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1. Introduction

The generalized order statistics (gos) is a scheme. It provides a broad structure for models of ordered random
variables. [18] introduced this concept. It has been steadily growing and bringing out more consideration among
researchers since its inception. Generalized order statistics is described in the following.
Let n ≥ 2 be a given integer and, m̃ = (m1,m2, · · · ,mn−1) ∈ ℜn−1 , k ≥ 1 be the parameters such that

γr = k + n− r +

n−1∑
j=r

mj ≥ 0 for 1 ≤ r ≤ n− 1.

Suppose X(1, n, m̃, k), · · · , X(n, n, m̃, k), are n gos from an absolutely continuous distribution function df F ()
with probability density function pdf f(), if their joint pdf is given in Equation (1)

k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

[
F̄ (xi)

]mi
f(xi)

)[
F̄ (xn)

]k−1
f(xn), (1)

for F−1(0+) < x1 ≤ x2 ≤ · · · ≤ xn < F−1(1).
At the different values of mi, γj and k, Equation (1) reduces to several models. For. e.g., order statistics (m =
0, k = 1), kth record values (m = −1 [19]) and (m = −1, k = 1) corresponds to upper record values Chandler
[10]. In reliability theory, these models play an important role. [11] and [14] provided the detail discussions on gos.
In statistical analysis, the contribution of doubly truncated distributions is of importance. It covers many areas of
study. It is applied in biostatistics, reliability (left truncation), survival analysis (right truncation) and cosmology
(double truncation), and non-truncated case.
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Several publications are appeared on doubly truncated distributions in the literature. Detailed surveys are found in
([1, 2, 3, 4, 5, 7, 8, 12, 15, 16, 17]) and among others.
[6] introduced the power-linear hazard rate distribution (PLHRD) as follows.
A random variable (r.v.) X ∼ PLHRD(α, γ, δ), if its cdf and pdf are given respectively by

F (x) = 1− e−{
γ
2 x

2+ α
δ+1x

δ+1}, x > 0, α, γ ≥ 0, δ > −1, and δ ̸= −1. (2)

f(x) = (αxδ + γx)e−{
γ
2 x

2+ α
δ+1x

δ+1}, x > 0. (3)

The exponential, Rayleigh, Weibull, Linear hazard rate (LHR), Power hazard rate (PHR), and Quadratic hazard
rate (QHR) are the special case of (4). The given distribution has tremendous applications in life testing, reliability,
and other fields due to its desirable properties of the different hazard rate features. For more details see ([6]).
For given P1 and Q1 ∫ Q1

0

f(x)dx = Q and
∫ P1

0

f(x)dx = P.

Then, pdf of doubly truncated PLHRD is,

f1(x) =
(αxδ + γx)e−{

γ
2 x

2+ α
δ+1x

δ+1}

P −Q
, x ∈ (Q1, P1), α, γ ≥ 0, δ > −1, (4)

and the corresponding df F1(x) is

F̄1(x) = −P2 +
1

αxδ + γx
fd(x), x ∈ (Q1, P1), α, γ ≥ 0, δ > −1, (5)

or
f1(x) = (αxδ + γx)[P2 + F̄1(x)] (6)

where

P2 =
1− p

p−Q
, Q2 =

1−Q

p−Q

P = = 1− e−{
γ
2 P

2
1 +

α
δ+1P

δ+1
1 }, Q = 1− e−{

γ
2 Q

2
1+

α
δ+1Q

δ+1
1 }.

The key intent of this research is to present the moments features of doubly TP-LHR distribution and
characterization results.

2. Single Moments

Case I: mi = mj = m
In view of (1), the pdf of a single gos, is given by

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!

[
F̄ (x)

]γr−1
f(x)gr−1

m [F (x)], −∞ < x < ∞ (7)

where

F̄ (x) = 1− F (x), Cr−1 =

r∏
i=1

γi,

and

gm(x) =

{
1

m+1 [1− (1− x)m+)] , m ̸= −1

− log (1− x), m = −1
x ∈ [0, 1).
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Case II: γi ̸= γj , i ̸= j.
The pdf of r − th gos is

fX(r,n,m̃,k)(x) = Cr−1

r∑
i=1

ai(r)f(x)
[
F̄ (x)

]γi−1
(8)

where

ai(r) =

r∏
j=1,j ̸=i

1

γj − γi
, 1 ≤ i ≤ r ≤ n

In the following, we derive the single moments based on doubly TP-LHR distribution and deduced many earlier
results. The single moments of gos have a pivotal role in calculating mean, variance of record values and order
statistics.

