
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 11, June 2023, pp 541–553.
Published online in International Academic Press (www.IAPress.org)

Bayesian and Classical Inference for Generalized Stress-Strength Parameter
Under Generalized Logistic Distribution

Mohammad Mehdi Saber 1,*, Haitham M. Yousof 2

1Department of Statistics, Higher Education Center of Eghlid, Eghlid, Iran
2Department of Statistics, Mathematics and Insurance, Benha University, Benha, Egypt

Abstract In this paper, we study generalized stress-strength model for generalized logistic distribution. The maximum
likelihood estimator of this quantity is obtained and then a confidence interval is presented for it. Bayesian and bootstrap
methods are also applied for the recommended model. A Markov Chain Monte Carlo (MCMC) simulation study for assessing
the estimation methods is performed via the Metropolis-Hastings algorithm in each step of Gibbs algorithm. An application
to real data set is addressed.
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1. Introduction

The stress-strength models have wide application in some fields especially in reliability. This model is related
to a system with two components which that works truly if Y < X So, the probability of working system is
R = P (Y < X) that is named stress-strength model (for more details about this model see Kotz et al [8]). Saber et
al [11] introduced a generalization of R as following.

RG = Pr(Y < X < Z). (1)

The model in (1) is related to a system with three components where the quantity R is a special case from (1) if we
set variable Z to +∞. The major motivation for introducing this model can be justified by an example. Suppose that
we have a of machine which have three distinct parts containing engine, steering and skid. Let lifetimes of these
systems are random variables (rvs) Y, X and Z respectively. Then, this machine works truly if {Y < X < Z}.

We use the following formula for computing RG where

RG =

∫ +∞

−∞

∫ +∞

y

[FX (z)− FX (y)] fY (y) fZ (z) dz dy. (2)

Many distributions have been studied by authors for estimatingRwhich can also be applied toRG. Balakrishnan
and Leung [4] defined the Generalized Logistic (GL) distribution by generalizing the standard logistic distribution.
For practical usage, the GL distribution has been noticed in estimating its parameters. For instance, Asgharzadeh
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et al [2] and Rasekhi et al [9] have surveyed on stress-strength model and multi-components stress-strength model
when distribution of components is GL. A rv X have a GL(α, λ) distribution if its pdf is given by:

f (x) = αλ exp (−λx) [1 + exp (−λx)]−α−1
, x ∈ R. (3)

Its cumulative distribution function is

F (x) = [1 + exp (−λx)]−α
. (4)

Here α > 0 and λ > 0 are the shape and scale parameters, respectively. The first parameter controls skewness of
distribution in such way that has negative and positive skew for α > 1 and 0 < α < 1, respectively. It becomes the
standard logistic distribution when α = 1. Also, it is unimodal and log-concave. A list of extensive works on GL
distribution is found in Asgharzadeh [3], Alkasasbeh and Raqab [1] and Gupta and Kundu [7], among others. In
this study, we shall concentrate on the statistical inference of RG for the GL distribution.

The rest of paper is organized as follows: The RG investigation when distribution of components is GL with
common scale parameter is derived in Section 2. We estimate RG via three approaches called the maximum
likelihood estimations (MLE), Bayesian estimation and bootstrap method. Section 3 is devoted to similar work
with previous section but in case of common shape parameter. A simulation study has been performed in Section 4
for surveying accuracy and performance of recommended methods in Section 2 and 3. We provide an application
to a read life data set in Section 5. Finally, a discussion and concluding remark has been brought in Section 6.

2. Model for case of common scale parameter

In this section, generalized stress-strength model RG is analyzed for GL distribution in the case of X, Y and Z are
GL(α1, λ), GL(α2, λ) and GL(α3, λ), respectively. By substitution (3) and (4) in (2) we arrive at

R G =
1

(α1 + α2)(α1 + α2 + α3)
α1α3. (5)

Let X1, . . . , Xn ∼ GL(α1, λ), Y1, . . . , Ym ∼ GL(α2, λ) and Z1, . . . , ZL ∼ GL(α3, λ), then the log likelihood
function is:

Ln,m,L
i,j,k (α1, α2, α3|λ) = nln (α1) + mln (α2) + Lln (α3) + (n+m+ L) ln (λ)

−λ

(
n∑

i=1

xi +

m∑
j=1

yj +

L∑
k=1

zk

)
− (α1 + 1)S1 (x, λ)− (α2 + 1)S1 (y, λ)− (α3 + 1)S1 (z, λ) , (6)

where S1 (w, a) =
∑q

i=1 ln [1 + exp (−awi)] and w = (w1, w2, . . . , wq).

