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Abstract The exponential, Weibull, log-logistic and lognormal distributions represent the class of light and heavy-tailed
distributions that are often used in modelling time-to-event data. The exponential distribution is often applied if the hazard is
constant, while the log-logistic and lognormal distributions are mainly used for modelling unimodal hazard functions. The
Weibull distribution is on the other hand well-known for modelling monotonic hazard rates. Recently, in practice, survival
data often exhibit both monotone and non-monotone hazards. This gap has necessitated the introduction of Exponentiated
Weibull Distribution (EWD) that can accommodate both monotonic and non-monotonic hazard functions. It also has the
strength of adapting unimodal functions with bathtub shape. Estimating the parameter of EWD distribution poses another
problem as the flexibility calls for the introduction of an additional parameter. Parameter estimation using the maximum
likelihood approach has no closed-form solution, and thus, approximation techniques such as Newton-Raphson is often
used. Therefore, in this paper, we introduce another estimation technique called Variational Bayesian (VB) approach. We
considered the case of the accelerated failure time (AFT) regression model with covariates. The AFT model was developed
using two comparative studies based on real-life and simulated data sets. The results from the experiments reveal that the
Variational Bayesian (VB) approach is better than the competing Metropolis-Hasting Algorithm and the reference maximum
likelihood estimates.

Keywords Exponentiated Weibull Distribution, Survival Analysis, Accelerated Failure Time, Bayesian, Variational
Approximation

AMS 2010 subject classifications 62N01, 62N02.

DOI: 10.19139/soic-2310-5070-1295

1. Introduction

The exponential, Weibull, log-logistic and lognormal distributions are the popularly used parametric time-to-event
models [1–3]. These distributions are commonly applied in time-to-event analysis primarily due to modelling
simplicity and common framework. The common framework used in this context implies that they share a similar
log-location-scale family [4–6] for statistical inference. Also, the ability to model day-to-day commonly seen
survival data is often considered. The main consideration is the ability to implement the procedures on standard off-
shelf software readily. Commonly applied distributions for unimodal hazard shapes are log-logistic and lognormal,
while the Weibull is often used when posed with monotone hazard functions [4].

[7] discussed the several extensions of the Weibull and log-logistic distributions that have been proposed for
primarily fitting several forms of flexible hazards shapes. An example of such extension is the Exponentiated
Weibull (EW) distribution which generalizes the Weibull by adding an additional shape parameter [8]. The
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EW model simultaneously achieves flexibility and simplicity by accomodating both monotone (increasing and
decreasing) and non-monotone (unimodal and bathtub shape) failure functions with compensation of introducing
additional shape parameter. As a generalized approach, it can be used to confirm the adequacy of Weibull
distribution, especially when the newly introduced shape parameter approaches 1.

The three-parameter generalized gamma distribution [9] can also be used for modelling these four common
types of hazard shapes. As suggested by [10], the EW distribution was found to be a promising substitute to the
generalized gamma distribution. Thus, an in-depth analysis of the distribution was sought to explore its capability
in modelling lifetime data. The early application of EW distribution was reported by [8] in the analysis of survival
data, and [11] described likelihood-based inference for the class of power distributions that include the EW as
a special case. The data sets on hazard times don’t typically include only observed information on the time-to-
event (T ) and censoring status, but also information on covariates. This in turn posed the needs to develop robust
regression models for understanding the existing relationship between the response, T , and one or more covariates
which may affect the distribution of T . A Bayesian study of EW distribution was first developed by [12], while a
modification of the log-exponentiated-Weibull regression model within the Bayesian framework was proposed by
[13] to address cure rate specifically.