Theorem 2.1. For TP-LHR distribution given in Equation (4) and for n ∈ N , m ∈ ℜ, 2 ≤ r ≤ n,

E[Xj(r,m, n, k)] = P2B

[{
α

j + δ + 1
E
[
Xj+δ+1(r, n− 1,m, k +m)

]
− E

[
Xj+δ+1(r − 1, n− 1,m, k +m)

]}
+

{
γ

j + 2
E
[
Xj+2(r, n− 1,m, k +m)

]
− E

[
Xj+2(r − 1, n− 1,m, k +m)

]}]
+

γ

j + δ + 1

{
γrE

[
Xj+δ+1(r, n,m, k)

]
− E

[
Xj+δ+1(r − 1, n,m, k)

]}
+

γ

j + 2

{
γrE

[
Xj+2(r, n,m, k)

]
− E

[
Xj+2(r − 1, n,m, k)

]}
(9)

where

B =
Cr−2

C
(n−1,k+m)
r−2

=

r−1∏
i=1

(
γi

γi − 1

)
, C

(n−1,k+m)
r−2 =

r−1∏
i=1

γ
(n−1,k+m)
i

γn−1,k+m
i = (k +m) + (n− 1− i)(m+ 1) = γi − 1.

Proof: The below mention expressions have been obtained from the Equations (6–7)

E
[
Xj(r, n,m, k)

]
=

Cr−1

(r − 1)!

∫ P1

Q1

xj [F̄1(x)]
γr−1

{
(αxδ + γx)[P2 + F̄1(x)]

}
gr−1
m [F1(x)]dx

which can be written as

=
Cr−1

(r − 1)!
P2α

∫ P1

Q1

xj+δ[F̄1(x)]
γr−1gr−1

m [F1(x)]dx+
Cr−1

r − 1)!
P2γ

∫ P1

Q1

xj+1[F̄1(x)]
γr−1gr−1

m [F1(x)]dx

+
Cr−1

(r − 1)!
α

∫ P1

Q1

xj+δ[F̄1(x)]
γrgr−1

m [F1(x)]dx+
Cr−1

(r − 1)!
γ

∫ P1

Q1

xj+1[F̄1(x)]
γrgr−1

m [F1(x)]dx

E[Xj(r, n,m, k)] =
Cr−1

(r − 1)!

[
P2

{
α

∫ P1

Q1

xj+δ[F̄1(x)]
γ(n−1,k+m)
r gr−1

m [F1(x)]dx

+γ

∫ P1

Q1

xj+1[F̄1(x)]
γ(n−1,k+m)
r gr−1

m [F1(x)]dx

}

+α

∫ P1

Q1

xj+δ[F̄1(x)]
γrgr−1

m [F1(x)]dx+ γ

∫ P1

Q1

xj+1[F̄1(x)]
γrgr−1

m [F1(x)]dx

]
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E[Xj(r, n,m, k)] =
Cr−1

(r − 1)!

[
P2αH

(n−1,k+m)
j+δ (x) + γH

(n−1,k+m)
j+1 (x) + αH

(n,k)
j+δ (x) + γH

(n,k)
j+1 (x)

]
(10)

where

H
(n−1,k+m)
t+δ (x) =

∫ P1

Q1

xt+δ[F̄1(x)]
γ(n−1,k+m)
r gr−1

m [F1(x)]dx,

H
(n,k)
t+δ (x) =

∫ P1

Q1

xt+δ[F̄1(x)]
γrgr−1

m [F1(x)]dx.

By implementing integration by parts method, we get

H
(n−1,k+m)
t+δ (x) =

(r − 1)!

(t+ δ + 1)C
(n−1,k+m)
r−2

{
E[Xt+δ+1(r, n− 1,m, k +m)− E[Xt+δ+1(r − 1, n− 1,m, k +m)

}
and

H
(n−1,k+m)
t+1 (x) =

(r − 1)!

