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Abstract In this paper, we study the cardinality constrained mean-absolute deviation portfolio optimization problem
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those stocks without short-selling positions. Also, we further enhance the model by determining the short rebate based on
the return. The penalty alternating direction method is used to solve the mixed integer linear model. Finally, numerical
experiments are provided to compare all models in terms of Sharpe ratios and CPU times using the data set of the NASDAQ
and S&P indexes.
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1. Introduction

The Mean-Variance (MV) model of Harry Markowitz [36] gives the best possible trade-off between mean of
returns and variance of returns. Since it is a quadratic optimization problem and the estimation of the covariance
could be difficult for large data sets, the mean-absolute deviation (MAD) model is proposed by Konno and
Yamazaki [30] defining the absolute deviation of the rate of return as the measure of risk instead of variance.
Simaan [40] has given a comparison of the MAD model and the MV model. Feinstein and Thapa [14] have given
a reformulation of the MAD model with fewer constraints, which is computationally better. Later, Chang [10]
presented a new formulation of the one by Feinstein and Thapa. For further details of the MAD model, we refer
to [34].
With all these advantages, in the MAD model some constraints such as short-selling and cardinality constraints
that are more realistic, were ignored. Short-selling is borrowing stocks and selling them. The investor must lend
stocks with the same value to the lender of stocks. The first short-selling model in portfolio theory is proposed by
Lintner [33]. Konno et al. used the long-short strategy in the MAD ?model under non-convex transaction
costs [29]. They observed that this strategy finds a portfolio that is much better compared to the portfolio with
only the long strategy. Cardinality constraints restrict the number of stocks in the portfolio and the threshold
constraints also restrict the proportion of each stock in portfolio within certain interval. Gao and Li [15] studied
Cardinality Constrained Mean-Variance (CCMV) portfolio optimization problem with short-selling. The authors
in [31] extended the MAD model that takes the cardinality and the threshold constraints with short-selling. Their
new model is presented as a mixed integer problem and DC (Difference of Convex functions) algorithm is used to
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solve it [3, 37, 42, 43]. Other important studies of the MAD model are those of Angelelli et al. [4], Byrne and
Lee [9], Tavakoli [5], Li et al. [32], Silva et al. [39], Carnia et al. [23]. Another feature that one can use in the
model is the so-called risk-neutral interest rate [6, 25, 35]. Jacobs et al. [21, 22] applied short-selling strategy with
risk-neutral interest rate in portfolio selection model. Most recently, in [26, 27] also the authors have used
short-selling with risk-neutral interest rate in the CCMV model and discussed some drawbacks of the model.
Alternating direction method (ADM) is an iterative procedure that solves optimization models by alternatingly
solving two simpler subproblems [7]. There are some strategies that have been studied to make the ADM more
practical and efficient in [11, 20, 24, 41]. Also, an extension of the ADM called penalty ADM (PADM) proposed
in [44] that is appropriate for biconvex sets and optimization with biconvex functions [18], k-means clustering
problems [8], mixed-integer nonlinear problems [16, 17, 38], and bilevel problems [28]. Motivated by the fact that
most MAD models do not take into account more realistic constraints, the contributions of the paper are as
follows. First, we present an enhanced version of the MAD model including short-selling, risk-neutral interest rate
and cardinality constraints. The model is enhanced by adding extra constraints to positive investment in those
stocks having short positions. Also, these constraints avoid to invest short and long in the same stock. We further
propose an improved version of it, in which the short rebate is determined based on the stock’s return. Thus, it
leads to a model with fewer constraints and binary variables. Finally, the PADM is applied to solve the proposed
model.
The rest of this paper is as follows. In Section 1, we present the MAD model with short-selling and risk-neutral
interest rate in details.In Section 2, we also extend the model with the cardinality constraints, short-selling and
risk-neutral interest rate. In Section 3, we present the details of the PADM for solving the proposed mixed integer
models with its convergence.Finally, in Section 4 some numerical results are provided to show the efficiency of
the proposed models.

2. Extended MAD model

The MAD model with short-selling and risk-neutral interest rate is as follows [26]:

min
x,u

λ (
1

T

T∑
t=1

|
N∑
j=1

(rt,j − rj)xj |)− (1− λ)(

N∑
j=1

xjrj − rchjxj)

s.t.

