495) 0.887 -0.0773 (-0.4579, 0.3023) -0.75
γ3 0.0966 0.6064 (-1.0920, 1.2852) 0.873 0.1030 (-0.2877, 0.5109) 0.44
η0 -1.8267 0.4236 (-2.6569, -0.9965) < .001 -1.9570 (-2.6700, -1.2760) -1.12
η1 -0.7803 0.7388 (-2.2282, 0.6677) 0.291 -0.9363 (-2.1080, 0.2539) 0.21
η2 -0.2378 0.5983 (-1.4105, 0.9349) 0.691 -0.1335 (-1.1650, 0.8381) 0.22
η3 -0.1087 0.5740 (-1.2336, 1.0162) 0.850 0.0658 (-0.8528, 1.0070) 1.88

AIC: 1122.28 LPML: -555.05
NMCF model

α0 2.4710 2.2848 (-2.0072, 6.9492) 0.279 2.3090 ( 1.3800, 3.2780) -0.75
α1 0.5973 2.0478 (-3.4163, 4.6110) 0.770 0.5174 (-0.5990, 1.6730) 0.35
α2 0.1724 2.7581 (-5.2333, 5.5781) 0.950 0.1901 (-0.9092, 1.2640) 1.33
α3 0.2929 3.1272 (-5.8362, 6.4220) 0.925 0.2770 (-0.8958, 1.4340) -0.33
β0 0.2027 3.0714 (-5.8172, 6.2225) 0.947 0.2980 (-0.9714, 1.5160) 0.99
β1 -0.4247 2.7529 (-5.8204, 4.9709) 0.877 -0.3353 (-1.6500, 1.0530) -0.39
β2 -0.4176 3.7226 (-7.7138, 6.8785) 0.910 -0.4215 (-1.8860, 0.9831) -1.31
β3 -0.2040 3.9707 (-7.9865, 7.5785) 0.959 -0.2057 (-1.5030, 1.0800) 0.12
γ0 -0.6103 0.8327 (-2.2424, 1.0218) 0.463 -0.5877 (-1.0200, -0.1358) 1.20
γ1 0.0270 0.7420 (-1.4273, 1.4813) 0.971 0.0582 (-0.3933, 0.5549) -0.93
γ2 -0.0727 0.9664 (-1.9667, 1.8214) 0.940 -0.0515 (-0.5264, 0.4241) -1.88
γ3 0.1206 1.0916 (-2.0188, 2.2600) 0.912 0.1591 (-0.2967, 0.6861) -0.67
η0 -1.9045 0.5143 (-2.9125, -0.8965) < .001 -1.9690 (-2.7240, -1.3130) -0.30
η1 -0.8591 0.8428 (-2.5109, 0.7927) 0.308 -0.9802 (-2.0940, 0.2043) 0.02
η2 -0.2289 0.7676 (-1.7334, 1.2755) 0.765 -0.1674 (-1.1220, 0.7993) -1.47
η3 -0.0588 0.6727 (-1.3772, 1.2597) 0.930 0.0516 (-0.9139, 0.9925) 0.08

