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Abstract This paper generalizes the properties of the correlation matrix implied by a recursive path analysis model obtained
using the Finite Iterative Method into the covariance case, where variables are no longer supposed to be standardized. We
show that the implied covariance matrix computed using the Finite Iterative Method is affine with respect to each parameter
of the considered model. Moreover, several other properties derive from this affinity and will be used to simplify the
computation of the first as well as the second derivatives of the fit function used in the estimation of the model’s parameters.
Finally, we illustrate the advantages of the proposed properties compared to the classical approximation used to compute the
aforementioned derivatives through numerical example.
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1. Introduction

Path Analysis Model (PAM) is a set of statistical methods used to evaluate causal relationships between
variables measured on the same set of individuals [1–3]. PAM may be seen as an extension of the multiple
regression models in the sense that variables can be both dependent and independent. This is not the case for
multiple regression models, where only one single dependent variable is explained by several independent
variables. On the other hand, PAM is a special case of Structural Equation Modelling (SEM) [1, 2].

In the beginning, PAM was founded in the first half of the 20th century by the geneticist and statistician Sewall
Wright [4, 5], and it has grown in popularity ever since. Since the 1970s, many articles presented an application
of PAM in many fields, such as sociology [6], psychology [3], epidemiology [7], and others [1, 8, 9]. Figure 1
represents an example of PAM with two exogenous variables and two endogenous variables.
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Figure 1. The path diagram for PAM with two exogenous variables, and two endogenous variables.

In order to proceed with the PAM, five essential steps are carried out [2] : specification, identification, estimation,
evaluation, and modification. The present paper focuses on the estimation step, which is the core of the whole
process. It consists of finding a numerical value for each parameter by minimizing a fit function that measures the
difference between two matrices :

• The empirical covariance matrix denoted by S and obtained from data,

• The covariance matrix implied by the model denoted by Σ̂(θ) and computed as a function of the parameters
of the considered model.

Here θ is the vector of the parameters to be estimated. Two fit functions are widely used for this purpose, which
are the Unweighted Least Square (FULS) and the Generalized Least Square (FGLS) [10]. They are respectively
defined as follows :

FULS(θ) =
1

2
Tr
[
Σ̂(θ)− S

]2
(1)

FGLS(θ) =
1

2
Tr
[(

Σ̂(θ)− S
)
S−1

]2
(2)

However, other functions exist such that the Maximum Likelihood (FML) [10]. This paper considers the two
function defined in (Eqs. 1) and (2). These two functions are represented in compact form as follows :

FWLS(θ) =
1

2
Tr
[(

Σ̂(θ)− S
)
K
]2

(3)

That is FWLS = FULS when K = I and FWLS = FGLS when K = S−1.
Given the complexity of the analyzed models, the explicit vector which minimizes the function defined in (3)
cannot be found. In practice, the minimization task is performed through an optimization procedure. In this paper,
the Newton-Raphson procedure will be considered. It is defined as follows [11] :

θ(s+1) = θ(s) −
(
H(s)

)−1

g(s) (4)

where θ(s), g(s) and H(s) are respectively the vector of the model’s parameters, the gradient vector and the Hessian
matrix at the sth iteration, s = 1, 2, . . .. The procedure starts by choosing arbitrarily the vector θ(1). Then, new
vectors θ(2),θ(3), . . . are successively generated following (Eq. 4). The procedure is iterated until the quantity
||g(s)|| is smaller than a given threshold (usually ϵ = 10−5). Here, the elements of g are the first derivatives of the
FWLS defined in (Eq. 3) with respect to each parameter :

gi =
∂FWLS

∂θi
= Tr

[(
∂Σ̂(θ)

∂θi
K

)(
(Σ̂(θ)− S)K

)]
(5)
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And the elements of H are the second derivatives of of the function defined in (Eq. 3) with respect to each pair of
parameters, defined as follows :

Hij =
∂2FWLS

∂θi∂θj
= Tr

[(
∂2Σ̂(θ)

∂θi∂θj
K

)(
(Σ̂(θ)− S)K

)
+

(
∂Σ̂(θ)

∂θi
K

)(
∂Σ̂(θ)