N∑
j=1

xj = 1, (1)

εj ≤ xj ≤ δj , j = 1, ..., N,

if xj ≥ 0, then hj = 0,

if xj < 0, then 0 < hj < 1,

which is equivalent to

min
x,u

λ (
1

T

T∑
t=1

ut)− (1− λ)(

N∑
j=1

xjrj − rchjxj)

s.t. ut +

N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

ut −
N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

(2)
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N∑
j=1

xj = 1,

ut ≥ 0, t = 1, ..., T,

εj ≤ xj ≤ δj , j = 1, ..., N,

if xj ≥ 0, then hj = 0,

if xj < 0, then 0 < hj < 1,

where N and T denote the number of stocks and the end of investment time, respectively, xj is the proportion of
investment in jth stock, rt,j is the return of the jth stock at time t, (t = 1, ..., T ; j = 1, ..., N), rj is the expected
return of the jth stock (j = 1, ..., N) and rc is risk-neutral interest rate. Also, εj and δj are the lower and upper
bounds of the jth stock, respectively, and λ ∈ [0, 1] is the risk aversion parameter. The εj is negative for short-
selling. The term rc

∑N
j=1 hjxj shows the short rebate, where

0 < hj < 1, ∀j,

denotes the portion of the investor of the interest on the proceeds from the short-sale of stock j. On the other hand,
for stocks that are not in the short-selling position, we add constraints rjxj ≥ 0, (j = 1, 2, ..., N) to model (2) in
order to have the proportion of investment to be positive. To linearize (2), let pj = hjxj , and add the following
constraints:

pj −M wj ≤ 0,

c xj − pj +M wj ≤ M, (3)
− c xj + pj ≤ 0,

pj +M wj ≥ 0,

xj ≥ −M wj ,

xj ≤ M (1− wj),

wj ∈ {0, 1},

where M is a large positive constant. If xj ≤ 0, then from (3) wj = 1 and thus pj = c xj . Also, if xj ≥ 0, we have
wj = 0 and thus pj = 0. Therefore, we get the following model:

min
x,u,p,w

λ (
1

T

T∑
t=1

ut)− (1− λ)(

N∑
j=1

xjrj − rcpj)

s.t. ut +

N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

ut −
N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

N∑
j=1

xj = 1, (4)

rjxj ≥ 0, j = 1, ..., N,

εj ≤ xj ≤ δj , j = 1, ..., N,

pj −M wj ≤ 0, j = 1, ..., N,
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c xj − pj +M wj ≤ M, j = 1, ..., N,

− c xj + pj ≤ 0, j = 1, ..., N,

pj +M wj ≥ 0, j = 1, ..., N,

xj ≥ −M wj , j = 1, ..., N,

xj ≤ M (1− wj), j = 1, ..., N,

wj ∈ {0, 1}, j = 1, ..., N,

ut ≥ 0, t = 1, ..., T,

where hj’s are equal to c ∈ (0, 1), which is a constant. As we see, model (4) has N binary variables and
8N + 2T + 1 constraints that might be computationally inefficient for large N and T values. Thus, let us determine
the short rebate (hj) in model (2) based on the return. If rj ≥ 0, we let hj = 0 and if rj < 0, then we let 0 < hj < 1.
The enhanced variant of model (4) with less constraints and no binary variables is as follows:

min
x,u

λ (
1

T

T∑
t=1

ut)− (1− λ)(

N∑
j=1

xjrj − rchjxj)

s.t. ut +

N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

ut −
N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

N∑
j=1

xj = 1, (5)

rjxj ≥ 0, j = 1, ..., N,

εj ≤ xj ≤ δj , j = 1, ..., N,

ut ≥ 0, t = 1, ..., T.

Lemma 1
Let V ∗ and U∗ be the optimal objective functions values of (4) and (5), respectively. Then V ∗ = U∗.