In recent time, [14] provided an in-depth analysis of AFT EW regression models using the Maximum Likelihood
Estimation (MLE) approach and Bayesian MCMC techniques. However, there is no study that has evaluated the
performance of the Variational Bayes Approximation (VBA) for the exponentiated Weibull regression compared
to the most commonly used techniques such as maximum likelihood estimation and MCMC approaches. The
variational Bayes approach has been shown to be better than MCMC techniques under mild regularity conditions
[15, 16]. In addition, variational Bayes techniques are not limited in application to the Bayesian paradigm alone,
i.e. one need not be a Bayesian expert before one can use variational Bayes[2, 16].

Based on the aforementioned, we specifically focus on parametric regression models that require a distributional
assumption for T in the presence of covariates vector x. In particular, we aim to propose a variational Bayesian (VB)
regression methodology based using the exponentiated Weibull distribution. The main reason for using EW relies
on its generalizability to accommodates both monotone and non-monotone hazard/failure functions while doing it
an insignificant cost of only estimating one extra parameter. The performance of the VB method is evaluated by
comparing it with MLE and Bayesian MCMC (Metropolis-Hastings techniques) using simulated and Lung cancer
datasets.

2. Related Works

The recent updates in modelling time-to-event data have focused on mixing two distributions or adding extra
parameters to the existing distribution. The commonly applied models in the time-to-event analysis are exponential
(Poisson), Weibull, gamma, and lognormal. The approach of adding extra parameter improves the flexibility in
modelling failure rates data [17]. The vast majority of these distributions have originated either from the domain of
reliability engineering or biological sciences. The specific interests are to estimate the elapsed time (time elapsed
since failure) and the residual time (time remaining to failure) of a product.

[18] reported that the Weibull distribution is the most popular and general probability model used in a time-
to-event analysis. The Weibull distribution and its substitute distribution, such as Gamma and Lognormal, have
been applied in many time-to-event modelling tasks. However, with the flexibility and extended applicability of the
two-parameter or the three-parameter Weibull distribution, it still does not offer the non-monotonical failure rates
shapes that are often observed in (medical sciences; survival analysis, cure rates etc.) or engineering (reliability,
equipment failures). For example, in lung cancer survival analysis, there are basically three major stages: stage 1
(tumour development), stage 2 (organ damage or lung failure) and stage 3 (extension of tumour to another body
part). These stages or phases are similarly experienced in engineering/human as early failure (infant mortality),
intrinsic failure (random hazard) and wear-out or late failure (ageing hazard). These hazard shapes are also regarded
as bathtub failure shapes. Thus, monotonical hazard shapes distribution is not adequate for such data type. These
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main drawbacks was the main reason the exponentiated Weibull (EWD) was proposed among several competing
generalized distributions for modelling bathtub shape time-to-event data.

The earlier development of EWD can be traced to [19] who introduced an extra shape parameter to the existing
two-parameter Weibull distribution. The strength of the EWD family is its ability to accommodate monotonical
and non-monotonical failure functions, such as the unimodal-shaped and the bathtub-shaped ones [8]. From the
time it was proposed, the EWD and its several extended versions have been applied to a wide area of practical
applications, such as environmental flood data analysis [20], bus motor failure [8], human mortality testing [21] as
well as survival analysis of head and neck cancer patients [8].

2.1. Exponentiated Weibull Distribution

The exponentiated Weibull distribution (EWD) was developed by [19] as an extenson to the two parameter
WD distribution. The EWD family distributions are designed to accomodates non-monotonically monotonically
hazards. In most lifetime data analysis applications, the bathtub shape or downward bathtub shape hazard are often
observed thus suggesting the applicability of the EWD for modelling hazards when compared to standard WD.
This is the area where the EWD plays significant role in hazard modelling.The EWD has two shape parameters and
one scale parameter, thus the probability density function (pdf) takes the form:

f(t) = αβγ(βt)α−1
(
1− exp[−(βt)α]

)γ−1
exp[−(βt)α], (1)

and the cumulative distribution function:

F (t) =
(
1− exp[−(βt)α]