∂θj
K

)]
(6)

From equations (Eqs. 3), (5) and (6), it is clear that the computation of Σ̂(θ) is fundamental. Usually, Σ̂(θ)

is computed by the Jöreskog formula based on the so-called the reduced form [12, 13]. Recently, El Hadri &
Hanafi [14, 15] introduced an alternative method called the Finite Iterative Method (FIM) to compute this matrix.
Furthermore, El Hadri & al. [16] established that Σ̂(θ) computed by FIM is affine with respect to each path
coefficient and when all variables are standardised.
In the present paper, we generalize this affinity property when the variables are not supposed to be standardized. In
addition, we prove that Σ̂(θ) computed by FIM is also affine with respect to the covariance between each pair of
exogenous variables.
The research paper is structured as follows : Section 2 introduces the notations used in PAM, defines the notion of
the covariance matrix implied by a PAM, and recalls FIM algorithm for the computation of this matrix. Section 3
presents the properties of the implied covariance matrix that are generalizations in the correlation case. Section 4
illustrates, with an example, these properties and their advantages in terms of the computation of the derivatives of
the fit function. Section 5 exposes a study using simulated data to highlight these advantages. Finally, we conclude
with a summary and some perspectives.

2. The covariance matrix implied by the model

In the present section, we begin by recalling the basic notations and vocabulary used in PAM. Then, we define
the vector of parameters and the notion of the covariance matrix implied by a PAM.

2.1. Notations and vocabulary

The basic notations used in PAM can be found in [1, 2]. The PAM contains three types of variables :

1. Exogenous variable (ξ) : is a variable that is not influenced by other variables in the model [2, 3].

2. Endogenous variable (η) : is a variable that is modified or determined by its relationships with other variables
in the model [2]. Besides, the endogenous variables are explained by a combination of exogenous variables
and unspecified influences captured by a disturbance.

3. The disturbance term (or the residual error term) (ζ) : is a variable that represents the part of the endogenous
variable that is not explained by the model [2].

A PAM is represented algebraically by a system of a set of multiple regressions as follows :

η1 = γ11ξ1 + . . .+ γ1qξq + ζ1
...
ηj = γj1ξ1 + . . .+ γjqξq + βj1η1 + . . .+ βj(j−1)ηj−1 + ζj
...
ηp = γp1ξ1 + . . .+ γpqξq + βp1η1 + . . .+ βp(p−1)ηp−1 + ζp

(7)

where q and p are respectively the number of exogenous and endogenous variables. System 7 can be formulated as
the following compact form :

η = Γξ +Bη + ζ (8)
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where ξ, η, and ζ are respectively the vectors of the exogenous variables, endogenous variables, and the
disturbances. More assumptions on these vectors are made (see [1,14]). In addition, Γ denotes the (p× q) matrix of
the model’s parameters linking endogenous variables to exogenous variables, and B denotes the (p× p) matrix of
the model’s parameters that relates the endogenous variables. Moreover, Φ = E[ξξt] denotes the (q× q) covariance
matrix of exogenous variables. And finally, Ψ = E[ζζt] denotes the (p× p) covariance matrix of disturbances. The
vector of parameters is defined as follows :

Definition 1. The vector θ composed by the non null elements of the matrices Φ,Γ, B and Ψ is called the vector
of parameters of the PAM :

θ = (Vecs(Φ),Vecs(Γ),Vecs(B),Vecs(Ψ)) (9)

Definition 2. If the matrix B is strictly triangular lower [2], then PAM is called Recursive Path Analysis Model
(RPAM).

The present paper is limited to a RPAM. In addition and for sake of simplicity, Σ̂(θ) is noted by Σ̂. This matrix
is the ((p + q)× (p + q)) matrix, defined as follows :

Σ̂ = E

 (ξ −E[ξ]) (ξ −E[ξ])
t

(ξ −E[ξ]) (η −E[η])
t

(η −E[η]) (ξ −E[ξ])
t

(η −E[η]) (η −E[η])
t



As aforementioned, Jöreskog [13, 17, 18] proposed a general formula to compute Σ̂ based on the reduced
form. It is a compact form expressing the vector of endogenous variables η as a function of the vector of
exogenous variables ξ and the vector of disturbances ζ. Then the four blocks of Σ̂ are computed separately.