Proof
In both models, based on rjxj ≥ 0, for rj ≥ 0 we have xj ≥ 0 then hj = 0, and for rj < 0 we have xj < 0 then
hj = c. Let S1 and S2 be the set of feasible points of models (4) and (5), respectively. Since any feasible point in
(4) is also feasible for (5), we conclude that S1 ⊆ S2. Now, let (x∗, u∗) be the optimal solution of (5). One can
see, in (4), when xj ≥ 0, from xj ≤ M(1− wj) and xj ≥ −Mwj , we conclude wj = 0. Similarly, when xj < 0
we conclude wj = 1. Further, if wj = 0, from pj −Mwj ≤ 0 and pj +Mwj ≥ 0 we have pj = 0. Also if wj = 1,
from −cxj + pj ≤ 0 and cxj − pj +Mwj ≤ M we have pj = cxj .

On the other hand, we consider w∗
j = 0 for x∗

j ≥ 0 and w∗
j = 1 for x∗

j < 0 and by considering p∗j = hjx
∗
j

(if x∗
j ≥ 0, then hj = 0 ; and if x∗

j < 0, then hj = c), (x∗, u∗, w∗, p∗) is feasible for (4). Now, we show it
is also optimal for (4). Suppose by contradiction that (x∗∗, u∗∗, w∗∗, p∗∗) is an optimal solution for (4), then

λ (
1

T

∑T
t=1 u∗∗

t )− (1− λ)(
∑N

j=1 x∗∗
j rj − rcp

∗∗
j ) ≤ λ (

1

T

∑T
t=1 u∗

t )− (1− λ)(
∑N

j=1 x∗
jrj − rcp

∗
j ). Since p∗∗j =

hjx
∗∗
j and p∗j = hjx

∗
j , (if x∗

j ≤ 0 and x∗∗
j ≤ 0, then hj = 0, and if x∗

j ≥ 0 and x∗∗
j ≥ 0, then hj = c ) we have

λ (
1

T

∑T
t=1 u∗∗

t )− (1− λ)(
∑N

j=1 x∗∗
j rj − rchjx

∗∗
j ) ≤ λ (

1

T

∑T
t=1 u∗

t )− (1− λ)(
∑N

j=1 x∗
jrj − rchjx

∗
j ). This

is in contradiction with the optimality of (x∗, u∗) for (5), since (x∗∗, u∗∗) is also feasible for (5). This complates
the proof.
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As we see, models (4) and (5) have equal optimal objective values while model (5) has much less constraints
and no binary variables.

3. Models with cardinality constraintes

In this section, we also include cardinality constraintes in models (4) and (5) to restrict stocks’ number in the
portfolio as follows:

min
x,z,u,p,w

λ (
1

T

T∑
t=1

ut)− (1− λ)(

N∑
j=1

xjrj − rcpj)

s.t. ut +

N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

ut −
N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

N∑
j=1

xj = 1, (6)

N∑
j=1

zj = K,

rjxj ≥ 0, j = 1, ..., N,

εjzj ≤ xj ≤ δjzj , j = 1, ..., N,

pj −M wj ≤ 0, j = 1, ..., N,

c xj − pj +M wj ≤ M, j = 1, ..., N,

− c xj + pj ≤ 0, j = 1, ..., N,

pj +M wj ≥ 0, j = 1, ..., N,

xj ≥ −M wj , j = 1, ..., N,

xj ≤ M (1− wj), j = 1, ..., N,

wj ∈ {0, 1}, j = 1, ..., N,

zj ∈ {0, 1}, j = 1, ..., N,

ut ≥ 0, t = 1, ..., T,

and

min
x,u

λ (
1

T

T∑
t=1

ut)− (1− λ)(

N∑
j=1

xjrj − rchjxj)

s.t. ut +

N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

ut −
N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,
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N∑
j=1

xj = 1, (7)

N∑
j=1

zj = K,

rjxj ≥ 0, j = 1, ..., N,

εjzj ≤ xj ≤ δjzj , j = 1, ..., N,

zj ∈ {0, 1}, j = 1, ..., N,

ut ≥ 0, t = 1, ..., T,

where K is the desired number of stocks in the portfolio and zj’s are zero-one variables. If zj = 1, stock j is in
portfolio and if zj = 0 it does not.

Lemma 2
Let W ∗ and G∗ denote the optimal objective values of models (6) and (7), respectively. Then W ∗ = G∗.