)γ
, (2)

where t > 0 is the support of the distribution, and α > 0, β > 0 and γ > 0 are parameters. Note that γ = 1 reduces
the exponentiated Weibull to the Weibull distribution for which the probability density function is

f(t) = αβ(βt)α−1 exp[−(βt)α], (3)

The rth moment of the exponentiated Weibull distribution does not have a closed form expression. However, [14]
derived the median survival time as:

M(t) =
1

β

[
− log

(
1− 0.5

1
γ

)] 1
α

. (4)

The survivor function, hazard function and cumulative hazard function of the exponentiated Weibull distribution
are, respectively,

S(t) = 1−
(
1− exp[−(βt)α]

)γ
, (5)

h(t) =
αβγ(βt)α−1

(
1− exp[−(βt)α]

)γ−1
exp[−(βt)α]

1−
(
1− exp[−(βt)α]

)γ , (6)

H(t) = − log

{
1−

(
1− exp[−(βt)α]

)γ}
, (7)

The hazard is (a) monotone increasing for α ≥ 1 and αγ ≥ 1, (b) monotone decreasing for α ≤ 1 and αγ ≤ 1, (c)
unimodal for α < 1 and αγ > 1, and (d) bathtub-shaped for α > 1 and αγ < 1 [14].

2.2. Accelerate Failure Time (AFT) EW regression models

Consider an ordinary regression model for log survival time T , of the form

Y = log T = x′θ + σW ; (8)
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where x = (x1, x2 . . . , xp) be a column vector of p covariates, and θ = (θ1, θ2, . . . , θp) is the corresponding vector
of regression coefficients, the error term W has a suitable distribution, e.g. extreme value, generalized extreme
value, normal or logistic. This leads to Weibull, generalized gamma, log-normal or log-logistic models for T . For
example if W is extreme value then T has a Weibull distribution with log λ = x′θ and p = 1

σ . Note that λ depends
on the covariates but p is assumed the same for everyone.

This model has an accelerated life interpretation. In this formulation we view the error term σW as a standard
or reference distribution that applies when x = 0. It will be convenient to translate the reference distribution to the
time scale by defining T0 = exp{σW}.

For EW AFT regression models with Y = log T , the corresponding density and survival functions are:

f(y) =
γ

τ

(
1− exp

{
− exp

[
(y − µ)

τ

]})γ−1

exp

{
(y − µ)

τ
− exp

[
(y − µ)

τ

]}
(9)

and

S(y) = 1−
(
1− exp

{
− exp

[
(y − µ)

τ

]})γ

(10)

where −∞ < y < ∞, µ = − log β and τ = α−1. In the AFT regression framework, the assumption is that the
probability of an individual (with covariates x) surviving to time t is the same as the probability of a reference
individual (i.e., x = 0) surviving to time t exp(x′θ) [14]. Formally, S(t;x) = S0(t exp(x

′θ), where S0() is the
baseline survivor function. This refers to the fact that the covariates act multiplicatively on time so that their effect
is to accelerate (or decelerate) the time to failure. If we start with the exponentiated Weibull baseline survivor
function, we get

S(t) = 1−
(
1− exp{−[βt exp(x′θ)]α}

)γ
= 1−

(
1− exp[−[β∗t]α]

)γ
(11)

which is also an exponentiated Weibull survivor function with β∗ = β exp(x′θ). This shows that the exponentiated
Weibull is closed under the AFT family. If we let T0 be an exponentiated Weibull random variable corresponding
to the lifetime when x = 0, so that the survivor function of T0 is of the form S0(.). Then, T0 = T exp(x′θ) from
(11). By taking the logarithm of both sides of equation (11), we get

Y = θ0 − x′θ + τW ; (12)

where θ0 = − log β, τ = α−1 and Y = log T which follows (9) and α = θ0 − x′θ and W = (log T0 − θ0)/τ is the
random error component which is distributed as

f(w) = γ
[
1− exp

(
− ew

)]γ−1
exp

(
w − ew

)
,−∞ < w < ∞. (13)