Another way to compute Σ̂ is the new method recently introduced by El Hadri and Hanafi [14, 15] called
Finite Iterative Method. It consists of filling in the blocks of Σ̂ iteratively using an algorithm, whose number of
iterations is equal to p. Comparisons between FIM and Jöreskog formula are given in [15]. Several months later,
El Hadri & al [16] demonstrated several properties of the correlation matrix implied by a RPAM computed by
FIM. Furthermore, Iaousse and El Hadri [18] applied this method to RPAM with correlated errors. Thereafter, El
Hadri & Iaousse generalize FIM to compute the covariance matrix implied by a structural recursive model with
latent variables [17].
In what follows, FIM Algorithm is presented.

2.2. Finite Iterative Method

El Hadri and Hanafi [15] have demonstrated that Σ̂ can be computed iteratively. To make it clear, we note by A

the (p× (q + p)) matrix of structural parameters defined as :

A =
[
Γ B

]
=


γ11 . . . γ1q 0 . . . . . . 0

γ22 . . . γ2q β21
. . . . . .

...

. . . . . . . . . . . .
. . . . . .

...
γp1 . . . γp,q βp1 . . . βp,(p−1) 0

 (10)

FIM is defined by the following p iterations :
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Algorithm 1 Finite Iterative Method (El Hadri and Hanafi 2015) [14]

Initialization: Σ̂1:q,1:q = Φ

Repeat for k = 1, ...p;
1. Σ̂q+k,1:q+k−1 = Ak,1:q+k−1Σ̂1:q+k−1,1:q+k−1

2. Σ̂1:q+k−1,q+k = (Σ̂q+k,1:q+k−1)
t

3. Σ̂q+k,q+k = Sq+k,q+k

FIM starts by setting Σ̂1:q,1:q = Φ (covariance matrix among the q exogenous variables) where Σ̂1:q,1:q is
the sub-matrix of Σ̂ obtained by extracting the first q rows and the first q columns. Thereafter, the sub-row
Σ̂q+k,1:q+k−1 of the (q + k)th row of Σ̂ containing the first (q + k− 1) elements is computed (step 1) as the
product between (i) the sub-row Ak,1:q+k−1 of the kth row of A containing the first (q + k− 1) elements, (ii)
and the block Σ̂1:q+k−1,1:q+k−1 where Σ̂1:q+k−1,1:q+k−1 is the sub-matrix of Σ̂ obtained by extracting the first
(q + k− 1) rows and the first (q + k− 1) columns. In step 2, the sub-column Σ̂1:q+k−1,q+k of the (q + k)th

column of Σ̂ is computed as being the transpose of the sub-row Σ̂q+k,1:q+k−1. The (q + k)th diagonal element of
Σ̂ is setted to Sq+k,q+k (step 3). Steps 1 to 3 are iterated p times over k.

Remark 1. In Jöreskog’s formula the diagonal elements of Σ̂ are not fixed. In contrast, these elements are equal
to the diagonal elements of S in FIM, (i.e., diag(Σ̂) = diag(S)).

Remark 2. Remark 1 implies that FIM does not consider the disturbance terms Ψ when computing Σ̂. In addition,
this matrix is computed from Φ, Γ and B as follows [14] :

Ψ = (I−B)Σ̂q+1:q+p,q+1:q+p(I−B)t − ΓΦΓt

where I is the identity matrix. Hence, the vector of parameters to be estimated using FIM is :

θ = (Vecs(Φ),Vecs(A)) (11)

According to remark 1, θ does not contain the diagonal elements of Φ. In addition, some elements of A are null.

In the following, section 3 introduces the basic properties of the covariance matrix implied by a RPAM.

3. Basic properties of the implied covariance matrix

As aforementioned in section 1, the covariance matrix implied by the model obtained using FIM disposes of
some useful properties when all variables are supposed to be standardized [16] and Φ is supposed to be fixed.
This section generalizes these properties for models with variables that are no longer supposed to be standardized
and the off-diagonal of Φ are considered as free parameters. That is, theorem 1 below shows that Σ̂ is affine with
respect to each element of the vector θ defined in (Eq. 11).