Proof
In both models, based on rjxj ≥ 0, for rj ≥ 0 we have xj ≥ 0 then hj = 0, and for rj < 0 we have xj < 0
then hj = c. Let S1 and S2 be the set of feasible points of models (6) and (7), respectively. Since any feasible
point in (6) is also feasible for (7), S1 ⊆ S2. Now, let (x∗, u∗, z∗) be the optimal solution of (7). As we see,
in (6), when xj ≥ 0, from xj ≤ M(1− wj) and xj ≥ −Mwj , we conclude wj = 0. Similarly, when xj < 0 we
conclude wj = 1. Further, if wj = 0, from pj −Mwj ≤ 0 and pj +Mwj ≥ 0 we have pj = 0. Also if wj = 1,
from −cxj + pj ≤ 0 and cxj − pj +Mwj ≤ M we have pj = cxj .

On the other hand, we consider w∗
j = 0 for x∗

j ≥ 0 and w∗
j = 1 for x∗

j < 0 and by considering p∗j = hjx
∗
j (if

x∗
j ≥ 0, then hj = 0 ; and if x∗

j < 0, then hj = c), (x∗, u∗, z∗, w∗, p∗) is feasible for (6). Now, we indicate it is
also optimal for (6). Suppose by contradiction that (x∗∗, u∗∗, z∗∗, w∗∗, p∗∗) is an optimal solution for model (6),

then λ (
1

T

∑T
t=1 u∗∗

t )− (1− λ)(
∑N

j=1 x∗∗
j rj − rcp

∗∗
j ) ≤ λ (

1

T

∑T
t=1 u∗

t )− (1− λ)(
∑N

j=1 x∗
jrj − rcp

∗
j ). Since

p∗∗j = hjx
∗∗
j and p∗j = hjx

∗
j , (if x∗

j ≤ 0 and x∗∗
j ≤ 0, then hj = 0, and if x∗

j ≥ 0 and x∗∗
j ≥ 0, then hj = c ) we

have λ (
1

T

∑T
t=1 u∗∗

t )− (1− λ)(
∑N

j=1 x∗∗
j rj − rchjx

∗∗
j ) ≤ λ (

1

T

∑T
t=1 u∗

t )− (1− λ)(
∑N

j=1 x∗
jrj − rchjx

∗
j ).

This is in contradiction with the optimality of (x∗, u∗, z∗) for (7), since (x∗∗, u∗∗, z∗∗) is also feasible for (7). This
complates the proof.

As we see, the optimal objective function values of (6) and (7) are equal, while model (7) has fewer constraints
and binary variables. Though model (7) is solved faster than model (6) as can be seen in Section 4, but for higher
dimensions and some K values it is still slow. Thus, in the next section, we discuss the details of PADM to solve it.

4. The PADM

Here, we give the details of the PADM for solving model (7). To do so, we reformulate model (7) as follows:
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min
x,u,w,z

f(x, u, w, z) := λ (
1

T

T∑
t=1

ut)− (1− λ)(

N∑
j=1

xjrj − rchjxj)

s.t. ut +

N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

ut −
N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

N∑
j=1

xj = 1, (8)

N∑
j=1

zj = K,

rjxj ≥ 0, j = 1, ..., N,

εjzj ≤ wj ≤ δjzj , j = 1, ..., N,

ut ≥ 0, t = 1, ..., T,

zj ∈ {0, 1}, j = 1, ..., N,

x = w.

Now let

C = {(xj , ut) : ut +

N∑
j=1

(rt,j − rj)xj ≥ 0, ut −
N∑
j=1

(rt,j − rj)xj ≥ 0,

N∑
j=1

xj = 1, rjxj ≥ 0, ut ≥ 0}

and

D = {(zj , wj) :

N∑
j=1

zj = K,

N∑
j=1

wj = 1, εjzj ≤ wj ≤ δjzj , zj ∈ {0, 1}}.