Now, if we rewrite θ∗ = (θ0,−θ1, . . . ,−θp) and x∗ = (1, x′)′, we get another simpler regression model

Y = x∗′
θ∗ + τW. (14)

2.3. Maximum Likelihood Estimation (MLE) of right censored AFT EW regression model

Suppose we have a right censored random sample consisting of data (yi, δi, x
′
i), i = 1, 2, . . . , n, where yi = logti

is a log-lifetime or log censoring time according to whether δi = 1 (if the event occured at t = t0) or δi = 0 (if
the event occured at t > t0), respectively. The likelihood and log-likelihood function of the exponentiated Weibull
regression model can be written as

L(θ) =

(
γ

τ

)r n∏
i=1

[aγ−1
i + ewi−ewi

]δi(1− aγi )
1−δi (15)

l(θ) = r log γ − r log τ +

n∑
i=1

δi[(γ − 1) log ai + (wi − ewi)] +

n∑
i=1

(1− δi) log(1− aγi ) (16)
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where θ = (τ, γ, θ∗
′
)′, r =

∑n
i=1 δi, wi = (yi − x∗′

θ∗)/τ and ai = 1− exp(−ewi). Suppose we let bi = (1−
ai) log(1− ai) and define

gi =
∂l(θ)

∂wi
(17)

=
∂

∂wi
{

n∑
i=1

δi[(γ − 1) log ai + (wi − ewi)] +

n∑
i=1

(1− δi) log(1− aγi )} (18)

= −(γ − 1)

(
δibi
ai

)
+ δi[1 + log(1− ai)] + γ

[
(1− δi)bi

ai

](
aγi

1− aγi

)
. (19)

Subsequently, the score functions of other parameters are

∂l(θ)

∂τ
= − r

τ
− 1

τ

n∑
i=1

giwi (20)

∂l(θ)

∂γ
=

r

γ
+

n∑
i=1

δi log ai −
n∑

i=1

(1− δi)

(
aγi log ai
1− log ai

)
(21)

∂l(θ)

∂θj
= −1

τ

n∑
i=1

gixij , j = 0, 1, 2, . . . , p. (22)

The score functions are then solved numerically using Newton-Raphson procedure to accurately estimate the
parameters.

2.4. Metropolis-Hastings Approach for AFT EW regression model

In this section, we present the Metropolis-Hastings algorithm procedure which is similar to the approach used
in [2, 22–26] for the parameter estimation. We use the uninformative Uniform (c, d) prior since there is no prior
information or elicitation may be difficult. Also, since there are three parameters, we suggest three independent
Uniform (c, d) distributions. The joint density function for the prior of the three parameters θ = (τ, γ, θ∗

′
)′ can be

defined as:

f(τ, γ, θ∗
′
)|c1, d1; c2, d2; c3, d3) =

3∏
k=1

(dk − ck)
−1 (23)

where c1, d1; c2, d2; c3, d3 are the prior hyperparameters for the parameters τ, γ, θ∗
′
. The posterior distribution of

the three parameters τ, γ, θ∗
′

for the EW model can be defined as the product of the likelihood L(θ) and the prior
density which is:

f(θ|y) = L(θ)×
3∏

k=1

(dk − ck)
−1 (24)

The posterior distribution in (24) does not have a closed form as its an approximate distribution since the marginal
distribution that ensures it scale to one have been dropped. One of the ways of sampling from this distribution is by
using the Metropolis-Hastings algorithm (MH; Lee, 2012). The metropolis-hastings procedure for the EWD AFT
regression model is:

1. Initialize Θ0 such that p(Θ0|y) > 0.
2. For i = 1, 2, . . .
3. Take a random sample Θ̃ from a preferred proposal distribution (Preferably lognormal distribution).
4. Compute the accept/reject or moving probability by;
5. Take a random sample U ∼ U(0, 1)
6.