In the sequel, let x and y be two distinct parameters in the model (i.e., the elements of θ defined in (Eq.
11), and α and β two real scalars.

• Σ̂(α) denotes the covariance matrix implied by the model computed by replacing x by α.

• Σ̂(α, β) denotes the covariance matrix implied by the model computed by replacing x and y by α and β

respectively.

Theorem 1. Let x be a parameter of the model. The following equality holds :

Σ̂ = Σ̂(0) + x
(
Σ̂(1)− Σ̂(0)

)
(12)
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Proof of Theorem 1. The proof of theorem 1 is based on lemma 1 bellow :

Lemma 1. The covariance matrix implied by the model Σ̂ is affine with respect to each element of θ defined in
(Eq. 11).

Proof of Lemma 1. See Appendix.

Corollary 1. Let x be a parameter of the model. The first derivative and the second derivative of Σ̂ with respect
to x are :

∂Σ̂

∂x
= Σ̂(1)− Σ̂(0) (13)

and
∂2Σ̂

∂x2
= 0 (14)

Proof of corollary 1. Direct consequence of theorem 1.

Corollary 2. Let x and y be two distinct parameters of the model. The following equality holds :

Σ̂ = Σ̂(0, 0) + x
[
Σ̂(1, 0)− Σ̂(0, 0)

]
+ y

[
Σ̂(0, 1)− Σ̂(0, 0)

]
+ xy

[
Σ̂(1, 1)− Σ̂(1, 0)− Σ̂(0, 1) + Σ̂(0, 0)

]
Proof of corollary 2. Theorem 1 gives

Σ̂ = Σ̂(0) + x
(
Σ̂(1)− Σ̂(0)

)
Since Σ̂(0) and Σ̂(1) are two covariance matrices implied by the considered model then theorem 1 gives

Σ̂(0) = Σ̂(0, 0) + y
(
Σ̂(0, 1)− Σ̂(0, 0)

)
(15)

and
Σ̂(1) = Σ̂(1, 0) + y

(
Σ̂(1, 1)− Σ̂(1, 0)

)
(16)

And the proof is achieved by inserting (15) and (16) in (Eqs. 12). ■

Corollary 3. Let x and y be two distinct parameters of the model. The following equality holds :

∂2Σ̂

∂x∂y
= Σ̂(1, 1)− Σ̂(1, 0)− Σ̂(0, 1) + Σ̂(0, 0) (17)

Proof of corollary 3. Direct consequence of corollary 2.

4. Didactic example

In what follows, we illustrate the properties of Σ̂ described in section 3. To do so, the model defined in figure
1 is considered. The associated system of structural equations is :{

η1 = γ11ξ1 + ζ1

η2 = γ22ξ2 + β21η1 + ζ2
(18)

It comes:

Γ =

(
γ11 0

0 γ22

)
Stat., Optim. Inf. Comput. Vol. 10, September 2022
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and

B =

(
0 0

β21 0

)
Thus, the matrix A is :

A =

(
γ11 0 0 0

0 γ22 β21 0

)
In addition, the covariance matrix among exogenous variables is :

Φ =

(
s11 ϕ12

ϕ12 s22

)
4.1. Computation of Σ̂

Using FIM described in algorithm 1, Σ̂ is computed through (p = 2) iterations as follows :

1. Initialization :

Σ̂1:2,1:2 =

(
s11 ϕ12

ϕ12 s22

)
2. k = 1 :

(a) Step 1 :

Σ̂3,1:2 = A1,1:2Σ̂1:2,1:2 = (γ11, 0)

(
s11 ϕ12

ϕ12 s22

)
= (γ11s11, γ11ϕ12)

(b) Step 2 :
Σ̂1:2,3 = (Σ̂3,1:2)

t = (γ11s11, γ11ϕ12)
t

(c) Step 3 :
Σ̂3,3 = s33

Hence, the bloc Σ̂1:3,1:3 is :

Σ̂1:3,1:3 =

 s11 ϕ12 γ11s11
ϕ12 s22 γ11ϕ12

γ11s11 γ11ϕ12 s33


3. k = 2 :