AIC: 1116.91 LPML: -553.81
CPTC model

α0 2.2307 1.4565 (-0.6239, 5.0853) 0.126 2.4240 ( 1.3500, 3.4070) 1.65
α1 0.5112 1.6836 (-2.7885, 3.8110) 0.761 0.6293 (-0.6615, 1.9010) -0.03
α2 0.1102 1.9040 (-3.6215, 3.8420) 0.954 0.2809 (-0.9135, 1.5370) 0.13
α3 0.3046 1.7578 (-3.1406, 3.7499) 0.862 0.5091 (-0.7995, 1.8620) -1.00
β0 -0.2148 1.5847 (-3.3208, 2.8912) 0.892 -0.6357 (-1.8490, 0.4543) -1.32
β1 -0.5506 1.7656 (-4.0111, 2.9098) 0.755 -0.5972 (-1.8000, 0.7313) 0.88
β2 -0.5037 2.0624 (-4.5460, 3.5387) 0.807 -0.5904 (-1.9880, 0.7151) -0.16
β3 -0.2096 1.7955 (-3.7287, 3.3096) 0.907 -0.2504 (-1.5470, 1.0370) 0.85
γ0 -0.4989 0.4260 (-1.3338, 0.3361) 0.242 -0.6123 (-0.9196, -0.2978) -1.47
γ1 -0.0292 0.4627 (-0.9361, 0.8778) 0.950 -0.0027 (-0.3117, 0.3407) 1.14
γ2 -0.1059 0.5234 (-1.1318, 0.9199) 0.840 -0.0881 (-0.4402, 0.2607) 0.47
γ3 0.0632 0.4818 (-0.8811, 1.0076) 0.896 0.0814 (-0.2875, 0.4314) 1.04
η0 -1.8216 0.4462 (-2.6961, -0.9470) < .001 -1.9090 (-2.5930, -1.2760) 0.48
η1 -0.8133 0.8202 (-2.4208, 0.7943) 0.321 -0.9854 (-2.1530, 0.2090) 1.58
η2 -0.2065 0.6255 (-1.4323, 1.0194) 0.741 -0.0898 (-1.0760, 0.8253) 0.67
η3 -0.0921 0.6259 (-1.3189, 1.1347) 0.883 0.0529 (-0.8325, 0.9951) -0.10

AIC: 1131.16 LPML: -559.39

Two applications to real data were used to illustrate the potential usefulness of the EW distribution to analyze
lifetime data. The first application is a clinical trial including 124 patients with ESCC and radical resection treated
with esophagectomy. We also presented an application of the proposed model to a dataset from a trial comparing
treatments for COVID-19 symptoms [74]. We emphasise that the results found in this data analysis should not be
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Table 4. ML and Bayesian estimates of the CRPO model based on the EW distribution including covariates. Data available
from Thomas et al. [74].

ML estimates Bayesian estimates
Parameter Estimate Std. Error 95%CI p-value Estimate 95%HPD Z-score

CRPO model
α0 2.5895 1.9272 (-1.1877, 6.3666) 0.179 2.1410 ( 1.0810, 3.1080) -0.74
α1 0.6101 2.1193 (-3.5437, 4.7639) 0.773 0.3842 (-0.7093, 1.3280) 1.92
α2 0.1988 2.4002 (-4.5054, 4.9030) 0.934 0.1163 (-0.9436, 1.1840) -0.68
α3 0.2776 1.6696 (-2.9947, 3.5498) 0.868 0.1240 (-1.1090, 1.2370) 0.52
β0 0.3615 3.1350 (-5.7830, 6.5061) 0.908 0.9223 (-0.4052, 2.2310) 0.45
β1 -0.4386 3.3758 (-7.0551, 6.1779) 0.897 -0.1633 (-1.4710, 1.1650) -0.70
β2 -0.4343 3.9620 (-8.1998, 7.3311) 0.913 -0.2789 (-1.7960, 1.1460) 0.74
β3 -0.2395 2.2624 (-4.6737, 4.1947) 0.916 -0.2005 (-1.5810, 1.1250) 0.24
γ0 -0.7651 0.9135 (-2.5554, 1.0253) 0.402 -0.5463 (-1.0990, 0.0438) 0.54
γ1 0.0251 1.0242 (-1.9822, 2.0324) 0.980 0.0641 (-0.5241, 0.6418) -0.76
γ2 -0.0573 1.1038 (-2.2208, 2.1061) 0.959 -0.0619 (-0.6073, 0.6082) 1.06
γ3 0.1736 0.6190 (-1.0396, 1.3868) 0.779 0.2051 (-0.4242, 0.8233) -0.28
η0 -1.9869 0.6307 (-3.2231, -0.7507) < .001 -1.9560 (-2.7000,-1.2350) 0.58
η1 -0.9789 1.1052 (-3.1451, 1.1873) 0.376 -1.0510 (-2.2170, 0.1386) 1.60
η2 -0.2138 0.8693 (-1.9176, 1.4900) 0.806 -0.3080 (-1.3770, 0.8873) -0.13
η3 0.0364 0.7485 (-1.4307, 1.5035) 0.961 0.0195 (-0.9139, 1.0200) -0.55