Θi+1 =

{
Θ̃ if U ≤ π(Θi, Θ̃);

Θi if U > π(Θi, θ̃).
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3. Variational Bayes Approach

Suppose we let x = x1:n represent a collection of observed variables and z = z1:m represent collection of latent
variables, with joint density function p(z, x). As expalined earlier in chapter 2, the constant of proportionality can
be omitted. The inferential problem thus involves the computation of the conditional density for the latent variables
using the observations, p(z|x). Using the conditional density, the point and interval estimates of the latent variables
can be estimated. The conditional density is often presented as

p(z|x) = p(z, x)

p(x)
(25)

The denominator part of p(z|x) is referred to as the marginal of the random sample observed. This is usually
calculated by integrating out the parameter of interest from the joint density,

p(x) =

∫
p(z, x)dz. (26)

In most models, this marginal density is usually not available or computationally expensive[27]. The marginal
density is what is required to calculate the conditional from the joint density and thus the main reason variational
inference is difficult.

It is worthy of note that it is assumed that the unknown parameter values are random. These parameters
encompass all that covers the data as often done in other Bayesian analysis. The parameters are also local to
each observed data points.

Now in th case of the EW regression model, the desired posterior distribution is

p(θ|y, x) = L(θ|y, x)p(θ)∫
L(θ|y, x)p(θ)

dθ (27)

.
By variational inference, we want to approximate p(θ|y, x) in 27 with a q(θ) by constructing the equality

ln

∫
L(θ|y, x)p(θ) =

∫
q(θ) ln

L(θ|y, x)p(θ)
q(θ)

dθ +

∫
q(θ) ln

q(θ)

p(θ|y, x)
dθ (28)

.
Next we define q(θ) as the product of independent densities using the mean-field assumption given as

q(θ) = q(γ)q(τ)q(θ∗
′
) (29)

.
The variational objective L is then computed as:

L =

∫
q(θ) lnL(θ|y, x)dθ −

∫
q(θ) ln q(θ)dθ (30)

.

L =

∫
q(γ)q(τ)q(θ∗

′
)

(
r log γ − r log τ +

n∑
i=1

δi[(γ − 1) log ai + (wi − ewi)]

+

n∑
i=1

(1− δi) log(1− aγi )

)
dγdτdθ∗

′

−
∫

q(γ)q(τ)q(θ∗
′
) ln q(γ)q(τ)q(θ∗

′
)dγdτdθ∗

′

. (31)

Equation 31 is iterated until convergence is achieved.
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4. Simulation, Results and Discussion

In this section, an empirical evaluation of the proposed method Variational Bayes (VB), Maximum Likelihood
Estimation (MLE) and Metropolis-Hastings (MH) procedures was achieved using simulation and real-life dataset
on Lung cancer treatment. The estimation methods were compared based on Bias, Standard Error or Standard
Deviaion, Mean Square Error and Coverage probability.

4.1. Simulation studies

For the purpose of the study, we simulated two covariates using an AFT regression framework: the first covariate is
a continuous covariate (x1) which follows the standard normal distribution, and the other covariate (x2) is binary
which is assumed to follow a Bernoulli(π = 0.5) distribution. The regression coefficient values are set to mimic
the real-life Lung cancer dataset which result is presented in the later section. The MLE estimates for the covariates
of variables Karnofsky performance score (100=good) and treatment in the Lung cancer dataset are θ = [θ∗

′
=

(θ∗0 = 3.5742793, θ∗1 = 0.7547705, θ∗2 = −0.1052200), τ = 1/0.5868033, γ = 3.0987992]′. The simulation process
is made realistic using different censoring proportions simulated from exponential distribution. Although, the
censoring proportion in the original dataset is 7%, we examine the behaviours of the methods at varying censoring
proportions. The following censoring proportions 10%, 20%, 30%, 40% and 50% corresponding to light to heavy
censoring conditions are used.