(a) Step 1 :

Σ̂4,1:3 = A2,1:3Σ̂1:3,1:3 = (0, γ22, β21)

 s11 ϕ12 γ11s11
ϕ12 s22 γ11ϕ12

γ11s11 γ11ϕ12 s33


= (γ22ϕ12 + γ11β21s11, γ22s22 + γ11β21ϕ12, γ22γ11ϕ12 + β21s33)

(b) Step 2 :

Σ̂1:3,4 = (Σ̂4,1:3)
t = (γ22ϕ12 + γ11β21s11, γ22s22 + γ11β21ϕ12, γ22γ11ϕ12 + β21s33)

t

(c) Step 3 :
Σ̂4,4 = s44

Hence, the covariance matrix implied by the model is :

Σ̂ =


s11 ϕ12 γ11s11 γ22ϕ12 + β21γ11s11
ϕ12 s22 γ11ϕ12 γ22s22 + β21γ11ϕ12

γ11s11 γ11ϕ12 s33 γ22γ11ϕ12 + β21s33
γ22ϕ12 + γ11β21s11 γ22s22 + γ11β21ϕ12 γ22γ11ϕ12 + β21s33 s44

 (19)
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4.2. First derivative of Σ̂ with respect to ϕ12

Using (Eq. 19) and setting ϕ12 = 1 and then ϕ12 = 0, we obtain :

Σ̂(1) =


s11 1 γ11s11 γ22 + β21γ11s11
1 s22 γ11 γ22s22 + β21γ11

γ11s11 γ11 s33 γ22γ11 + β21s33
γ22 + γ11β21s11 γ22s22 + γ11β21 γ22γ11 + β21s33 s44


and

Σ̂(0) =


s11 0 γ11s11 β21γ11s11
0 s22 0 γ22s22

γ11s11 0 s33 β21s33
γ11β21s11 γ22s22 β21s33 s44


As a consequence, corollary 1 gives :

∂Σ̂

∂ϕ12
= Σ̂(1)− Σ̂(0) =


0 1 0 γ22
1 0 γ11 γ11β21

0 γ11 0 γ11γ22
γ22 γ11β21 γ11γ22 0

 (20)

4.3. Second derivative of Σ̂ with respect to ϕ12 and γ11

Using the (Eq. 19) and setting (ϕ12 = 1 and γ11 = 1), (ϕ12 = 1 and γ11 = 0), (ϕ12 = 0 and γ11 = 1), and
(ϕ12 = 0 and γ11 = 0), we obtain :

Σ̂(1, 1) =


s11 1 s11 γ22 + β21s11
1 s22 1 γ22s22 + β21

s11 1 s33 γ22 + β21s33
γ22 + β21s11 γ22s22 + β21 γ22 + β21s33 s44



Σ̂(1, 0) =


s11 1 0 γ22
1 s22 0 γ22s22
0 0 s33 β21s33
γ22 γ22s22 β21s33 s44



Σ̂(0, 1) =


s11 0 s11 β21s11
0 s22 0 γ22s22
s11 0 s33 β21s33

β21s11 γ22s22 β21s33 s44



Σ̂(0, 0) =


s11 0 0 0

0 s22 0 γ22s22
0 0 s33 β21s33
0 γ22s22 β21s33 s44


Thus, corollary 3 gives :

∂2Σ̂

∂ϕ12∂γ11
= Σ̂(1, 1)− Σ̂(1, 0)− Σ̂(0, 1) + Σ̂(0, 0) =


0 0 0 0

0 0 1 β21

0 1 0 γ22
0 β21 γ22 0

 (21)
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4.4. Element of the gradient vector and element of the Hessian matrix associated with FULS

In what follows, we propose to apply the previous formulas to compute the first and the second derivative of the
Unweighted Least Square FULS defined in (Eq. 1) wrt to ϕ12 and ( ϕ12 and γ11) respectively.
Using (Eq. 19), we get :

Σ̂− S =

 0 ϕ12 − s12 γ11s11 − s13 γ22ϕ12 + β21γ11s11 − s14
ϕ12 − s12 0 γ11ϕ12 − s23 γ22s22 + β21γ11ϕ12 − s24

