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Abstract The choice of optimum threshold in Extreme Value Theory, peaks over threshold, has been a topic of discussion
for decades. A threshold must be chosen high enough to control the bias of the extreme value index. On the other hand, if a
threshold is chosen too high the variance becomes a problem. This is a very difficult trade-off and has been studied over the
years from various viewpoints. More often these studies aim at methods for choosing the threshold in univariate settings. Not
as many literature are available for choosing the threshold in a multivariate setting. In this paper we consider an approach for
choosing the threshold when working with bivariate extreme values above a threshold. This approach makes use of Bayesian
methodology. It adds value to the existing literature since it is also possible to use this approach without visual inspection.
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1. Introduction

The choice of threshold plays an important role in Extreme Value Theory (EVT) where peak over threshold (POT)
models are considered. POT models only model the observations above the chosen threshold. A threshold should
be chosen high enough so that the bias of the extreme value index (EVI) is controlled, but on the other hand if it
is chosen too high the variance becomes out of control. Various literature are devoted in trying to find a midway
between these scenarios, see for example Coles [5], Guillou & Hall [8], Beirlant et al. [2], Thompson et al. [17],
Wong & Li [21], Yang et al. [22] and Kiran & Srinivas [11] to name a few. A popular approach for choosing a
threshold is to estimate the EVI at various thresholds. These estimates are then plotted against the various threshold
values. Visual inspection is then required, an optimal threshold choice will be where the EVI estimates appears to
be stable. Although this method is popular and rather simple to use, the drawback is that the plot is not always
easy to inspect and a clear picture, of a stable EVI estimate area, is not always clearly visible, especially in real life
situations. Verster & Raubenheimer [20] considered a generalized model, the Topp-Leone Pareto distribution, to
assist in choosing a threshold in the γ positive domain. Their method also allows for choosing a threshold without
visual inspection. Most of the above literature are concerned with the threshold choice in a univariate setting.
The estimation of the dependence parameter plays a vital role in multivariate extreme values. It is essential to
choose a suitable threshold because the threshold is important for estimating the dependence parameter effectively,
see for example Joe et al. [10], Thibaud et al. [16] and Lee et al. [14]. It is therefore also essential to consider
choosing an optimum threshold in a multivariate extreme value scenario. See for example Borsos [4] for a recent
application of bivariate extreme models. In this paper we address the issue of choosing a threshold in a bivariate
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extreme value setting. We introduce a different approach for choosing the threshold by incorporating the bivariate
tail model of Ledford & Tawn [13] and the threshold approach of Verster & Raubenheimer [20]. A Bayesian
approach is considered for modeling the dependence tail parameter. The rest of the paper is set out as follows: A
brief summary on univariate POT models is given in Section 1. In Section 2 the theory of the Ledford & Tawn [13]
bivariate tail model is explained as well as the Bayesian estimation of the tail parameter following the paper by
Verster & Kwaramba [19]. Section 3 explains our method for choosing an optimum threshold by expanding on the
work of Verster & Raubenheimer [20]. A small simulation study is conducted in Section 4 and Section 5 applies
our threshold selection method on real data sets.

2. POT models

It is well known in EVT that the excesses of the conditional distribution, X − u, given X > u can be modelled
through a POT model known as the generalized Pareto distribution (GPD), see for example Beirlant et al. [2] and
de Haan and Ferreira (2006). The GPD is given in (1), where u is the threshold

P (X − u > y |X > u ) =
F (u+ y)

F (u)
→ Hγ (y) = (1 + γy)

− 1
γ , x > u, γ ∈ R. (1)

It often happens that one is only interested in Pareto-type scenarios where γ is positive. The survival function of
Pareto-type distributions is given in (2) with slowly varying function l, satisfying l(xu)

l(u) → 1 as u→∞ Beirlant
et al. [2]. The POT model in (1) can then be simplified to a more convenient (simpler) model, given in (3), as as
u→∞

F (x) = x−γ l (x) , x > 1, (2)

P

(
X

u
> y |X > u

)
→ Hγ (y) = y−γ , y > 1. (3)

The density function of (3) is:

f (y, γ) = γ (y)
−(γ+1)

, γ > 1, y >
x

u
. (4)

For convenience (4) is referred to as the probability density function of the bounded Pareto distribution. A
threshold should be chosen high enough so that the bias of the EVI, 1

γ , is controlled, but on the other hand if it is
chosen too high the variance becomes out of control. In this paper we consider a Bayesian approach for estimating
the EVI. If Jeffrey’s prior is assigned to γ, p (γ) ∝ 1

γ , the posterior distribution (prior x likelihood function) is

p(γ|y)& ∝ γn−1e−γ(
∑n
i=1 logyi), (5)

Beirlant et al. [2]. It is clear that the posterior of γ follows a Gamma distribution and that the EVI, 1
γ , follows an

Inverse Gamma distribution with parameters n and
∑n

i=1 log (yi), where n is the number of observations above the
threshold.