The formula for the performance metrics of the various methods are as provided below:

Bias = θ̂ − θ (32)

Standard Error (SE) =

√√√√ I∑
i=1

(θ̂ − ¯̂
θ)2

I − 1
(33)

Mean Square Error (MSE) =

I∑
i=1

(θ̂ − θ)2

I − 1
(34)

95% Coverage Probability =

I∑
i=1

(
θ̂ − Z0.025 × SE(θ̂) < θ

)⋂(
θ̂ + Z0.975 × SE(θ̂) > θ

)
I

(35)

where Z1−α/2 is the quantile of standard normal distribution at the desired significance level, I is the number of
replication of each simulation runs which is set as I = 200. The sample size n was fixed at n = 137.

4.2. Simulation results

Table 1 presents the simulation results for varying censoring proportions at fixed sample size n and replication set
to be 200.

Table 1 results show that the estimates returned using the VB method is more consistent to the true value when
compared to the other two methods. The estimates using MH is better than MLE estimates in terms of biasness and
consistency. Overall, the MLE estimate is not consistent with the true value at high censoring proprotion.

Table 2 presents the standard error/ standard deviation and Mean Square Error (MSE) of the three methods.
These metrics were used to assess the efficiency of the methods. The various results over the different censoring
proportions show that the VB estimates are the most efficient. The MLE estimates are mostly inefficient for the
parameter γ across the various censoring proportion.

Figure 1 shows that increasing the censoring proportion increases the biasness of the estimates especially for
MLE. While the VB and MH exhibited some form of robustness, the MLE estimates are not robust at all which
suggests that they shouldn’t be used with high censored data. Similarly, Figure 2 shows that the MLE estimates
are also not efficient for low to high censoring proportions. The two Bayesian approaches MH and VB are highly
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Table 1. Simulation results for the estimates and bias at various censoring proportion p.

Censoring Estimates Bias

TRUE MLE MH VB MLE MH VB

p = 0.1

θ∗0 3.574 3.438 3.361 3.634 -0.137 -0.213 0.060
θ∗1 0.755 0.747 0.742 0.752 -0.008 -0.013 -0.003
θ∗2 -0.105 -0.094 -0.106 -0.086 0.011 0.000 0.020
α 0.587 0.606 0.553 0.595 0.019 -0.034 0.008
γ 3.099 4.729 4.127 3.242 1.630 1.028 0.143

p = 0.2

θ∗0 3.574 3.441 3.451 3.736 -0.133 -0.123 0.162
θ∗1 0.755 0.747 0.745 0.750 -0.008 -0.010 -0.005
θ∗2 -0.105 -0.096 -0.084 -0.091 0.009 0.022 0.014
α 0.587 0.593 0.551 0.583 0.006 -0.036 -0.004
γ 3.099 5.032 4.103 3.247 1.933 1.004 0.148

p = 0.3

θ∗0 3.574 3.467 3.624 3.816 -0.108 0.049 0.241
θ∗1 0.755 0.750 0.759 0.754 -0.005 0.004 -0.001
θ∗2 -0.105 -0.091 -0.065 -0.076 0.014 0.041 0.029
α 0.587 0.581 0.569 0.562 -0.006 -0.018 -0.025
γ 3.099 5.319 3.954 3.287 2.220 0.855 0.188

p = 0.4

θ∗0 3.574 3.445 3.757 3.942 -0.129 0.183 0.367
θ∗1 0.755 0.745 0.755 0.749 -0.010 0.000 -0.006
θ∗2 -0.105 -0.089 -0.066 -0.080 0.016 0.040 0.026
α 0.587 0.559 0.540 0.547 -0.028 -0.047 -0.040
γ 3.099 5.796 3.939 3.318 2.697 0.841 0.219