Since constraint
∑N

j=1 xj = 1 is considered in the set C, it does not necessarily need to be included in the set D.
However, computational experiments showed that the presence of this constraint in both subproblems remarkably
improves the PADM solution. Now, we define the penalty sumproblem of model (8) as follows:

min
x,u,w,z

Φ(x, u, w, z; γ) := λ (
1

T

T∑
t=1

ut)− (1− λ)(

N∑
j=1

xjrj − rchjxj) + γ||x− w||1

s.t. (x, u) ∈ C, (9)
(w, z) ∈ D,

where γ > 0 is the penalty parameter. The PADM steps for a given starting point ws,l and initial value γs for a
penalty parameter are as follows:
Step 1: (xs,l+1, us,l+1) ∈ argmin

(x,u)∈C

Φ(x, u, ws,l; γs).
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Step 2: (ws,l+1, zs,l+1) ∈ argmin
(w,z)∈D

Φ(xs,l+1, w, z; γs).

Step 3: Update γs.
In Step 1, we solve the following problem:

min
x,u

Φ(x, u, ws,l; γs)

s.t. ut +

N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

ut −
N∑
j=1

(rt,j − rj)xj ≥ 0, t = 1, ..., T,

N∑
j=1

xj = 1, (10)

rjxj ≥ 0, j = 1, ..., N,

εj ≤ xj ≤ δj , j = 1, ..., N,

ut ≥ 0, t = 1, ..., T,≥ 0.

Now by using (xs,l+1, us,l+1), the optimal solution of (10), in Step 2 we solve the following problem:

min
w,z

Φ(xs,l+1, w, z; γs)

s.t.

N∑
j=1

wj = 1,

N∑
j=1

zj = K, (11)

εjzj ≤ wj ≤ δjzj ,

zj ∈ {0, 1}.

The PADM algorithm can be outlined as follows:
—————————————————————————————————
The PADM Algorithm
—————————————————————————————————
1: Choose appropriate starting points (x0,0, w0,0) and penalty parameter γ0 > 0.
2: For s=0,1,..., maxiter do
3: Set l=0.
4: while (xs,l, ws,l) is not a partial minimum of (9) with γ = γs do
5: Compute (xs,l+1, us,l+1) by solving (10).
6: Compute (ws,l+1, zs,l+1) by solving (11).
8: end while
9: Choose new penalty parameter γs+1 ≥ γs

10: end for.
———————————————————————————————–

Definition 1
( [12]): Let (x∗, u∗, w∗, z∗) be in the feasible set of (8). Then it is called a partial minimum for (8), if it satisfies

f(x∗, u∗, w∗, z∗) ≤ f(x, u, w∗, z∗),
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for all (x, u, w∗, z∗) in the feasible set of (8) and

f(x∗, u∗, w∗, z∗) ≤ f(x∗, u∗, w, z),

for all (x∗, u∗, w, z) in the feasible set of (8).

With partial minimum, if the coupling constraints are satisfied, we stop with a feasible solution of model (8).
Otherwise, we update the penalty parameter and solve the next penalty problem to find a partial minimum.

Lemma 3
Let (x∗, u∗, w∗, z∗) be a partial minimum of Φ(x, u, w, z; γ) for a fixed γ ≥ 0 and let it is feasible for model (8).
Then (x∗, u∗, w∗, z∗) is also a partial minimum of model (8).

Proof
Let (x, u) ∈ C be such that (x, u, w∗, z∗) is feasible for model (8). Then we have

f(x, u, w∗, z∗) = f(x, u, w∗, z∗) + γ||x− w∗||1
= Φ(x, u, w∗, z∗; γ) ≥ Φ(x∗, u∗, w∗, z∗; γ)

= f(x∗, u∗, w∗, z∗) + γ||x∗ − w∗||1
= f(x∗, u∗, w∗, z∗).

Similarly, for all (w, z) ∈ D such that (x∗, u∗, w, z) is feasible for model (8) we have

f(x∗, u∗, w, z) = f(x∗, u∗, w, z) + γ||x∗ − w||1
= Φ(x∗, u∗, w, z; γ) ≥ Φ(x∗, u∗, w∗, z∗; γ)

= f(x∗, u∗, w∗, z∗) + γ||x∗ − w∗||1
= f(x∗, u∗, w∗, z∗).

Therefore, (x∗, u∗, w∗, z∗) is a partial minimum of model (8).