AIC: 1115.26 LPML: -552.68
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Figure 6. Survival functions estimated by the Kaplan-Meier method and assuming the parametric (a) MCF and (c) NMCF
models based on the EW distribution, comparing the four treatment groups for COVID-19. Panels (b) and (d) show the
corresponding Cox-Snell residual plot. Data available from [74].
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used as clinical evidence in favour or against the treatments under investigation, as it is necessary to consider the
presence of some factors that could lead to bias in these results from a medical perspective. In addition, the usual
concept of statistical significance (suggested by p-values less than 0.05) is not synonymous with clinical relevance,
as has been described by many authors [34, 76]. However, this application was helpful to illustrate the performance
of the model based on the EW distribution when applied to real data.

Our findings indicate that both the ML and Bayesian approaches are computationally feasible to estimate the
parameters of EW distribution. The EW distribution and its sub-models have the flexibility to accommodate
different shapes for the hazard function and should be an attractive choice for survival data analysis when a cure
fraction is present.
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Appendix: R Code

The following R code can be used to obtain the ML estimates and associated standard errors for all parameters of
the mixture cure fraction based on the EW distribution. Let us consider the example introduced in subsection 3.2.1.

# Clear existing data
rm(list=ls())
# Load maxLik library
library(maxLik)
# Read Data (Li et al.)
# t is the survival time and d is the censoring indicator
# d = 1: complete observation, d = 0: censored observation
t<-c(49, 49, 30, 10, 7, 37, 57, 17, 15, 33, 60, 42, 36, 17, 39,
38, 35, 45, 3, 50, 52, 24, 40, 34, 18, 60, 39, 5, 24, 4, 5, 54,
10, 14, 52, 18, 18, 22, 42, 49, 38, 12, 10, 44, 36, 26, 61, 54,
34, 31, 33, 18, 54, 38, 29, 46, 39, 11, 59, 61, 33, 59, 49, 32,
22, 49, 22, 41, 59, 37, 36, 34, 35, 51, 57, 42, 47, 9, 36, 16,
43, 43, 12, 57, 54, 57, 23, 30, 16, 38, 59, 16, 41, 58, 51, 37,
32, 34, 53, 33, 41, 53, 30, 41, 51, 50, 52, 34, 32, 39, 59, 35,
12, 36, 61, 30, 46, 15, 57, 33, 45, 27, 48, 56)
d<-c(0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0,
1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0)

# The log-likelihood function with a cure fraction
log.f <- function(parms) {
alpha <- parms[1]
beta <- parms[2]
gamma <- parms[3]
eta <- parms[4] # The cure fraction
if (parms[1]<0) return(-Inf)
if (parms[2]<0) return(-Inf)
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if (parms[3]<0) return(-Inf)
if (parms[4]<0) return(-Inf)
S0t <- 1-(1-exp(-(t/beta)ˆgamma))ˆalpha
f0t <- alpha*(gamma/beta)*(t/beta)ˆ(gamma-1)*
(1-exp(-(t/beta)ˆgamma))ˆ(alpha-1)*exp(-(t/beta)ˆgamma)
St <- eta + (1-eta)*S0t
ft <- (1-eta)*f0t
like <- ftˆd * Stˆ(1-d)
L <- sum(log(like))
if (is.na(L)==TRUE) {return(-Inf)} else {return(L)} }

mle <- c()
# Setting the initial values for the parameters
init <- c(35,0.36,0.33,0.571)
# Obtaining the ML estimates
mle <- maxLik(logLik=log.f,start=init,method="BFGS")
summary(mle)
AIC(mle) # AIC value
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Figure 7. Traceplots of the MCMC samples. The horizontal red lines indicate the posterior means.