(t+ 2)C
(n−1,k+m)
r−2

{
E[Xt+2(r, n− 1,m, k +m)− E[Xt+2(r − 1, n− 1,m, k +m)]

}
.

Similarly

H
(n,k)
t+δ (x) =

(r − 1)!

(t+ δ + 1)C(r − 2)

{
E[Xt+δ+1(r, n,m, k)]− E[Xt+δ+1(r − 1, n,m, k)]

}
and

H
(n,k)
t+1 (x) =

(r − 1)!

(t+ 2)Cr−2

{
E[Xt+2(r, n,m, k)]− E[Xt+2(r − 1, n,m, k)]

}
.

Inserting the value of H(n−1,k+m)
t+δ (x), H

(n−1,k+m)
t+1 (x), H(n,k)

t+δ (x) and H
(n,k)
t+1 (x) in Equation (10) and solving the

resulting terms, the Equation (9) is determined.

Corollary 2.1. For Case II (γi ̸= γj), replacing m by m̃, results may be obtained.

Remark 2.1.

(i) For order statistics (m = 0, k = 1), Equation (9) obtained as

E[Xj
r:n] = P2

[{
α

j + δ + 1
E[Xj+δ+1

r:n−1 ]− E[Xj+δ+1
r−1:n−1]

}
+

{
γ

j + 2
E[Xj+2

r:n−1]− E[Xj+2
r−1:n−1]

}]
+

α

j + δ + 1

{
(n− r + 1)E[Xj+δ+1

r:n ]− E[Xj+δ+1
r−1:n ]

}
+

γ

j + 2

{
(n− r + 1)E[Xj+2

r:n ]− E[Xj+2
r−1:n]

}
.

(ii) For k − th records values (m = −1), Equation (9) reduced as.

E(Xj
U(r))

k = P2

(
k

k − 1

)r−1 [{
α

j + δ + 1
E(Xj+δ+1

U(r) )k−1 − E(XU(r−1)
j+δ+1)k−1

}
+

{
γ

j + 2
E(Xj+2

U(r))
k−1 − E(Xj+2

U(r−1))
k−1

}]
+

α

j + δ + 1

{
kE(Xj+δ+1

U(r) )k − E(Xj+δ+1
U(r−1))

k
}
+

γ

j + 2

{
kE(Xj+2

U(r))
k − E(Xj+2

U(r−1))
k
}
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(iii) Setting P = 1 and Q = 0, i.e., (P2 = 0) for non- truncated case in Theorem 2.1,

E(Xj
r,n,m,k) =

α

j + δ + 1

[
γrE(Xj+δ+1

r,n,m,k)− E(Xj+δ+1
r−1,n,m,k)

]
+

γ

j + 2

[
γrE(Xj+2

r,n,m,k)− E(Xj+2
r−1,n,m,k)

]
agrees with [13].

(iv) Some doubly truncated distributions are the special case of Theorem 2.1, which is given in Table 1.

Table 1:
S. No. α γ δ Doubly Truncated Distribution Author

1 – 0 0 Class of truncated distribution [1]
2 – – 0 linear exponential distribution [16]
3 – 0 α-1 Weibull distribution [17]
4 – 0 – power hazard rate distribution –

3. Product Moments

Case I: mi = mj = m.
The joint density function of two gos is (1 ≤ r < s ≤ n),

fX(r,n,m,k),X(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F̄ (x)]mf(x)gr−1

m F (x)×

[hm(F (y))− hm(F (x))]
s−r−1

[F̄ (y)]γs−1f(y), −∞ < x < y < ∞, (11)

Case II: γi ̸= γj , i ̸= j, i, j = 1, 2, ·, n− 1. The joint pdf of the r − th and s− th gos, 1 ≤ r < s ≤ n, is

fX(r,n,m̃,k),X(s,n,m̃,k)(x, y) = Cs−1

s∑
j=r+1

a
(r)
j (s)

(
F̄ (y)

F̄ (x)

)γj
[

r∑
i=1

ai(r)[F̄ (x)]γi

]
f(x)

F̄ (x)

f(y)

F̄ (y)
(12)

where

a
(r)
i (s) =

s∏
j=r+1,j ̸=i

(
1

γj − γi

)
, r + 1 ≤ i ≤ s ≤ n.