In the sequel, we prove the convergence of PADM Algorithm.

Theorem 1
Suppose that γs ↗ ∞ and (xs, us, ws, zs) be a sequence of partial minima of (9) generated by the PADM
Algorithm with (xs, us, ws, zs) −→ (x∗, u∗, w∗, z∗). Then, (x∗, w∗) is a partial minimizer of ||x− w||1.

Proof
Let (xs, us, ws, zs) be a partial minimum of Φ(x, u, w, z; γ). Thus

Φ(x, u, ws, zs; γs) ≥ Φ(xs, us, ws, zs; γs),

for all (x, u) ∈ C and

Φ(xs, us, w, z; γs) ≥ Φ(xs, us, ws, zs; γs),

for all (w, z) ∈ D, which are equivalent to

f(x, u, ws, zs) + γs||x− ws||1 ≥ f(xs, us, ws, zs) + γs||xs − ws||1, (12)

for all (x, u) ∈ C and

f(xs, us, w, z) + γs||xs − w||1 ≥ f(xs, us, ws, zs) + γs||xs − ws||1, (13)
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for all (w, z) ∈ D. Since the sequence γs is unbounded, by dividing (12) and (13) by γs, we have

1

γs
f(x, u, ws, zs) +

γs

γs
||x− ws||1 ≥ 1

γs
f(xs, us, ws, zs) +

γs

γs
||xs − ws||1,

for all (x, u) ∈ C and

1

γs
f(xs, us, w, z) +

γs

γs
||xs − w||1 ≥ 1

γs
f(xs, us, ws, zs) +

γs

γs
||xs − ws||1,

for all (w, z) ∈ D. Then for s → ∞ we obtain

||x− w∗||1 ≥ ||x∗ − w∗||1,

for all (x, u) ∈ C and

||x∗ − w||1 ≥ ||x∗ − w∗||1,

for all (w, z) ∈ D. This proves the result.

5. Numerical experiments

In this section, first we compare the performance of models (4)-(7) in terms of in-sample and out-of-sample Sharpe
ratios by the data of S&P index on Information Technology† for 2015-2017 with 48 stocks. For the out-of-sample
performance, we apply the rolling-horizon procedure [13]. The in-sample Sharpe ratio (SR) formula is

SR =
µ− rc

δ
,

where µ, rc and δ are the expected portfolio return, risk-neutral interest rate and the mean-absolute deviation,
respectively, and the out-of-sample Sharpe ratio (ŜR) is

ŜR =
µ̂− rc

δ̂
,

where

δ̂ =
1

T − τ − 1

T−1∑
t=τ

| (x′
t rt+1 − µ̂) |,

µ̂ =
1

T − τ

T−1∑
t=τ

(x′
t rt+1),

and xt is the proportion of investment at time t, t = τ, τ + 1, ..., T − 1, τ is the length of the estimation time
window, rt+1 denotes the stock return and T is the total number of returns in the data set. By considering the stocks
monthly return from 2/1/2015 to 29/12/2017 and an estimation window of τ = 36 data, for 3 years, we use the
2018 data for the out-of-sample.

We compare the Sharpe ratios of models (4) and (5). The results are reported in Table 1, for rc = 0.03, c = 0.1,
and taking −εj = δj = 0.1 that are the lower and upper bounds of the proportion of investment in any stock. We
performed all computations in MATLAB R2017a on a 2.50 GHz laptop with 4 GB of RAM, and we used CVX 2.2

Stat., Optim. Inf. Comput. Vol. 10, June 2022



T. AL-MAADEED, T. KHODAMORADI, M. SALAHI, A. HAMDI 785

Table 1. In-sample and out-of-sample portfolio Sharpe ratios of models (4) and (5) for Information Technology of S&P
index data with λ = 0.5.

Model (4) Model (4) Model (4) Model (5)
(x ≥ 0, rc = 0, c = 0) ( rc = 0, c = 0)

In-sample 0.3020 0.3797 0.4190 0.4190

Out-of-sample -0.0237 0.0742 0.0776 0.0776

software using MATLAB [19] to solve the models. In this table, c = 0 and rc = 0, means no risk-neutral interest
rate and x ≥ 0 shows also that no short-selling.