Similarly, Bayesian estimates can be obtained by using the following R code.

# Load MCMCpack library
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library(MCMCpack)
# The log posterior function with a cure fraction
log.post <- function(t,d,parms) {
alpha <- parms[1]
beta <- parms[2]
gamma <- parms[3]
eta <- parms[4]
if (parms[1]<0) return(-Inf)
if (parms[2]<0) return(-Inf)
if (parms[3]<0) return(-Inf)
if (parms[4]<0) return(-Inf)
S0t <- 1-(1-exp(-(t/beta)ˆgamma))ˆalpha
f0t <- alpha*(gamma/beta)*(t/beta)ˆ(gamma-1)*
(1-exp(-(t/beta)ˆgamma))ˆ(alpha-1)*exp(-(t/beta)ˆgamma)
St <- eta + (1-eta)*S0t
ft <- (1-eta)*f0t
like <- ftˆd * Stˆ(1-d)
log.like <- sum(log(like))
prior <- dgamma(alpha,.1,.1)*dgamma(beta,.1,.1)*
dgamma(gamma,.1,.1)*dbeta(eta,0.5,0.5)
log.prior <- log(prior)
L <- log.like + log.prior
if (is.na(L)==TRUE) {return(-Inf)} else {return(L)} }

# Obtaining the MCMC estimates
posterior <- MCMCmetrop1R(log.post,
theta.init=c(alpha=7.5,beta=4.5,gamma=0.6,eta=0.6),
burnin=5000, mcmc=1000000, thin=200, logfun=T, t=t,
d=d, verbose=100000, tune = 1)
varnames(posterior) <- c("alpha","beta","gamma","eta")
summary(posterior)
# Obtaining the HPD intervals
HPDinterval(posterior, prob = 0.95)
# Geweke Z scores
geweke.diag(posterior)

Figure 7 shows the traceplots of the corresponding MCMC chains, and the horizontal red lines indicate the
posterior means.

These R codes can be easily adapted to the models based on the standard Weibull (SW), exponentiated
exponential (EE), and exponentiated Rayleigh (ER) distributions.
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45. E. Z. Martinez, J. A. Achcar, A. A. Jácome, and J. S. Santos, Mixture and non-mixture cure fraction models based on the generalized

modified Weibull distribution with an application to gastric cancer data, Computer Methods and Programs in Biomedicine, vol. 112,
no. 3, pp. 343–355, 2013.

46. M. Meshkat, A. R. Baghestani, F. Zayeri, M. Khayamzadeh, and M. E. Akbari, Survival probability and prognostic factors of Iranian
breast cancer patients using cure rate model, The Breast Journal, vol. 24, no. 6, pp. 1015–1018, 2018.

47. G. S. Mudholkar, and A. D. Hutson, The exponentiated Weibull family: some properties and a flood data application, Communication
in Statistics - Theory and Methods, vol. 25, no. 12, pp. 3059–3083, 1996.

48. G. S. Mudholkar, and D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Transactions on
Reliability, vol. 42, no. 2, pp. 299–302, 1993.

49. G. S. Mudholkar, D. K. Srivastava, and M. Freimer, The exponentiated Weibull family: a reanalysis of the bus-motor-failure data,
Technometrics, vol. 37, no. 4, pp. 436–445, 1995.

50. M. M. Nassar, and F. H. Eissa, On the exponentiated Weibull distribution, Communications in Statistics - Theory and Methods, vol.
32, no. 7, pp. 1317–1336, 2003.

51. G. W. Oehlert, A note on the delta method, The American Statistician, vol. 46, no. 1, pp. 27–29, 1992.
52. R. P. Oliveira, M. V. Oliveira-Peres, M. R. Santos, E. Z. Martinez, and J. A. Achcar, A Bayesian inference approach for bivariate

Weibull distributions derived from Roy and Morgenstern methods, Statistics, Optimization & Information Computing, vol. 9, no. 3,
pp. 529–554, 2021.