In this section, the recurrence relation for product moments of gos from doubly TP-LHR distribution has been
presented. The product moments based on gos are enabled to compute the covariance of record values and order
statistics.

Theorem 3.1. For doubly TP-LHR distribution revealed in Equation (4) and 1 ≤ r < s ≤ n− 1, m ∈ ℜ, n ≥ 2 and
i, j ≥ 0

E[Xi(r, n,m, k)Xj(s, n,m, k] =

P2B
∗

[{
α

j + δ + 1
E
[
Xi(r, n− 1,m, k +m)Xj+δ+1(s, n− 1,m, k +m)

]
−E

[
Xi(r, n− 1,m, k +m)Xj+δ+1(s− 1, n− 1,m, k +m)

]}
+

{
γ

j + 2
E
[
Xi(r, n− 1,m, k +m)Xj+2(s, n− 1,m, k +m)

]
−E

[
Xi(r, n− 1,m, k +m)Xj+2(s− 1, n− 1,m, k +m)

]}]
+

α

j + δ + 1

{
γsE

[
Xi(r, n,m, k)Xj+δ+1(s, n,m, k)

]
− E

[
Xi(r, n,m, k)Xj+δ+1(s− 1, n,m, k)

]}
+

γ

j + 2

{
γsE

[
Xi(r, n,m, k)Xj+2(s, n,m, k)

]
− E

[
Xi(r, n,m, k)Xj+2(s− 1, n,m, k)

]}
(13)
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where

B∗ =
Cs−2

C
(n−1,k+m)
s−2

=

s−1∏
i=1

(
γi

γi − 1

)
.

Proof: From Equation (11), we have

E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!

∫ P1

Q1

xi[F̄1(x)]
mf1(x)g

r−1
m [F1(x)]K(x)dx (14)

where

K(x) =

∫ P1

x

γj [hm(F1(y))− hm(F1(x))]
s−r−1[F̄1(y)]

γs−1f1(y)dy. (15)

Now using (6) in (15), we get

K(x) = P2

{
α

∫ P1

x

yj+δ [hm(F1(y))− hm(F1(x))]
s−r−1

[F̄1(y)]
γs−1dy

+γ

∫ P1

x

yj+1 [hm(F1(y))− hm(F1(x))]
s−r−1

[F̄1(y)]
γs−1dy

}

+α

∫ P1

x

yj+δ [hm(F1(y))− hm(F1(x))]
s−r−1

[F̄1(y)]
γsdy

+γ

∫ P1

x

yj+1 [hm(F1(y))− hm(F1(x))]
s−r−1

[F̄1(y)]
γsdy

= P2

{
αK

(n−1,k+m)
j+δ (x) + γK

(n−1,k+m)
j+1 (x)

}
+ αK

(n,k)
j+δ (x) + γK

(n,k)
j+1 (x) (16)

where

K
(n−1,k+m)
t+δ (x) =

∫ P1

x

yt+δ[hm(F1(y))− hm(F1(x))]
s−r−1[F̄1(y)]

γ(n−1,k+m)
s dy

and

K
(n,k)
t+δ (x) =

∫ P1

x

yt+δ[hm(F1(y))− hm(F1(x))]
s−r−1[F̄1(y)]

γsdy.

Integrating by parts taking yt+δ for integration, we attain,

k
(n,k)
t+δ (x) =

1

t+ δ + 1

{
γs

∫ P1

x

yt+δ+1[hm(F1(y))− hm(F1(x))]
s−r−1[F̄1(y)]

γs−1f1(y)dy

(s− r − 1)

∫ P1

x

yt+δ+1[hm(F1(y))− hm(F1(x))]
s−r−2[F̄1(y)]

γs+mf1(y)dy

}

and

K
(n−1,k+m)
t+δ (x) =

1

t+ δ + 1

{
γs

∫ P1

x

yt+δ+1[hm(F1(y))− hm(F1(x))]
s−r−1[F̄1(y)]

γ(n−1,k+m)−1
s f1(y)dy

(s− r − 1)

∫ P1

x

yt+δ+1[hm(F1(y))− hm(F1(x))]
s−r−2[F̄1(y)]