As we see, in Column 4, the in-sample and out-of-sample portfolio Sharpe ratios of (4) with risk-neutral interest
rate and short-selling are higher than the one in Column 2 (Column 3) without risk-neutral interest rate and short-
selling ( without risk-neutral interest rate and with short-selling). Therefore, the short-selling and risk-neutral
interest rate increase the in-sample and out-of-sample portfolio Sharpe ratios. On the other hand, models (4) and
(5) with these two factor in columns 4 and 5 have similar in-sample and out-of-sample portfolio Sharpe ratios while
model (5) is solved much faster as can be seen in Table 3.

We also compare the Sharpe ratios of models (6) and (7). To solve the mixed-integer models, we used Mosek in
CVX. The results are reported in Table 2 for different K values.

Table 2. In-sample and out-of-sample portfolio Sharpe ratios of models (6) and (7) for Information Technology of S&P
index data with λ = 0.5.

Desired number Model (6) Model (6) Model (6) Model (7)
of stocks (x ≥ 0, rc = 0, c = 0) ( rc = 0, c = 0)

K = 10
In-sample 0.2893 0.2893 0.2893 0.2893

Out-of-sample -0.1127 -0.1127 -0.1127 -0.1127

K = 20
In-sample 0.3020 0.3620 0.4020 0.4020

Out-of-sample -0.0232 0.0736 0.0761 0.0761

K = 30
In-sample 0.3020 0.3797 0.4190 0.4190

Out-of-sample -0.0231 0.0718 0.0786 0.0786

K = 40
In-sample 0.3020 0.3797 0.4190 0.4190

Out-of-sample -0.0237 0.0742 0.0776 0.0776

As one can see, model (6) in Column 4, without risk-neutral interest rate and with short-selling has higher in-
sample and out-of-sample Sharpe ratios than the one without these two factors in Column 3. The in-sample and
out-of-sample Sharpe ratios of (6) in Column 5 with both risk-neutral interest rate and short-selling are higher than
the one in Column 4 with short-selling and without risk-neutral interest rate. On the other hand, models (6) and
(7) with risk-neutral interest rate and short-selling (Columns 5 and 6) have similar in-sample and out-of-sample
Sharpe ratios.

†https://finance.yahoo.com
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To compare the CPU times of models (4)-(7), we used the data set of the NASDAQ? and S&P indexes from
December 2006 until March 2008 when T = 61, rc = 0.03, c = 0.1, and taking −εj = δj = 0.3. The results for
models (4) and (5) are summarized in Table 3. These results show that model (5) is solved much faster than model
(4).

Table 3. Comparison of the CPU times of models (4) and (5) for NASDAQ and S&P indexes data with λ = 0.5.

Indexes Number of stocks Model (4) Model (5)

S&P
N = 280 1.0011e+ 03 1.454

N = 322 1.0036e+ 03 1.862

NASDAQ
N = 456 1.0065e+03 2.177

N = 570 1.0085e+03 2.182

The corresponding results for models (6) and (7) are reported in Table 4 for different K values. These results
indicate that (7) is solved much faster than (6), but it still needs significant amount of time for higher dimensions
and some K values. Thus we compare the performance of PADM Algorithm in terms of objective values and CPU
times for model (9), with model (7) that is solved by Mosek in CVX for the data set of the NASDAQ? and S&P
indexes from December 2006 until March 2008 when T = 61, rc = 0.03, c = 0.1, and taking −εj = δj = 0.3.
In model (9), the initial penalty parameter is set to 0.1 and it is updated with the factor 10. The inner loop is
stopped when ||(xs,l, ws,l)− (xs,l−1, ws,l−1)||∞ ≤ 10−5. The PADM also terminates with a partial minimum if
||x− w||1 ≤ 10−5. The results for both models are summarized in Table 5. In this table, the gap in the last column

is
|f − f̂ |
|f̂ |+ 1

where f and f̂ are the objective values of models (7) and (9), respectively. These results show that except

for two K values, model (9) with the PADM Algorithm is solved much faster than model (7) with gaps that are
small, specially for larger values of K. Since PADM always finds a partial minimum that is close to the optimal
solution and as gaps show, we conclude that the results of PADM is competitive to the results of solving model (7)
by Mosek in CVX.