3. Bivariate tail model

In bivariate EVT the estimation of the dependence parameter plays an important role. Ledford and Tawn (1996)
approaches the modeling of bivariate extreme values in the following way: The joint tail model is: P (X > r, Y >
r) ∼ L(r) r−1/η as r →∞ for random vector (X, Y ) where L is a slowly varying function with η ∈ (0, 1].
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η is known as the tail index or dependence parameter. If η = 1 it indicates that the two random variables are
asymptotically dependent and η < 1 refer to asymptotic independence where η measures the amount of tail
dependence within the asymptotical independence (Beirlant & VandeWalle [3]). Let S = min then

P (S > r) = P (X > r, Y > r) ∼ L (r) r−1/η, r →∞. (6)

Equation (6) corresponds to (2), thus P (Su > r|S > u)→ H̄η(r) = r−
1
η , r > 1 as u→∞ (see(3)). The random

vector (X, Y ) has unit Fréchet or Pareto marginals (Draisma et al. [6]). In this paper we will transform the
marginals to unit Pareto distributions as explained in Beirlant & VandeWalle [3] as follows: Suppose that RX,i
is the rank of Xi, i = 1, . . . , n and RY,i is the rank of Yi, i = 1, . . . , n then

Si = min

− 1

log
(
RX,i
n+1

) ,− 1

log
(
RY,i
n+1

)
. (7)

The dependence parameter, η can be estimated through any well know EVI estimator, such as the Hill estimator,
generalized Hill estimator and biased reduced Hill estimator to name a few. Refer to Beirlant et al. [2] and Albrecher
et al. [1] for more information on these estimates. In this paper we consider the Bayesian estimate introduced by
Verster & Kwaramba [19]. Since the dependence parameter η lies between 0 and 1, a Beta prior is chosen on η,
π(η) ∝ ηa−1 (1− η)

b−1. The prior allows us to build prior information about η into the estimation process. The
posterior is then

π(η|a, b, t) ∝ ηa−1(1− η)b−1
n∏
i=1

1

η
t
−1− 1

η

i ∝ ηa−n−1(1− η)b−1e−
1
η

∑n
i=1 log (ti), ti > 1, 0 < η < 1, (8)

where ti = si
u represents the relative excesses above the threshold and n the number of observations above the

threshold Verster & Kwaramba [19]. It can be shown that the posterior is proper, refer to (Verster & Kwaramba
[19]) for more information. In their paper they showed that when a large number of η’s is simulated from the
posterior the average over these simulated η’s provides a good estimate for η. We assume that the hyper parameters,
a and b, are known and fixed at each threshold. Since the excesses above a sufficient threshold, follows a Pareto-
type distribution and according to (5) the posterior of 1

γ follows an Inverse Gamma distribution, we use an
empirical Bayes approach to choose a and b accordingly. The expected value and variance of an Inverse Gamma
are E( 1

γ |y) =
∑n
i=1 log yi
n−1 and V ar( 1

γ |y) =
(
∑n
i=1 log yi)

2

(n− 1)2(n− 2) respectively. One can then solve a
and b by setting the expected value and variance of the Beta prior equal to E( 1

γ |y) and V ar( 1
γ |y) respectively. The

main question however remains, where should one choose the threshold, such that η is estimated properly and that
the correct inference is made about the dependence structure between the random variables?