p = 0.5

θ∗0 3.574 3.192 3.943 4.052 -0.383 0.368 0.477
θ∗1 0.755 0.756 0.781 0.762 0.001 0.026 0.007
θ∗2 -0.105 -0.103 -0.089 -0.094 0.003 0.016 0.011
α 0.587 0.505 0.562 0.518 -0.082 -0.025 -0.069
γ 3.099 7.024 3.990 3.421 3.925 0.891 0.323

effcient and robust to low through high censoring proportion. The combined effects of consistency and efficiency
was measured using MSE. Similar behaviours as in variance of the estimates were observed for MSE in Figure 3.
Again, the most efficient, consistent and robust estimates are VB estimates.

Figure 4 presents the result for the 95% coverage probability. The expected behaviour is that the estimates
returned values that falls within the 95% confidence or credible intervals 95% of time. The MLE estimates exhibited
robustness to censoring proportion here. While the coverage probability of MH increases with increase in censoring
proportion until 0.4 before a sharp decline is observed, the VB exhibited a downward trend from low to high
censoring proportion. Although, the estimated coverage probability for MH and VB varies between 90% to 98%,
the coverage probability of MLE converges between 93% to 97%. This implies that approximeately 95% of time
MLE produces estimates that conforms with nominal or target values while the estimates of MH and VB are less
than the target by an error of 5% and more than the target by an error of 3% on the average.
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Figure 2. Average variance of the estimates at varying censoring proportion.

Stat., Optim. Inf. Comput. Vol. 11, September 2023



1036 BAYESIAN INFERENCE FOR EXPONENTIATED WEIBULL RIGHT CENSORED SURVIVAL DATA

k

k
k

k

k

0.0

2.5

5.0

7.5

10.0

12.5

0.1 0.2 0.3 0.4 0.5

Censoring proportions

M
S

E
(θ

)

method

k MLE

MH

VB

Figure 3. Average Mean Square Error of the estimates at varying censoring proportion.

k

k

k

k k

90

92

94

0.1 0.2 0.3 0.4 0.5

Censoring proportions

C
O

V
(θ

)

method

k MLE

MH

VB

Figure 4. Average Coverage Probability at varying censoring proportion.
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Table 2. Simulation results for the Standard Error (SE) and Mean Square Error (MSE) at various censoring proportion p.

Censoring Standard Error MSE

MLE MH VB MLE MH VB

p = 0.1

θ∗0 1.074 0.508 0.345 1.165 0.302 0.122
θ∗1 0.108 0.127 0.098 0.012 0.016 0.010
θ∗2 0.195 0.259 0.194 0.038 0.067 0.038
α 0.178 0.104 0.090 0.032 0.012 0.008
γ 6.328 1.289 0.622 42.501 2.710 0.405

p = 0.2

θ∗0 1.216 0.531 0.356 1.488 0.296 0.152
θ∗1 0.119 0.138 0.109 0.014 0.019 0.012
θ∗2 0.208 0.273 0.204 0.043 0.074 0.042
α 0.199 0.189 0.099 0.039 0.037 0.010
γ 6.059 1.295 0.618 40.262 2.677 0.402

p = 0.3

θ∗0 1.339 0.538 0.329 1.796 0.291 0.166
θ∗1 0.120 0.137 0.108 0.014 0.019 0.012
θ∗2 0.229 0.280 0.237 0.053 0.080 0.057
α 0.221 0.289 0.087 0.048 0.084 0.008
γ 5.883 1.225 0.559 39.360 2.224 0.346

p = 0.4

θ∗0 1.491 0.525 0.369 2.228 0.307 0.271
θ∗1 0.132 0.156 0.119 0.017 0.024 0.014
θ∗2 0.243 0.302 0.239 0.059 0.092 0.057
α 0.238 0.230 0.097 0.057 0.055 0.011
γ 5.955 1.179 0.567 42.558 2.090 0.367

p = 0.5

θ∗0 1.605 0.545 0.310 2.709 0.432 0.323
θ∗1 0.144 0.170 0.138 0.021 0.029 0.019
θ∗2 0.260 0.339 0.258 0.067 0.115 0.066
α 0.264 0.421 0.077 0.076 0.177 0.011
γ 6.623 1.166 0.457 59.050 2.147 0.312