Table 4. Comparison of the CPU times of models (6) and (7) for NASDAQ and S&P indexes data with λ = 0.5.

Indexes Desired number of stocks Model (6) Model (7)

S&P (N=168)

K=10 > 5e+ 03 53.169
K=20 > 5e+ 03 87.047
K=50 > 5e+ 03 982.866
K=70 > 5e+ 03 382.515

K=100 > 5e+ 03 25.359

NASDAQ (N=200)

K=10 > 5e+ 03 683.402
K=20 > 5e+ 03 809.982
K=50 > 5e+ 03 2.0016e+03
K=70 > 5e+ 03 3.0019e+03

K=100 > 5e+ 03 985.905

6. Conclusions

This paper investigated MAD model with short-selling, risk-neutral interest rate, and cardinality constraints.
Several improved variants of it are proposed. Numerical results on real data of the S&P 500 index, Information
Technology, indicated that using short-selling and risk-neutral interest rate led to better Sharpe ratios compared to
the classical one. Also, the results on the data of NASDAQ and S&P indexes showed that the improved models
are solved significantly faster than the classical ones. To solve models with cardinality constraints, we applied the
PADM that is much faster than Mosek in CVX while having lower gaps in almost all instances. One may consider

Stat., Optim. Inf. Comput. Vol. 10, June 2022



T. AL-MAADEED, T. KHODAMORADI, M. SALAHI, A. HAMDI 787

Table 5. Comparison of objective functions and CPU times of models (7) and (9) with the data of NASDAQ index data, with
different number of stocks and desired number of stocks when xu = −xl = 0.3 and penalty parameter equals to 10−1.

Objective values CPU times
N K Model (7) Model (9) Model (7) Model (9) Gap %

N = 168

K=10 -0.0049 -0.0018 63.869 16.489 0.31
K=20 -0.0232 -0.0138 201.1172 7.094 0.92
K=50 -0.0648 -0.0548 1.0064e+03 7.239 0.94
K=70 -0.0816 -0.0701 1.0012e+03 9.349 1.07

K=100 -0.0930 -0.0914 28.645 6.759 0.15
K=150 -0.0931 -0.0931 2.113 4.033 1.3417e-12

N = 200

K=10 -0.0061 -0.0023 683.402 16.451 0.83
K=20 -0.0236 -0.0131 809.982 10.036 1.02
K=50 -0.0672 -0.0581 2.0016e+03 8.041 0.86
K=70 -0.0877 -0.0771 3.0019e+03 8.666 0.97

K=100 -0.1080 -0.0973 985.905 6.072 0.97
K=150 -0.1132 -0.1132 1.895 2.246 1.6986e-11

N = 500

K=10 -0.0139 -0.0001 1.5105e+03 19.612 1.38
K=20 -0.0413 -0.0284 > 5e+ 03 8.745 1.24
K=50 -0.1088 -0.0913 > 5e+ 03 9.095 1.58
K=70 -0.1463 -0.1306 > 5e+ 03 9.079 1.37

K=100 -0.1940 -0.1812 > 5e+ 03 12.676 1.07
K=150 -0.2601 -0.2425 > 5e+ 03 13.615 1.40
K=200 -0.3057 -0.2894 21.148 6.497 1.25
K=300 -0.3495 -0.3495 5.426 2.031 4.9281e-14

N = 1000

K=10 -0.0152 -0.0030 > 5e+ 03 14.894 1.20
K=20 -0.0470 -0.0259 > 5e+ 03 14.724 2.02
K=50 -0.1290 -0.1017 > 5e+ 03 11.812 2.42
K=70 -0.1774 -0.1480 > 5e+ 03 93.978 2.50

K=100 -0.2428 -0.2118 > 5e+ 03 10.899 2.50
K=150 -0.3360 -0.3148 > 5e+ 03 16.051 1.59
K=200 -0.4131 -0.4017 21.373 8.078 0.81
K=300 -0.5443 -0.5345 21.288 7.412 0.63

applying other algorithms such as harmony search and particle swarm optimization to the enhanced model and
evaluate their performance [1].
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