γ(s−1)(n−1,k+m)−1

f1(y)dy

}
.
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M. I. KHAN 847

Similarly

K
(n,k)
t+1 (x) =

1

t+ 2

{
γs

∫ P1

x

yt+2[hm(F1(y))− hm(F1(x))]
s−r−1[F̄1(y)]

γs−1f1(y)dy

(s− r − 1)

∫ P1

x

yt+2[hm(F1(y))− hm(F1(x))]
s−r−2[F̄1(y)]

γs+mf1(y)dy

}

and

K
(n−1,k+m)
t+1 (x) =

1

t+ 2

{
γs

∫ P1

x

yt+2[hm(F1(y))− hm(F1(x))]
s−r−1[F̄1(y)]

γ(n−1,k+m)−1
s f1(y)dy

(s− r − 1)

∫ P1

x

yt+2[hm(F1(y))− hm(F1(x))]
s−r−2[F̄1(y)]

γ
(n−1,k+m)−1
s−1 f1(y)dy

}
.

Upon substituting for K(n−1,k+m)
t+δ (x),K

(n−1,k+m)
t+1 (x), K(n,k)

t+δ (x) and K
(n,k)
t+1 (x) in Equation (16) and then putting

the resulting terms for K(x) in Equation (14). On simplification, Equation (13) yields.

Corollary 3.1. Replacing m by m̃ results may be obtained for Case II (γi ̸= γj).

Remark 3.1.

(i) For order statistics (m = 0, k = 1), the Equation (13) reduces as

E[Xi
r:n, X

j
s:n] = P2

[{
α

j + δ + 1
E[Xi

r:n−1, X
j+δ+1
s:n−1 ]− E[Xi

r:n−1, X
j+δ+1
s−1:n−1]

}
+

{
γ

j + 2
E[Xi

r:n−1, X
j+2
s:n−1]− E[Xi

r:n−1, X
j+2
s−1:n−1]

}]
+

α

j + δ + 1

{
(n− s+ 1)E[Xi

r:n, X
j+δ+1
s:n ]− E[Xi

r:n, X
j+δ+1
s−1:n ]

}
+

γ

j + 2

{
(n− s+ 1)E[Xi

r:n, X
j+2
s:n ]− E[Xi

r:n, X
j+2
s−1:n]

}
(ii) For non- truncated case, Theorem 3.1 reduces as

E
(
Xi

r,n,m,k, X
j
s,n,m,k

)
=

α

j + δ + 1

[
γsE[Xi

r,n,m,k, X
j+δ+1
s,n,m,k]− E[Xi

r,n,m,k, X
j+δ+1
s−1,n,m,k]

]
+

γ

j + 2

[
γsE[Xi

r,n,m,k, X
j+2
s,n,m,k]− E[Xi

r,n,m,k, X
j+2
s−1,n,m,k]

]
as verified by [13].

(iii) Product moments of records can be attained from Equation (13), at m = −1.
(iv) Table 2 contains some doubly truncated distributions as a particular case of Theorem 3.1

Table 2:
S. No. α γ δ Doubly Truncated Distribution Author

1 – – 0 linear exponential distribution [16]
2 – 0 α-1 Weibull distribution [17]
3 – 0 – power hazard rate distribution –
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4. Characterization

In this section, doubly TP-LHR distribution is characterized via the single moments of gos.

Theorem 4.1: A random variable X is to be distributed with pdf given in Equation (4), for which the necessary
and sufficient conditions are represented as,

E[Xj(r,m, n, k)] =

P2B

[{
α

j + δ + 1
E
[
Xj+δ+1(r, n− 1,m, k +m)

]
− E

[
Xj+δ+1(r − 1, n− 1,m, k +m)

]}
+

{
γ

j + 2
E
[
Xj+2(r, n− 1,m, k +m)

]
− E

[
Xj+2(r − 1, n− 1,m, k +m)

]}]
+

αγr
j + γ + 1

{
E
[
Xj+δ+1(r, n,m, k)

]
− E

[
Xj+δ+1(r − 1, n,m, k)

]}
+

γγr
j + 2

{
E
[
Xj+2(r, n,m, k)

]
− E

[
Xj+2(r − 1, n,m, k)

]}
. (17)

Proof: The necessary part follows from Equation (9). If the expression in Equation (17) is satisfied, then Equation
(17) can be rearranged, as follows

Cr−1

(r − 1)!