γ11s11 − s13 γ11ϕ12 − s23 0 γ22γ11ϕ12 + β21s33 − s34
γ22ϕ12 + γ11β21s11 − s14 γ22s22 + γ11β21ϕ12 − s24 γ22γ11ϕ12 + β21s33 − s34 0


(22)

As a consequence and inserting (Eqs. 19), (20) and (22) in ( Eq. 5), the first derivative of FULS defined in (Eq. 1)
wrt to ϕ12 is :

g1 =
∂FULS

∂ϕ12
=2 [ϕ12 − s12] + 2γ22 [γ22ϕ12 + γ11β21s11 − s14] + 2γ11 [γ11ϕ12 − s23]

+2γ11β21 [γ22s22 + γ11β21ϕ12 − s24] + 2γ11γ22 [γ22γ11ϕ12 + β21s33 − s34]

In addition and using corollary 1,

∂Σ̂

∂γ11
=


0 0 s11 β21s11
0 0 ϕ12 β21ϕ12

s11 ϕ12 0 γ22ϕ12

β21s11 β21ϕ12 γ22ϕ12 0

 (23)

As a consequence and inserting (Eqs. 19), (20), (21), (22) and (23) in ( Eq. 6), the second derivative of FULS

defined in (Eq. 1) wrt to ϕ12 and γ11 is :

H12 =
∂2FULS

∂ϕ12∂γ11
=γ22β21s11 + γ11ϕ12 − s23 + β21 (γ22s22 + γ11β21ϕ12 − s24)

+γ11ϕ12 + γ11β
2
21ϕ12 + γ11ϕ12 − s23 + γ22 (γ11ϕ12γ22 + β21s33 − s34)

+γ11ϕ12 + γ11γ
2
22ϕ12 + β21 (γ22s22 + β21γ11ϕ12 − s24)

+γ22 (γ11γ22ϕ12 + β21s23 − s34) + γ11β
2
21ϕ12 + γ11γ

2
22ϕ12 + γ22β21s11

5. Numerical Illustration

In the present section, we propose to compare the results of the present paper to one of the existing methods.
Formally, we compare the gradient vectors and the Hessian matrices associated with the Generalized Least
Square function defined in (Eq. 2) computed using two approaches. (i) the classical approach (CA) based on
the NumDeriv package in R software which uses the Richardson method to compute the gradient vectors and the
Hessian matrices [19]. And (ii) the proposal approach (PA) basing on corollaries 1 and 3 for the computation of the
first and the second derivatives of Σ̂. To do so, the model given in figure 2 below is considered. It involves five of
endogenous variables and three exogenous variables, with a total of 12 parameters (3 elements in Φ and 9 elements
in A). Thereafter, 100 artificial datasets are generated using the rnorm function in R software. For each dataset,
the gradient vector and the Hessian matrix of the FGLS are then computed using both CA and PA.
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γ11

γ22

β21

ξ1

ξ2

γ33

ξ3

ϕ23

η1

η2 η3

η4

β54

β53
ϕ12

ϕ13

β31

β32

β43
η5

Figure 2. RPAM involving three exogenous variables and five endogenous variables.

In order to compare the two approaches, the following quantities are considered :

∆g = ||g(CA) − g(PA)||

and
∆H = ||H(CA) −H(PA)||

where :

• g(CA) and H(CA) are respectively the gradient vector and the Hessian matrix associated with FGLS computed
by CA,

• g(PA) and H(PA) are respectively the gradient vector and the Hessian matrix associated with FGLS computed
by PA.

∆g (respectively ∆H ) is the distance induced by the Frobinius norm measuring the difference between the gradient
vectors (respectively the Hessian matrices) obtained by the two approaches. The obtained values of ∆g and ∆H

are depicted in figure 3 below.

Figure 3. Difference between the gradient vectors and the Hessian matrices computed by CA and PA.
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Figure 3 (Left) shows that ∆g does not exceed 8.08× 10−8 and has an average value equal to 3× 10−13.
Similarly, figure 3 (Right) shows that ∆H does not exceed 8.08× 10−8 and has an average value equal to
2.27× 10−9. Basing on this simulation, we can conclude that the two approaches are practically identical.