By derivation with respect to parameters we have

∂

∂α1
Ln,m,L
i,j,k (α1, α2, α3|λ) =

n

α1
− S1 (x, λ) ,

∂

∂α2
Ln,m,L
i,j,k (α1, α2, α3|λ) =

m

α2
− S1 (y, λ) ,

∂

∂α3
Ln,m,L
i,j,k (α1, α2, α3|λ) =

L

α3
− S1 (z, λ) , (7)

and
∂

∂λ
Ln,m,L
i,j,k (α1, α2, α3|λ) =

n+m+ L

λ
−

(
n∑

i=1

xi +

m∑
j=1

yj +

L∑
k=1

zk

)
+(α1 + 1)S2 (x, λ) + (α2 + 1)S2 (y, λ) + (α3 + 1)S2 (z, λ) , (8)
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where S2 (w, a) =
∑q

i=1
wie

−a wi

1+e−a wi
and w = (w1, w2, . . . , wq) . Substituting (7) in (2)have

n+m+ L

λ
−

(
n∑

i=1

xi +

m∑
j=1

yj +

L∑
k=1

zk

)
+

(
n

S1 (x, λ)
+ 1

)
S2 (x, λ)+

(
m

S1 (y, λ)
+ 1

)
S2 (y, λ) +

(
L

S1 (z, λ)
+ 1

)
S2 (z, λ) = 0. (9)

By solving (2) via numerically methods we get the λ̂. Also, we have

α̂1 =
n

S1(x, λ̂)
, α̂2 =

m

S1(y, λ̂)
, α̂3 =

L

S1(z, λ̂)
. (10)

By substitution η̂ = (α̂1, α̂2, α̂3, λ̂) in (5) we have:

R̂ G =
α̂1α̂3

(α̂1 + α̂2)(α̂1 + α̂2 + α̂3)
. (11)

Also, the Fisher’s information matrix is J (η) = [Jij ]
4
i,j=1 which is obtained by J (η) = E(I (η)) and I (η) =

− ∂2ι
∂η2 where I (η) = [Iij ]

4
i,j=1 and η = (α1, α2, α3, λ), where

I11 =
n

α2
1

, I22 =
m

α2
2

, I33 =
L

α2
3

, I12 = I21 = I13 = I31 = I23 = I32 = 0,

I14 = I41 = S2(x, λ), I24 = I42 = S2(y, λ), I34 = I43 = S2(z, λ),

and

I44 =
n+m+ L

λ2
+ (α1 + 1)S3 (x, λ) + (α2 + 1)S3 (y, λ) + (α3 + 1)S3 (z, λ) ,

where S3 (w, a) =
∑q

i=1
w2

i e
−a wi

(1+e−a wi)
2 . Therefore, by using (3)and integration we have:

J11 =
n

α2
1

, J22 =
m

α2
2

, J33 =
L

α2
3

, J12 = J21 = J13 = J31 = J23 = J32 = 0, J14 = J41 =
nα1

λ
K(1, α1 + 2),

J24 = J42 =
mα2

λ
K(1, α2 + 2), J34 = J43 =

Lα3

λ
K(1, α3 + 2),

and

J44 =
n+m+ L

λ2
+
nα1 (α1 + 1)

λ2
K (2, α1 + 3) +

nα2 (α2 + 1)

λ2
K (2, α2 + 3) +

nα3 (α3 + 1)

λ2
K (2, α3 + 3) ,

where K (a, b) =
∫ +∞
0

t [ln (t) ]
a
(1 + t)

−b
dt.

According to Gradshteyn and Ryzhik [6], we have

K (2, α + 3) =
ψ(1) (α ) + ψ2 (α) + ψ2 (1 ) + 1

6π
2

(α+ 1)(α+ 2)
+ 2

[1− α(ψ (1 ) + 1)](ψ (α )− 1)

α(α+ 1)(α+ 2)
,

and

K (1, α + 2) = −ψ (α )− ψ (1 )− 1

α (α+ 1)
,
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where ψ(k) (y ) = ∂k+1

∂ yk+1Ln(Γ(y)).

Therefore

J14 = J41 = −nψ (α1 )− ψ (1 )− 1

λ (α1 + 1)
, J24 = J42 = −mψ (α2 )− ψ (1 )− 1

λ (α2 + 1)
,

J34 = J43 = −Lψ (α3 )− ψ (1 )− 1

λ (α3 + 1)
,

and

J44 =
n+m+ L

λ2
+

n

λ2 (α1 + 2)

α1


ψ(1) (α1 )
+ψ2 (α1)
+ψ2 (1 )

+π2

6

+ 2

(
{1− α1 [ψ (1 ) + 1]}

× [ψ (α1 )− 1]

)

+
m

λ2 (α2 + 2)

α2


ψ(1) (α2 )
+ψ2 (α2)
+ψ2 (1 )

+π2

6

+ 2 {1− α2 [ψ (1 ) + 1]} [ψ (α2 )− 1]



+
L

λ2 (α3 + 2)

α3


ψ(1) (α3 )
+ψ2 (α3)
+ψ2 (1 )

+π2

6

+ 2 {1− α3 [ψ (1 ) + 1]} [ψ (α3 )− 1]

 .