5. Lung cancer survival data

Prentice [28] originally described a randomized clinical trial that involves 137 advanced lung cancer patients
treated with a standard chemotherapy agent or a control drug [14]. The time to event were recorded from the
study inception for each of the patients. Nine patients were censored as their event time were not known till the
end of the study. The specific objective was to determine the cure rate of the chemotherapy on different tumour cell
type. The four different tumour cell classification squamous, small, adeno and large. The other variables considered
are performance status, months between diagnosis and entry into the study, age, and a history of previous therapy
for lung cancer (prior).

Table 3 presents the estimates and standard deviation (SD) or error (SE) for the three methods. The two Bayesian
methods (VB and MH) were found to be more stable (efficient: lower standard deviation) than the MLE. In addition,
the interval estimates presented in Table 4 showed that VB and MH methods returned more significant estimates
than MLE at 5% level of signficance.
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Table 3. Real-life data results for the various methods.

VB MLE MH

Estimate SD Estimate SE Estimate SD

(Intercept) 0.810 0.641 2.787 0.818 1.767 0.006
trt -0.170 0.202 -0.229 0.191 -0.237 0.091
celltypesmallcell -0.838 0.235 -0.311 0.255 -0.529 0.002
celltypeadeno -0.984 0.269 -0.657 0.283 -0.641 0.063
celltypelarge -0.193 0.156 -0.123 0.262 0.160 0.066
karno 0.036 0.005 0.033 0.005 0.018 0.016
diagtime 0.002 0.010 -0.002 0.009 0.033 0.031
age 0.013 0.008 0.008 0.009 0.033 0.018
prior -0.011 0.025 0.002 0.022 0.039 0.049
α 0.498 0.045 0.975 0.161 1.937 0.058
γ 4.525 0.822 1.136 0.329 2.060 0.055

Table 4. 95% credible and confidence intervals for the estimates

VB MLE MH

2.5%LB 97.5%UB 2.5%LB 97.5%UB 2.5%LB 97.5%UB

(Intercept) -0.471 2.091 1.184 4.390 1.761 1.774
trt -0.574 0.233 -0.602 0.145 -0.321 -0.139
celltypesmallcell -1.309 -0.367 -0.811 0.189 -0.531 -0.526
celltypeadeno -1.522 -0.446 -1.211 -0.103 -0.700 -0.573
celltypelarge -0.506 0.120 -0.636 0.390 0.099 0.231
karno 0.026 0.046 0.023 0.043 0.003 0.034
diagtime -0.019 0.023 -0.019 0.015 0.000 0.062
age -0.004 0.029 -0.009 0.026 0.014 0.050
prior -0.061 0.038 -0.041 0.044 -0.014 0.084
α 0.407 0.589 0.659 1.290 1.883 2.000
γ 2.881 6.170 0.490 1.781 2.000 2.110

6. Conclusion

In this paper, the Variational Bayesian (VB) inference was developed for the Exponentiated Weibull (EW) right-
censored survival data. The Accelerated Failure Time (AFT) model was used to determine the likelihood function.
The MLE and MCMC estimate proposed in [14] was compared to the VB estimate using simulated and real-
life data. Simulated results revealed that the VB estimates are more efficient than both MLE and MH procedures.
However, the coverage probabilities of VB estimates are less precise than the MLE estimates. The efficient estimate
results were replicated using the real-life Lung cancer dataset. The current study is limited to only right-censored
time-to-event data; we plan to extend the methodology to other censoring schemes such as left, interval and party-
interval in our future study.
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