6. Summary and perspectives

The present paper proposes some relevant properties of the covariance matrix implied by a RPAM with
non-standardized variables. These properties are important in the sense that they allow a simple calculation of
the derivatives required for the optimization of the fit function to estimate the model’s parameters. First, it may
appears that these derivatives are simple to compute without these properties. However, the proposed properties are
valid for every RPAM without knowing explicitly the model. That is, they will allow programming optimization
methods without approximating neither the gradient vectors nor the Hessian matrices. As aforementioned, the
methods are valid for the implied covariance matrices obtained using FIM algorithm 1. The first property given
in lemma 1 is the fundamental characteristic asserting the affinity of the covariance matrix implied by a RPAM
with respect to each parameter. The other properties give an expression of this matrix as a function of the model
parameters, as well as the exact expression of the first and second derivatives of this matrix with respect to each
parameter and with respect to each pair of parameters. We illustrated the advantages of the proposed properties
using a theoretical example. We also simulated an illustrative example and compared the derivatives obtained using
the proposal approach with a classical approach. This simulation confirms that these approaches are practically
identical. These properties will enhance the development of the estimation methods in RPAM. More precisely,
they make the optimization step easier, faster, and more flexible.

An R program is written to implement all the defined properties of the implied covariance matrix as functions.
This program is available upon request.

Moreover, researches to prove or deny these properties for the covariance matrix implied by an exploratory
factor analysis model [20] are in advance.

Meanwhile, it will be interesting to extend these properties to RPAM with correlated errors. This issue is
also in advance.

As a perspective, we are currently working on extending these properties into the covariance matrix implied by a
recursive structural equation model with latent variables [21].

Finally, researches on the development of FIM for non RPAM are still open.
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Appendix

Proof of Lemma 1. let x be a model parameter. From (Eq. 11), x is either an off-diagonal element of Φ or an
element of A.

• Case 1: If x is an off-diagonal element of Φ then Φ is affine wrt x and A is constant wrt x.
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1. Initialization step of FIM implies that Σ̂1:q,1:q = Φ is affine wrt x. Let i ∈ {0 : p− 1} and suppose that
the block Σ̂1:q+i,1:q+i is affine wrt x.

2. Step 1 of FIM implies that Σ̂q+i+1,1:q+i = Ai+1,1:q+iΣ̂1:q+i,1:q+i is affine wrt x.

3. Step 2 of FIM implies that Σ̂1:q+i,q+i+1 is affine wrt x.

4. Step 3 of FIM implies that Σ̂q+i+1,q+i+1 = Sq+i+1,q+i+1 is constant wrt x. As a result, the block
Σ̂1:q+i+1,1:q+i+1 is affine wrt x.

• Case 2: If x is an element of A then Φ is constant wrt x and ∃ j ∈ {1 : p} and k ∈ {1 : q + j− 1} such that
x = Ajk. As a consequence, the jth row of A is affine wrt x and all other rows of A are constant wrt x.
Furthermore, if p = 1 then the proof stops at step I and if p = 2 then proof stops at step II.

I. If j = 1 then,

(a) Initialization step of FIM implies that Σ̂1:q,1:q = Φ is constant wrt x.

(b) Step 1 of FIM gives Σ̂q+j,1:q+j−1 = Aj,1:q+j−1Σ̂1:q+j−1,1:q+j−1. Since Aj,1:q+j−1 is affine wrt x
and Σ̂1:q+j−1,1:q+j−1 is constant wrt x then Σ̂q+j,1:q+j−1 is affine wrt x.

(c) Step 2 of FIM implies that Σ̂1:q+j−1,q+j is affine wrt x.

(d) Step 3 of FIM implies that Σ̂q+j,q+j = Sq+j,q+j is constant wrt x. As a result, the block Σ̂1:q+j,1:q+j

is affine wrt x. Let i ∈ {j : p− 1} and suppose that Σ̂1:q+i,1:q+i is affine wrt x.

(e) Step 1 of FIM gives Σ̂q+i+1,1:q+i = Ai+1,1:q+iΣ̂1:q+i,1:q+i. Since (i + 1) ̸= j then Ai+1,1:q+i is
constant wrt x. Thus Σ̂q+i+1,1:q+i is affine wrt x.