Since η̂ → N4(η,J
−1 (η)), by multivariate Delta method one can see that R̂ G → N(R G, σ2(η)), where

σ2 =
∂R G

∂η J−1 (η)
(

∂R G

∂η

)T
, ∂
∂ηR

G =
(

∂R G

∂α1
,
∂R G

∂α2
,
∂R G

∂α3
, 0
)

, ∂
∂α1

R G =
α3(α

2
2+α2α3−α2

1)

(α1+α2)
2(α1+α2+α3)

2 ,

∂
∂α2

R G = −α1α3(2α1+2α2+α3)

(α1+α2)
2(α1+α2+α3)

2 , ∂
∂α3

R G = α1

(α1+α2+α3)
2 .

Now, a confidence interval for R G can been obtained by following equation

R G ∈
(
R̂ G − z1−α

2
σ(η̂) , R̂ G + z1−α

2
σ(η̂)

)
. (12)

2.1. Bayesian estimation

In continuation of this section, a MCMC technique is applied for Bayesian estimation. To obtain the posterior
distribution for quantities of interest in generalized stress-strength for a GL distribution, we use the Gamma
priors Gamma(a1, b1), Gamma(a2, b2), Gamma(a3, b3) and Gamma(a4, b4) for parameters α1, α2, α3 and λ,
respectively. According to the range of changes in distribution parameters, gamma distribution has been used. On
the other hand, because the gamma distribution is a general distribution, other distributions such as exponential and
chi-square can be deduced from it.
All the hyper-parameters are assumed to be known. The full conditional distributions are as following.

α1|α2, α3, λ,X,Y ,Z ∼ Gamma(n+ a1, b1 + S1(X, λ))

α2|α1, α3, λ,X,Y ,Z ∼ Gamma(m+ a2, b2 + S1(Y , λ))

α3|α1, α2, λ,X,Y ,Z ∼ Gamma (L+ a3, b3 + S1 (Z, λ)) ,

then
fλ|α1,α2,α3,X,Y ,Z∝λn+m+L+a4−1
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exp

 −λ
(
b4 +

∑n
i=1Xi +

∑m
j=1 Yj +

∑L
k=1 Zk

)
− (α1 + 1)S1 (X, λ)− (α2 + 1)S1 (Y , λ)

−(α3 + 1)S1(Z, λ)

 ,
where X = (X1, . . . , Xn), Y = (Y 1, . . . , Ym), Z= (Z1, . . . , ZL). Since the posterior density fλ|α1,α2,α3,X,Y ,Z

has not a known and closed form, Metropolis-Hastings (M-H) algorithm with normal proposal distribution is used
for generation a sample of conditional distribution λ|α1, α2, α3,X,Y ,Z. Finally, a four staged Gibbs sampling is
applied which its fourth stage is based on M-H algorithm.

2.2. Bootstrap confidence intervals

The confidence intervals (CIs) based on mentioned methods do not perform very well for small sample size. So,
CI using the percentile bootstrap method (see Efron [5]) is proposed. Bootstrapping Algorithm for estimating the
CIs of R G.
The algorithm for estimating the CIs of R G using this method is illustrated below:
Step 1:
From the sample {x1, ... , xn}, {y1, ... , ym} and {z1, . . . , zL}, compute η̂ = (α̂1, α̂2, α̂3, λ̂).
Step 2:
Use α̂1 and λ̂ to generate a bootstrap sample {x∗1, ... , x∗n}, and similarly use α̂2 and λ̂ to generate a sample
{y∗1 , ... , y∗m}, and also use α̂3 and λ̂ to generate a sample {z∗1 , ... , z∗L}. Based on these samples compute R̂ G by
(11)
Step 3:
Repeat step 2, where N boot times for generating R̂G

1 , . . . , R̂
G
N .

Now, R̂G
boot =

1
N

∑N
i=1 R̂

G
i and the approximate 100 (1− α)% CI of R G is given by(

R̂G

(α
2 )
, R̂G

(1−α
2 )

)
where R̂G

(γ) shows quantile of order γ for R̂G
1 , . . . , R̂

G
N .