4. Top Leone generalization

Verster & Raubenheimer [20] showed that the Topp Leone Pareto distribution can successfully be used to indicate a
suitable threshold when γ > 0. This generalization of the Topp & Leone [18] distribution given by Rezaei et al. [15]
replaces the original 0 ≤ x ≤ 1 with the CDF of any baseline distribution. Verster & Raubenheimer [20] showed
that when the bounded Pareto CDF is considered as the baseline distribution the generalization parameter, α, assists
in choosing the threshold. This is because α = 1 refers back to the bounded Pareto distribution with EV I = γ

2 (see
Verster & Raubenheimer [20]). In this paper we consider the generalized Topp-Leone distribution of Rezaei et al.
[15] with CDF and pdf given in (9) and (10)

F (x;α,θ) = {G (x;θ) [2−G (x;θ)]}α =
{

1− [1−G (x;θ)]
2
}α

(9)
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and

f (x;α,θ) = 2αg (x;θ) [1−G (x;θ)]
{

1− [1−G (x;θ)]
2
}α−1

(10)

where g (x;θ) and G (x;θ) denote the probability density and CDF of the bounded Pareto from (6). Thus, the
Top-Leone Pareto (TLPa) density becomes:

f (y; α, γ) =
2α

η
y−2/η−1

(
1− y−2/η

)α−1

, (11)

where y > 1, η > 0 (the dependence parameter) and α > 0. If α = 1, (11) becomes the bounded Pareto distribution
with EV I = ξ = η

2 . The main idea in this study is the following: according to the POT theory from Section 1, the
TLPa becomes the bounded Pareto (at a suitable high threshold) such that α→ 1 as n→∞. One would therefore
inspect the behavior of α over different threshold values. At a sufficient threshold, α will be close to one. Again,
we consider a Bayesian approach to estimate the two parameters, ξ and α. Since the dependence parameter lies
between 0 and 1 a Beta prior is assigned to ξ, a Jeffreys prior is assigned to α, p(α) ∝ 1/α. The independent joint
prior is then: p(ξ, α) ∝ α−1ξ

a−1
(1− ξ)b−1 with posterior:

p (ξ, α|a, b, y) ∝ αn−1ξa−1−n (1− ξ)b−1
e−( 1

ξ+1)
∑n
i=1 log yie

(α−1)
∑n
i=1 log

(
1−y

− 1
ξ

i

)
. (12)

The conditional posteriors of α and ξ can be derived as:

p (α|ξ, a, b, y) ∝ αn−1e
α

[∑n
i=1 log

(
1−y

− 1
ξ

i

)]
∼ Gamma

(
n,−

n∑
i=1

log
(

1− y−
1
ξ

i

))
, (13)

and

p (ξ|α, a, b, y) ∝ ξa−1−n (1− ξ)(b−1)
e−

1
ξ

∑n
i=1 log yi e

(α−1)
∑n
i=1 log

(
1−y

− 1
ξ

i

)
, (14)

respectively. It can be shown that (14) is proper, see the Appendix. The following section inspects some bivariate
scenarios through a small simulation study to inspect the behavior of ξ and α.

5. Simulations

In this section, 300 observations are simulated from the following distributions:

i bivariate Normal distribution with ρ = 0.9 and ρ = 0.6. The true dependence parameter is 1+ρ
2 [13].

ii bivariate Morgenstern distribution with αBM= 0.75, 0 and -0.75 respectively. The true dependence parameter
is 0.5, for all values of αBM [13].

iii bivariate extreme value distribution with a logistic dependence structure with αBEV = 0.6 and 0.8. The true
dependence parameter is 1, for all values of αBEV [13].

For each simulation scenario the dependence parameter, ξ, and α will be estimated over a range of thresholds, from
the 5th largest observation to the 10th smallest observation. For each threshold 2000 ξ’s and α’s are simulated
from the conditional posteriors in (13) and (14) through a Gibbs sampler technique. The simulation time is greatly
reduced, since the conditional posterior of α can be expressed as a Gamma distribution, The mean over the 2000
simulated parameter values are taken as an estimate at each threshold. The whole simulation process is repeated
100 times. The average over the 100 parameter estimates is then taken at each threshold. The popular Hill estimate
is also calculated at each threshold as a comparison to our estimate. The Hill estimate is

η̂Hill =
1

k

k∑
j=1

logSn−j+1,n − logSn−k,n. (15)
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[9] where k represents the number of observations above the threshold. The aim of this study is to investigate a
method for choosing an optimum threshold. Therefore, the focus is mainly of the performance of α (as it moves
towards one) and not on the dependence parameter’s performance, and the comparison thereof with other known
dependence parameter estimators. The root mean square error (RMSE), given below are also calculated for the
various simulations at each threshold. A small RMSE (close to zero) is preferred.