(f) Step 2 of FIM implies that Σ̂1:q+i,q+i+1 is affine wrt x.

(g) Step 3 of FIM implies that Σ̂q+i+1,q+i+1 = Sq+i+1,q+i+1 is constant wrt x. As a result, the block
Σ̂1:q+i+1,1:q+i+1 is affine wrt x.

II. If j = p then,

(a) Initialization step of FIM implies that Σ̂1:q,1:q = Φ is constant wrt x. Let i ∈ {0 : j− 2} and
suppose that Σ̂1:q+i,1:q+i is constant wrt x.

(b) Step 1 of FIM gives Σ̂q+i+1,1:q+i = Ai+1,1:q+iΣ̂1:q+i,1:q+i. Since (i + 1) ̸= j then Ai+1,1:q+i is
constant wrt x. Thus Σ̂q+i+1,1:q+i is constant wrt x.

(c) Step 2 of FIM implies that Σ̂1:q+i,q+i+1 is constant wrt x.

(d) Step 3 of FIM implies that Σ̂q+i+1,q+i+1 = Sq+i+1,q+i+1 is constant wrt x. As a result, the block
Σ̂1:q+i+1,1:q+i+1 is constant wrt x.

(e) Step 1 of FIM gives Σ̂q+j,1:q+j−1 = Aj,1:q+j−1Σ̂1:q+j−1,1:q+j−1. Since Aj,1:q+j−1 is affine wrt x
then Σ̂q+j,1:q+j−1 is affine wrt x.

(f) Step 2 of FIM implies that Σ̂1:q+j−1,q+j is affine wrt x.

(g) Step 3 of FIM implies that Σ̂q+j,q+j = Sq+j,q+j is constant wrt x. As a result, the block Σ̂1:q+j,1:q+j

is affine wrt x.

III. If j ∈ {2 : p− 1} then,

(a) Initialization step of FIM implies that Σ̂1:q,1:q = Φ is constant wrt x. Let i ∈ {0 : j− 2} and
suppose that Σ̂1:q+i,1:q+i is constant wrt x.

(b) Step 1 of FIM gives Σ̂q+i+1,1:q+i = Ai+1,1:q+iΣ̂1:q+i,1:q+i. Since (i + 1) ̸= j then Ai+1,1:q+i is
constant wrt x. Thus Σ̂q+i+1,1:q+i is constant wrt x.

(c) Step 2 of FIM implies that Σ̂1:q+i,q+i+1 is constant wrt x.
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(d) Step 3 of FIM implies that Σ̂q+i+1,q+i+1 = Sq+i+1,q+i+1 is constant wrt x. As a result, the block
Σ̂1:q+i+1,1:q+i+1 is constant wrt x.

(e) Step 1 of FIM gives Σ̂q+j,1:q+j−1 = Aj,1:q+j−1Σ̂1:q+j−1,1:q+j−1. Since Aj,1:q+j−1 is affine wrt x
then Σ̂q+j,1:q+j−1 is affine wrt x.

(f) Step 2 of FIM implies that Σ̂1:q+j−1,q+j is affine wrt x.

(g) Step 3 of FIM implies that Σ̂q+j,q+j = Sq+j,q+j is constant wrt x. As a result, the block Σ̂1:q+j,1:q+j

is affine wrt x. Let i ∈ {j : p− 1} and suppose that Σ̂1:q+i,1:q+i is affine wrt x.

(h) Step 1 of FIM gives Σ̂q+i+1,1:q+i = Ai+1,1:q+iΣ̂1:q+i,1:q+i. Since (i + 1) ̸= j then Ai+1,1:q+i is
constant wrt x. Thus Σ̂q+i+1,1:q+i is affine wrt x.

(i) Step 2 of FIM implies that Σ̂1:q+i,q+i+1 is affine wrt x.

(j) Step 3 of FIM implies that Σ̂q+i+1,q+i+1 = Sq+i+1,q+i+1 is constant wrt x. As a result, the block
Σ̂1:q+i+1,1:q+i+1 is affine wrt x.

This completes the proof. ■
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