∫ P1

Q1

xj [F̄1(x)]
γr−1gr−1

m [F1(x)]f1(x)dx =

P2

{
α

j + δ + 1

Cr−1

(r − 1)!

∫ P1

Q1

xj+δ+1[F̄1(x)]
γr−1gr−2

m [F1(x)]f(x)A1(x)dx

+
γ

j + 2

Cr−1

(r − 1)!

∫ P1

Q1

xj+2[F̄1(x)]
γr−1gr−2

m [F1(x)]f(x)A1(x)dx

}

+
αγr

j + δ + 1

Cr−1

(r − 1)!

∫ P1

Q1

xj+δ+1[F̄1(x)]
γrgr−2

m [F1(x)]f(x)A2(x)dx

+
γ

j + 2

Cr−1γr
(r − 1)!

∫ P1

Q1

xj+2[F̄1(x)]
γrgr−2

m [F1(x)]f(x)A2(x)dx. (18)

where,

A1(x) =
(γr − 1)gm[F1(x)]

F̄1(x)
− (r − 1)[F̄1(x)]

m, and A2(x) =
γrgm[F1(x)]

F̄1(x)
− (r − 1)[F̄1(x)]

m.

Let
zt(x) = −[F̄1(x)]

tgr−1
m [F1(x)]. (19)

Differentiating Equation (19), w.r.t. x, we get

z
′

t(x) = [F̄1(x)]
tgr−2

m [F1(x)]f(x)

[
tgm[F1(x)]

[F̄1(x)]
− (r − 1)[F̄1(x)]

m

]
.

Thus

Cr−1

(r − 1)!

∫ P1

Q1

xj [F̄1(x)]
γr−1gr−1

m [F1(x)]f1(x)dx =

P2

{
α

(j + δ + 1)

Cr−1

(r − 1)!

∫ P1

Q1

xj+δ+1z
′

γr−1(x)dx+
γ

(j + 2)

Cr−1

(r − 1)!

∫ P1

Q1

xj+2z
′

γr−1(x)dx

}

+
α

(j + δ + 1)

Cr−1γr
(r − 1)!

∫ P1

Q1

xj+δ+1z
′

γr
(x)dx+

γ

j + 2

Cr−1γr
(r − 1)!

∫ P1

Q1

xj+2z
′

γr
(x)dx. (20)
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Integrating R.H.S. in Equation (20) by parts and make use of the values of zγr
(x) and zγr−1(x) from Equation

(18), we get

Cr−1

(r − 1)!

∫ P1

Q1

xj [F̄1(x)]
γr−1gr−1

m [F1(x)]f1(x)dx =

P2

{
α

Cr−1

(r − 1)!

∫ P1

Q1

xj+δ[F̄1(x)]
γr−1gr−1

m [F1(x)]dx+ γ
Cr−1

(r − 1)!

∫ P1

Q1

xj+2[F̄1(x)]
γr−1gr−1

m [F1(x)]dx

}

+α
Cr−1

(r − 1)!

∫ P1

Q1

xj+δ[F̄1(x)]
γr−1gr−1

m [F1(x)]dx+ γ
Cr−1

(r − 1)!

∫ P1

Q1

xj+2[F̄1(x)]
γr−1gr−1

m [F1(x)]dx

which reduces to,

Cr−1

(r − 1)!

∫ P1

Q1

xj−1[F̄1(x)]
γr−1gr−1

m [F1(x)][f1(x)− (αxδ + γx)(P2 + F̄1(x))]dx = 0. (21)

The Müntz-Szász generalized theorem [9] has been implemented to the Equation (21), to get the below mentioned
result

f1(x) = (αxδ + γx)[P2 + F̄1(x)]

which is Equation (6) and above relationship holds between pdf and cdf of TP-LHR distribution. Hence the
Theorem 4.1 is proved.

5. Conclusion

The power-linear hazard rate distribution was suggested by Tarvirdizade and N. Nematollahi [6]. It can be used
where the hazard rate has both forms of power and linear. In this paper, we have derived moments properties
based on gos from doubly TP-LHR distribution. The doubly truncated distribution is broadly used as it possesses
non-truncated, left and right as a particular case.
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