3. Model for case of common shape parameter

In this section, generalized stress-strength model RG is analyzed for GL distribution in the case of X, Y and Z are
GL(α, λ1), GL(α, λ2) and GL(α, λ3), respectively. After cumbersome computation, we have

R G = α

∫ +∞

0

(1 + y)
−α−1


(
1 + y

λ1
λ3

)−α(
1 + y

λ2
λ3

)−α

−
(
1 + y

λ1
λ2

)−α
[
1−

(
1 + y

λ3
λ2

)−α
]
 dy. (13)

Equation (13) has been derived by substitution (3) and (4) in(2). In continuation of this section we shall find MLEs
of parameters.
LetX1, . . . , Xn ∼ GL(α, λ1), Y1, . . . , Ym ∼ GL(α, λ2) and Z1, . . . , ZL ∼ GL(α, λ3), then the likelihood function
is

Ln,m,L
i,j,k (λ1, λ2, λ3|α) = nln (λ1) + mln (λ2) + Lln (λ3) + (n+m+ L) ln (α)

−λ1
n∑

i=1

xi − λ2

m∑
j=1

yj − λ3

L∑
k=1

zk − (α+ 1) (S1 (x, λ1) + S1 (y, λ2) + S1 (z, λ3)). (14)

Stat., Optim. Inf. Comput. Vol. 11, June 2023



546 BAYESIAN AND CLASSICAL INFERENCE FOR GENERALIZED STRESS-STRENGTH PARAMETER

By derivation with respect to parameters we have

∂

∂α
Ln,m,L
i,j,k (λ1, λ2, λ3|α) =

n+m+ L

α
− S1 (x, λ1) + S1 (y, λ2) + S1 (z, λ3)). (15)

∂

∂λ1
Ln,m,L
i,j,k (λ1, λ2, λ3|α) =

n

λ1
−

n∑
i=1

xi + (α+ 1)S2 (x, λ1) , (16)

∂

∂λ2
Ln,m,L
i,j,k (λ1, λ2, λ3|α) =

m

λ2
−

n∑
i=1

yi + (α+ 1)S2 (y, λ2) , (17)

and
∂

∂λ3
Ln,m,L
i,j,k (λ1, λ2, λ3|α) =

L

λ3
−

n∑
i=1

zi + (α+ 1)S2 (z, λ3) . (18)

Using (15) and replacing in (16) -(18), we encounter with a system of nonlinear equations. This system is solved
by numerically methods. Then, resulted MLEs of λ̂1, λ̂2 and λ̂3 are used in (15) which leads to

α̂ =
1

S1

(
x, λ̂1

)
+ S1

(
y, λ̂2

)
+ S1

(
z, λ̂3

) (n+m+ L).

By substitution η̂ = (α̂ , λ̂1, λ̂2, λ̂3) in (13) we have

R̂ G = α̂

∫ +∞

0

(1 + y)
−α̂ −1


(
1 + y

λ̂1
λ̂3

)−α̂ (
1 + y

λ̂2
λ̂3

)−α̂

−
(
1 + y

λ̂1
λ̂2

)−α̂
[
1−

(
1 + y

λ̂3
λ̂2

)−α̂
]
 dy. (19)

Also, the Fisher’s information matrix is J (η) = [Jij ]
4
i,j=1 which is obtained by J (η) = E(I (η)) and I (η) =

− ∂2ι
∂η2 , where I (η) = [Iij ]

4
i,j=1and η = (α, λ1, λ2, λ3). Then, we have

I11 =
n+m+ L

α2
, I12 = I21 = S2(x, λ1), I13 = I31 = S2(y, λ2), I14 = I41 = S2(z, λ3)

I22 =
n

λ21
+ (α+ 1)S3(x, λ1), I23 = I32 = I24 = I42 = I34 = I43 = 0.

I33 =
m

λ22
+ (α+ 1)S3(y, λ2), I44 =

L

λ23
+ (α+ 1)S3(z, λ3).

Now, using same methods and formulas as Section 2 one can reach to following results.

J11 =
n+m+ L

α2
, J12 = J21 = −nQ1

λ1
, J13 = J31 = −mQ1

λ2
, J14 = J41 = −LQ1

λ3
,

J22 =
n

λ21
Q2, J33 =

m

λ22
Q2, J23 = J32 = J24 = J42 = J34 = J43 = 0

and
J44 =

L

λ23
Q2
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where

Q1 =
1

α+ 1
[ψ (α )− ψ (1 )− 1] ,

Q2=1 +
α
[
ψ(1) (α ) + ψ2 (α) + ψ2 (1 ) + π2

6

]
+ 2[1− α(ψ (1 ) + 1)](ψ (α )− 1)

α+ 2
.

Since η̂ → N4(η,J
−1 (η)), by multivariate Delta method we have R̂ G → N(R G, σ2(η)) where σ2 =

∂R G

∂η J−1 (η)
(

∂R G

∂η

)T
and ∂

∂ηR
G =

(
∂R G

∂α ,
∂R G

∂λ1
,
∂R G

∂λ2
,
∂R G

∂λ3

)
.