53. M. E. Omer, M. A. Bakar, M. Adam, and M. Mustafa, Utilization of a mixture cure rate model based on the generalized modified
Weibull distribution for the analysis of leukemia patients, Asian Pacific Journal of Cancer Prevention, vol. 22, no. 4, pp. 1045–1053,
2021.

54. S. Pasari, and O. Dikshit, O. Stochastic earthquake interevent time modeling from exponentiated Weibull distributions, Natural
Hazards, vol. 90, no. 2, pp. 823–842, 2018.

55. Y. Peng, and J. M. Taylor, Residual-based model diagnosis methods for mixture cure models, Biometrics, vol. 73, no. 2, pp. 495–505,
2017.

56. Y. Peng, and B. Yu, Cure Models: Methods, Applications, and Implementation, CRC Press, New York, 2021.
57. J. E. Pinder III, J. G. Wiener, and M. H. Smith, The Weibull distribution: a new method of summarizing survivorship data, Ecology,

vol. 59, no. 1, pp. 175–179, 1978.
58. M. Plummer, N. Best, K. Cowles, and K. Vines, CODA: convergence diagnosis and output analysis for MCMC, R News, vol. 6, no.

1, pp. 7–11, 2006
59. A. Ramakrishnan, J. Zreloff, M. A. Moore, S. H. Bergquist, M. Cellai, J. Higdon, J. B. O’Keefe, D. Roberts, and H. M. Wu, Prolonged

symptoms after COVID-19 infection in outpatients, Open Forum Infectious Diseases, vol. 8, no. 3, pp. ofab060, 2021.
60. P. Ramos, D. Guzman, A. Mota, F. Rodrigues, and F. Louzada, Sampling with censored data: a practical guide, arXiv preprint, vol.

arXiv:2011.08417, 2020.
61. P. L. Ramos, D. C. Nascimento, C. Cocolo, M. J. Nicola, C. Alonso, L. G. Ribeiro, A, Ennes, and F. Louzada, Reliability-centered

maintenance: analyzing failure in harvest sugarcane machine using some generalizations of the Weibull distribution, Modelling and
Simulation in Engineering, vol. 2018, pp. 1241856, 2018.

62. E. Ramos, P. L. Ramos, and F. Louzada, Posterior properties of the Weibull distribution for censored data, Statistics & Probability
Letters, vol. 166, pp. 108873, 2020.

63. C. Ricci, S. Partelli, L. Landoni, M. Rinzivillo, C. Ingaldi, V. Andreasi, C. Nessi, F. Muffatti, M. Fontana, D. Tamburrino, G. Deiro,
L. Alberici, D. Campana, F. Panzuto, C. Bassi, M. Falconi, and R. Casadei, Sporadic non-functioning pancreatic neuroendocrine
tumours: multicentre analysis, British Journal of Surgery, vol. 108, no. 7, pp. 811–816, 2021.

64. H. Rinne, The Weibull distribution: a handbook, CRC Press, New York, 2008.
65. R. Rocha, S. Nadarajah, V. Tomazella, and F. Louzada, A new class of defective models based on the Marshall-Olkin family of

distributions for cure rate modeling, Computational Statistics & Data Analysis, vol. 107, pp. 48–63, 2017.
66. J. Scudilio, V. F. Calsavara, R. Rocha, F. Louzada, V. Tomazella, and A. S. Rodrigues, Defective models induced by gamma frailty

term for survival data with cured fraction, Journal of Applied Statistics, vol. 46, no. 3, pp. 484–507, 2019.
67. W. Shah, T. Hillman, E. D. Playford, and L. Hishmeh, Managing the long term effects of covid-19: summary of NICE, SIGN, and

RCGP rapid guideline, BMJ, vol. 372, pp. n136, 2021.
68. N. R. Smoll, K. Schaller, and O. P. Gautschi, The cure fraction of glioblastoma multiforme, Neuroepidemiology, vol. 39, no. 1, pp.