∂

∂α
R G =

∫ +∞

0




(
1+y

λ1
λ3

)−α(
1+y

λ2
λ3

)−α

−

(
1+y

λ1
λ2

)−α[
1−

(
1+y

λ3
λ2

)−α]
[(1+y)−α−1−α(1+y)−α−1ln(1+y) ]

−1



−



 ln
(
1 + y

λ1
λ3

)
+ln

(
1 + y

λ2
λ3

) (1 + y
λ1
λ3

)−α(
1 + y

λ2
λ3

)−α

+ln
[(

1 + y
λ1
λ2

)](
1 + y

λ1
λ2

)−α

−

 ln
(
1 + y

λ1
λ2

)
+ln

(
1 + y

λ3
λ2

) (1 + y
λ1
λ2

)−α(
1 + y

λ3
λ2

)−α


α(1 + y)

−α−1



dy, (20)

∂

∂λ1
R G = α

∫ +∞

0

(1 + y)
−α−1


−α
(
1 + y

λ1
λ3

)−α−1
ln(y)
λ3

y
λ1
λ3

(
1 + y

λ2
λ3

)−α

+α
(
1 + y

λ1
λ2

)−α−1
ln(y)
λ2

y
λ1
λ2

[
1−

(
1 + y

λ3
λ2

)−α
]
 dy, (21)

∂

∂λ2
R G = α

∫ +∞

0

(1 + y)
−α−1


−α
(
1 + y

λ1
λ3

)−α
ln(y)
λ3

y
λ2
λ3

(
1 + y

λ2
λ3

)−α−1

−α
(
1 + y

λ1
λ2

)−α−1
ln(y)λ1

λ2
2

y
λ1
λ2

[
1−

(
1 + y

λ3
λ2

)−α
]

+α
(
1 + y

λ1
λ2

)−α
ln(y)λ3

λ2
2

y
λ3
λ2

(
1 + y

λ3
λ2

)−α−1


dy, (22)

and

∂

∂λ3
R G = α

∫ +∞

0

(1 + y)
−α−1


α
(
1 + y

λ1
λ3

)−α−1
ln(y)λ1

λ2
3

y
λ1
λ3

(
1 + y

λ2
λ3

)−α

+α
(
1 + y

λ2
λ3

)−α−1
ln(y)λ2

λ2
3

y
λ2
λ3

(
1 + y

λ1
λ3

)−α

−α
(
1 + y

λ1
λ2

)−α
ln(y)
λ2

y
λ3
λ2

(
1 + y

λ3
λ2

)−α−1

 dy. (23)

Now, a CI for R G can been obtained by

R G ∈
(
R̂ G − z1−α

2
σ(η̂) , R̂ G + z1−α

2
σ(η̂)

)
. (24)

3.1. Bayesian estimation

Again, for having more statistical findings, we use of MCMC methods for a Bayesian inference on R G. We apply
the Metropolis-Hastings algorithm in a Gibbs sampler to provide the Bayesian estimation of R G. We use the
independent gamma prior densities Gamma(a1, b1), Gamma(a2, b2), Gamma(a3, b3) and Gamma(a4, b4) for
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parameters α, λ1, λ2 and λ3, respectively. Now, the full conditional distributions are as follows

α|λ1, λ2, λ3,X,Y ,Z ∼ Gamma


n+m+ L
+a1, b1

+S1 (X, λ1)
+S1 (Y , λ2)
+S1(Z, λ3)

 ,

fλ1|α,λ2,λ3,X,Y ,Z∝λ1n+a2−1exp

[
−λ1

(
b2 +

n∑
i=1

Xi

)
− (α+ 1)S1 (X, λ1)

]
,

fλ2|α,λ1,λ3,X,Y ,Z∝λ2m+a3−1exp

[
−λ2

(
b3 +

m∑
j=1

Yj

)
− (α+ 1)S1 (Y , λ2)

]
,

and

fλ3|α,λ1,λ2,X,Y ,Z∝λ3L+a4−1exp

[
−λ3

(
b4 +

L∑
k=1

Zk

)
− (α+ 1)S1 (z, λ3)

]
.

This is obvious that the else of the first posterior density, all three other densities do not have an explicit and closed
form. So, M-H algorithm with normal proposal distribution is applied for generation a sample of them. Therefore,
we use of Gibbs sampling with four stages whose three last stages are three separate M-H algorithms.

3.2. Bootstrap CIs

Analogously to Section 2.2, we study confidence interval based on the percentile bootstrap method for case of
common shape parameter. Bootstrapping algorithm can be addressed as follows.
Step 1: From the sample {x1, ... , xn}, {y1, ... , ym} and {z1, . . . , zL}, compute η̂ = (α̂ , λ̂1, λ̂2, λ̂3).
Step 2: Use α̂ and λ̂1 to generate a bootstrap sample {x∗1, ... , x∗n}, and similarly use α̂ and λ̂2 to generate a
sample {y∗1 , ... , y∗m}, and also use α̂ and λ̂3 to generate a sample {z∗1 , ... , z∗L}. Based on these samples compute
R̂ G by (19).
Step 3: Repeat step 2, N boot times for generating R̂G

1 , . . . , R̂
G
N .