63–69, 2012.
69. G. O. Silva, E. M. Ortega, and G. M. Cordeiro, The beta modified Weibull distribution, Lifetime Data Analysis, vol. 16, no. 3, pp.

409–430, 2010.
70. R. Singh, and K. Mukhopadhyay, Survival analysis in clinical trials: basics and must know areas, Perspectives in Clinical Research,

vol. 2, no. 4, pp. 145–148, 2011.
71. J. G. Surles, and W. J. Padgett, Inference for reliability and stress-strength for a scaled Burr type X distribution, Lifetime Data

Analysis, vol. 7, no. 2, pp. 187–200, 2001.
72. M. Teimouri, S. M. Hoseini, S. Nadarajah, Comparison of estimation methods for the Weibull distribution, Statistics, vol. 47, no. 1,

pp. 93–109, 2013.
73. D. R. Thoman, L. J. Bain, and C. E. Antle, Inferences on the parameters of the Weibull distribution, Technometrics, vol. 11, no. 3,

pp. 445–460, 1969.

Statistics Opt. Inform. Comput. Vol. 10, March 2022.



E. Z. MARTINEZ, B. C. L. FREITAS, J. A. ACHCAR, D. C. ARAGON, AND M. O. PERES 571

74. S. Thomas, D. Patel, B. Bittel, K. Wolski, Q. Wang, A. Kumar, Z. J. ll’Giovine, R. Mehra, C. McWilliams, S. E. Nissen, M. Y.
Desai, Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory
patients with SARS-CoV-2 infection: the COVID A to Z Randomized Clinical Trial, JAMA Network Open, vol. 4, no. 2, pp. e210369,
2021.

75. A. D. Tsodikov, J. G. Ibrahim, and A. Y. Yakovlev, Estimating cure rates from survival data: an alternative to two-component
mixture models, Journal of the American Statistical Association, vol. 98, no. 464, pp. 1063–1078, 2003.

76. M. H. van Rijn, A. Bech, J. Bouyer, and J. A. van den Brand, Statistical significance versus clinical relevance, Nephrology Dialysis
Transplantation, vol. 32, pp. ii6-ii12, 2017.

77. M. V. P. Vigas, M. B. Fatoretto, G. S. Slanzon, E. M. M. Ortega, C. G. B. Demétrio, and C. M. M. Bittar, Red propolis effect analysis
of dairy calves health based on Weibull regression model with long-term survivors, Research in Veterinary Science, vol. 136, pp.
464–471, 2021.

78. A. Y. Yakovlev, and A. D. Tsodikov, Stochastic models of tumor latency and their biostatistical applications, World Scientific, New
Jersey, 1996.

79. B. Yiqi, V. G. Cancho, D. K. Dey, N. Balakrishnan, and A. K. Suzuki, Power series cure rate model for spatially correlated interval-
censored data based on generalized extreme value distribution, Journal of Computational and Applied Mathematics, vol. 364, pp.
112362, 2020.

80. P. Zhai, Y. Ding, X. Wu, J. Long, Y. Zhong, and Y. Li, The epidemiology, diagnosis and treatment of COVID-19, International
Journal of Antimicrobial Agents, vol. 55, no. 5, pp. 105955, 2020.

Statistics Opt. Inform. Comput. Vol. 10, March 2022.


	1 Introduction
	2 Methods
	2.1 The exponentiated Weibull (EW) distribution
	2.2 Maximum likelihood method
	2.3 Maximum-likelihood estimation in presence of censored data
	2.4 Cure fraction models
	2.4.1 The mixture cure fraction (MCF) model
	2.4.2 The non-mixture cure fraction (NMCF) model
	2.4.3 Alternatives to the mixture and non-mixture cure fraction models

	2.5 Simulating samples from an EW distribution with a cure fraction
	2.6 Model with cure fraction and covariates
	2.7 Bayesian estimation

	3 Results
	3.1 Simulation study
	3.2 Applications to real data sets
	3.2.1 Survival of ESCC patients with radical resection
	3.2.2 Treatments for COVID-19 symptoms


	4 Concluding remarks