Now, R̂G
boot =

1
N

∑N
i=1 R̂

G
i and the approximate 100 (1− α)% confidence interval of R G is given by

(R̂G
(α
2 ), R̂

G
(1−α

2 )) where R̂G
(γ) shows quantile of order γ for R̂G

1 , . . . , R̂
G
N .

4. Numerical results

In this section, a simulation study is done for both classic and Bayesian approaches. The results of Sections 2 and
3 have been presented separately. Throughout this section, coefficient of confidence for all confidence intervals
has been considered to 0.95. We compute four well known and important criteria in order to investigate content of
accuracy and performance of estimation. They are Bias, Mean Square Error (MSE), Length of confidence interval
(L) and Cover of Probability (CP) for confidence interval. In the first step, the results have been represented in
Tables 1-3 for three fixed cases of parameters λ, α1, α2 and α3 and some variable values of sample sizes n, m, L.
As these tables demonstrate both methods MLE and Bayesian have been worked well. This finding is resulted in
small values of Bias, MSE and L along with near to 0.95 values for CP. In both methods proficiency of estimation
is an increasing function of sample sizes n, m, L. For instance, all four criteria for case n = m = L = 70
show better estimation than case n = m = L = 25. This is completely logic by attention to using of asymptotic
distribution. A comparison between MLE and Bayesian methods denote that approximately Bayesian method has
more reliable results and better performance than MLE w.r.t Bias and MSE criteria. These results are approximately
reversed for both criteria L and CP. However, in total this seems Bayesian method has more suitable results.
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Table 1. Results for α1= 2,α2= 1.5,α3= 4, λ= 1.25, R G=0.3048.

n 25 45 70 25 50 65
m 25 45 70 45 35 80
L 25 45 70 30 70 20
R̂G 0.3080 0.3059 0.3057 0.3068 0.3039 0.3036

Bias(R̂G) 0.0032 0.0012 0.0009 0.0020 -0.0009 -0.0012
MSE(R̂G) 0.0027 0.0015 0.0009 0.0017 0.0015 0.0013

Length 0.1941 0.1449 0.1163 0.1599 0.1471 0.1539
CP 0.9314 0.9386 0.9464 0.9394 0.9412 0.9804

R̂G
Bayes 0.3102 0.3098 0.3092 0.3063 0.3047 0.3035

Bias(R̂G
Bayes) -0.1006 -0.0649 -0.0136 -0.0284 -0.0101 -0.0413

MSE(R̂G
Bayes) 0.0123 0.0060 0.0017 0.0032 0.0025 0.0038

Length 0.1491 0.1246 0.1114 0.1482 0.1395 0.1431
CP 0.7580 0.7900 0.9600 0.9300 0.9550 0.8250

Table 2. Results for α1= 0.25,α2= 5,α3= 1.2, λ= 7, R G=0.0089.

n 25 40 70 30 50 60
m 25 40 70 25 35 100
L 25 40 70 15 70 85
R̂G 0.0092 0.0090 0.0089 0.0092 0.0090 0.0090

Bias(R̂G) 0.0003 0.0002 0.0000 0.0004 0.0001 0.0001
MSE(R̂G) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Length 0.0177 0.0139 0.0105 0.0186 0.0134 0.0094
CP 0.8840 0.8982 0.9176 0.8682 0.9002 0.9264

R̂G
Bayes 0.0097 0.0084 0.0097 0.0104 0.0091 0.0098

Bias(R̂G
Bayes) 0.0009 0.0005 0.0002 0.0006 0.0003 0.0001

MSE(R̂G
Bayes) 0.0004 0.0002 0.0001 0.0004 0.0002 0.0000

Length 0.0415 0.0246 0.0193 0.0408 0.0277 0.0122
CP 0.9800 0.9162 0.9600 0.8900 0.9500 0.9854

Regarding a statistical point of view approach this has not been caused randomly. Since we use from proper prior
distributions there are more information rather than MLE which this information leads to exacter estimation.

The same results have been acquired for different values of sample sizes n, m, L and parameters α, λ1, λ2 and
λ3 in Tables 4 and 5. Although performance of both estimation methods is suitable as previous case, comparison
between them has a bit difference with results of Tables 1-3. Here, Bayesian method has approximately better
results than MLE w.r.t all four criteria. A justification for this finding is this fact that in MLE method we need to
compute 4 integrals (20)-(23) by numerically methods which may lead to some bit errors in estimation. However,
for Bayesian method there is no necessity for computing such integrals.

In order to check the ability of model for small sample sizes, results of bootstrapping estimation have been
represented in Tables 6-8. The results show that the bootstrap method is absolutely appropriate for both point
estimation and interval estimation of R G. Its performance is appropriate even for small sample sizes. As tables
demonstrate R̂G

boot is really near to R G. Furthermore, R G has been lied in bootstrap confidence interval by
considering values of its lower bound and upper bound.
In order to investigate about effect of sample size and have a more reliable result, we have worked with more sample
sizes in Table 8. This table along with two Tables 6 and 7 denote that although bootstrap method has suitable results
for small sample sizes its proficiency is improved with increasing sample sizes.
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Table 3. α1= 5,α2= 2,α3= 3, λ= 1.5, R G=0.2143.

n 15 40 50 70 50 60
m 15 40 50 70 35 65
L 15 40 50 70 70 85
R̂G 0.2272 0.2141 0.2136 0.2140 0.2126 0.2132

Bias(R̂G) 0.0129 -0.0001 -0.0007 -0.0002 -0.0017 -0.0011
MSE(R̂G) 0.0048 0.0009 0.0007 0.0005 0.0007 0.0005

Length 0.1950 0.1169 0.1044 0.0883 0.1017 0.0847
CP 0.8000 0.9465 0.9392 0.9484 0.9394 0.9452

R̂G
Bayes 0.2078 0.2133 0.2139 0.2131 0.2215 0.2184

Bias(R̂G
Bayes) -0.0065 -0.0010 -0.0003 -0.0012 0.0072 0.0041

MSE(R̂G
Bayes) 0.0032 0.0015 0.0013 0.0009 0.0013 0.0010

Length 0.1802 0.1147 0.1031 0.0872 0.1038 0.0852
CP 0.9938 0.9738 0.9650 0.9650 0.9700 0.9600

Table 4. α= 1.8,λ1= 2.5,λ2= 2, λ3= 2, R G=0.183090.

n 15 30 45 100 50 120
m 15 30 45 100 60 75
L 15 30 45 100 75 80
R̂G 0.1735 0.1798 0.1897 0.1857 0.1802 0.1875

Bias(R̂G) 0.0891 0.0679 0.0698 0.0288 0.0433 0.0405
MSE(R̂G) 0.1201 0.0925 0.0839 0.0311 0.0459 0.0362

Length 0.0177 0.0139 0.0105 0.0186 0.0134 0.0094
CP 0.8840 0.8982 0.9076 0.9482 0.9102 0.9264

R̂G
Bayes 0.1782 0.1728 0.1865 0.1820 0.1878 0.1828

Bias(R̂G
Bayes) 0.0153 0.0106 0.0069 0.0034 0.0056 0.0036

MSE(R̂G
Bayes) 0.0011 0.0006 0.0004 0.0002 0.0003 0.0002

Length 0.0864 0.0652 0.0551 0.0382 0.0468 0.0403
CP 0.9430 0.9240 0.9460 0.9620 0.9340 0.9460

Table 5. α= 0.5,λ1= 1.52,λ2= 4, λ3= 2.5, R G= 0.026.

n 15 40 70 90 45 75
m 15 40 70 90 35 45
L 15 40 70 90 60 80
R̂G 0.0293 0.0262 0.0270 0.0260 0.0260 0.0270

Bias(R̂G) 0.0122 0.0054 0.0140 0.0043 0.0060 0.0033
MSE(R̂G) 0.0009 0.0002 0.0004 0.0003 0.0002 0.0001

Length 0.0555 0.0324 0.0290 0.0244 0.0318 0.0243
CP 0.8750 0.9200 0.9390 0.9468 0.8870 0.9370

R̂G
Bayes 0.0232 0.0275 0.0266 0.0264 0.0273 0.0252

Bias(R̂G
Bayes) 0.0112 0.0065 0.0052 0.0044 0.0073 0.0045

MSE(R̂G
Bayes) 0.0006 0.0003 0.0003 0.0002 0.0003 0.0002

Length 0.0662 0.0547 0.0530 0.0517 0.0539 0.0522
CP 0.8750 0.9960 0.9811 1.0000 0.9950 0.9990
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Table 6. α= 1,λ1= 0.25,λ2= 4, λ3= 7, R G= 0.056065

n 5 15 30 50 10 35
m 5 15 30 50 15 25
L 5 15 30 50 5 40

R̂G
boot 0.0403 0.0412 0.0474 0.0580 0.0358 0.0466

Lower bound 0.0112 0.0206 0.0270 0.0343 0.0169 0.0292
Upper bound 0.1464 0.0932 0.0779 0.0908 0.1105 0.0726

Table 7. α= 1.5 ,λ1= 2,λ2= 1, λ3= 0.1, R G= 0.2769

n 10 20 35 50 20 30
m 10 20 35 50 15 15
L 10 20 35 50 10 45

R̂G
boot 0.2750 0.2761 0.2765 0.2768 0.2755 0.2775

Lower bound 0.2389 0.2533 0.2591 0.2619 0.2485 0.2569
Upper bound 0.3324 0.3154 0.3047 0.2951 0.3198 0.3136

Table 8. α1= 2,α2= 1.5,α3= 4, λ= 1.25, R G=0.3047619

n 5 10 15 25 50 70 100 200 500 1000
m 5 10 15 25 50 70 100 200 500 1000
L 5 10 15 25 50 70 100 200 500 1000

R̂G
boot 0.3092 0.3102 0.3061 0.3091 0.3056 0.3065 0.3043 0.3046 0.3048 0.3050

Lower bound 0.0947 0.1531 0.1889 0.2054 0.2368 0.2474 0.2545 0.2700 0.2839 0.2894
Upper bound 0.6148 0.5049 0.4490 0.4166 0.3765 0.3633 0.3510 0.3409 0.3276 0.3202

Table 9. The results of fitted GL distribution to three data sets.

Voltage α λ K-S P-value
28 597.2997941 1.316873717 0.30447 0.6464
30 68.75303647 1.07050723 0.36317 0.08321
36 2.354178797 1.324146519 0.11882 0.9671

5. Real data study

In this section, a real data by Nelson for illustrative and comparative purposes is analyzed. Data are Ln times to
breakdown of an insulating fluid in an accelerated test. They have been measured at different voltages of 26, 28,
30, 32, 34, 36 and 38 kV. We have fitted the generalized logistic distributions to the all data sets separately and we
understood that we may consider voltages 28, 30 and 36 for case of common scale parameter. The results of these
fitness have been represented in Table 9. We performed the Kolmogorov-Smirnov (K-S) test for these three data
whose null hypothesis is that distribution of data is GL. As this table demonstrates all P-values are bigger than 0.05
so we cannot reject null hypothesis in no of these tests. We conclude that these three data sets have GL distribution.
Now, we investigate this problem that whether we can assume case of common scale parameter. Similar with Table
9, the estimates of the parameters and K-S test for case of common scale parameter are demonstrated in Table 10.
It is clear that, we cannot reject the hypothesis that the three scale parameters are equal. Therefore, we let scale
parameters are equal for these data.
Therefore, based on the results given in Section 2, we can obtain different estimates of RG. The MLE and Bayes
estimates and intervals of RG are presented in Table 11.
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Table 10. The results of fitted GL distribution to three data sets assuming that the three scale parameters are equal.

Voltage α λ K-S P-value
28 372.896 1.21385 0.30906 0.6282
30 51.96263 0.24182 0.4689
36 2.323052 0.11882 0.9671

Table 11. The results of fitted GL distribution to all 7 data sets.

Method RG CIs or HPD
MLE 0.8355663 (0.7397633, 0.9313694)

Bayesian 0.8327827 (0.7767816, 0.8766773)

The value of hyper parameters in priors are a1 = 13, b1 = 1, a2 = 5.5, b2 = 3, a3 = 25, b3 = 0.08, a4 = 5, b4 =
0.1. Also, the standard deviation σ for normal proposal distribution is 0.25. For this stage, we have used from
M-H algorithm in a Gibbs sampler with iteration 10000. The MLEs have been considered for starting points in
Gibbs sampler, too. As we see HPD confidence interval has less length than classical confidence interval based on
Equation (12).

6. Discussion and conclusion

In this paper, a generalized stress-strength model has been studied for GL distribution. We considered two cases
for which common scale parameters and common shape parameters, respectively. For both cases three prominent
and well-known statistical estimation methods containing MLE, Bayesian and Bootstrap have been applied. Our
results illustrate priority of Bootstrap method in comparison with two other methods while we deal with small
sample sizes. A reverse finding exists for large sample sizes. The other result whose conclusion has accordance with
previous statistical papers and textbooks is an approximate similarity of MLE and Bayesian estimation. Although,
Bayesian method has more reliable results rather than MLE.
As a future work, we shall estimate RG for many distributions such as the Kumaraswamy distribution, the
generalized Pareto distribution, the generalized failure rate distribution and the power Lindley distribution which
can be considered for estimating the RG. For a comprehensive list of such distributions see Rezaei et al [10].
Estimating the RG under power Lindley is considered as a current project.
In many situations, we may know system’s components had been alive for a known time until we are going to have
some inferences about R. Therefore, R|a,b=P (X>Y |X>a, Y >b) was defined by Saber and Khorshidian [12].
The study of R|a,b for GL distribution is another ongoing work.
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