RMSE(ξ̂) =

√√√√( 1

N

N=2000∑
j=1

(
ξ̂j − ξ

)2
)

(16)

The left side of Figures (1- 7) shows the RMSE of ξ and the right side shows the estimate of α over the various
thresholds. From Figures (1- 7) (right side) one can see that there are a range of k values for which α is close to
one. This will be the region where the excesses follow the bounded Pareto distribution and where the optimum
threshold will lie. For threshold values where α is not close to one the excesses do not yet follow a bounded Pareto
distribution and should rather not be chosen as an optimum threshold. Figures(1- 7) (left side) shows that for most
of the simulations (except for the bivariate Morgenstern, α = 0.75) the EVI estimate of our method outperforms
the Hill, since the RMSE is smaller over the different thresholds. In the case of the bivariate Morgenstern, α= 0.75,
the performance of the two estimators is similar. This shows that our proposed Beta prior and Bayesian approach
is appropriate for estimating the EVI. The RMSE (in all the figures) also shows values close to zero in the range of
thresholds that coincides with α values close to one, confirming an appropriate choice of threshold.
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Figure 1. RMSE of ξ (left) and α estimates (right) from a bivariate Normal distribution with ρ = 0.6 (true EVI is 0.8).
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Figure 2. RMSE of ξ (left) and α estimates (right) from a bivariate Normal distribution with ρ = 0.9 (true EVI is 0.95).
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Figure 3. RMSE of ξ (left) and α estimates (right) from a bivariate Morgenstern distribution with α=0.75 (true EVI is 0.5).
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Figure 4. RMSE of ξ (left) and α estimates (right) from a bivariate Morgenstern distribution with α=0 (true EVI is 0.5).
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Figure 5. RMSE of ξ (left) and α estimates (right) from a bivariate Morgenstern distribution with α=-0.75 (true EVI is 0.5).
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Figure 6. RMSE of ξ (left) and α estimates (right) from a bivariate extreme value distribution with α=0.6 (true EVI is 1).
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Figure 7. RMSE of ξ (left) and α estimates (right) from a bivariate extreme value distribution with α = 0.8 (true EVI is 1).
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6. Real data Sets
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Figure 8. Scatterplots of the Bloemfontein rainfall (top-left), wave and surge height (top-right) and Loss-ALAE (bottom)
datasets.
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Figure 9. EVI estimate (left) and α estimate (right) for Bloemfontein rain
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Figure 10. EVI estimate (left) and α estimate (right) for the wave and surge height.

Stat., Optim. Inf. Comput. Vol. 10, March 2022



A. VERSTER AND N. KWARAMBA 515

0 500 1000 1500 2000 2500 3000

0
.0

0
.5

1
.0

1
.5

k

E
V

I

γ
Hill

0 500 1000 1500 2000 2500 3000

0
.5

1
.0

1
.5

2
.0

k

α

Figure 11. EVI estimate (left) and α estimate (right) for the Loss-ALAE.

Three datasets are considered: the wave and surge heights data, the Bloemfontein rainfall data and the Loss-
ALAE data. The wave and surge heights data contain 2894 data pairs with a wave height and surge height
measurement in metres at a single location of South-West England. The data frame can be found in the “ismev”
package in R, https://cran.r-project.org/web/packages/ismev/ismev.pdf. The Bloemfontein rainfall dataset contains
the total rainfall for the months of January and February from 1970 to 2017 (refer to Verster & Kwaramba
[19]). The Loss-ALAE data contains 1500 data pairs with indemnity payment (loss) and the allocated loss
adjustment expense (alae) observations in the USD. More information on this dataset can be found in Frees &
Valdez [7] and Klugman & Parsa [12]. The data frame can be found in the “evd” package in R, https://cran.r-
project.org/web/packages/evd/evd.pdf. Figure 8 shows the scatterplots of the three datasets, Bloemfontein rainfall
(top, left), wave and surge heights (top, right) and Loss-ALAE (bottom). It is clear from the figures that dependence
is present. Figures (9- 11) (left) shows the ξ estimate over the different thresholds and Figures (9- 11) (right) shows
the α estimate. From Figures(9- 11) (left column) it is difficult to see a stable area over the thresholds. Choosing an
optimum threshold (and an ξ estimate) from the left-side graphs is difficult. However, the right column of Figures
(9- 11) assists in the choice of threshold. Through visual inspection one can see that there is an area where α is
close to one. For the Bloemfontein rainfall, Figure 9 (right) α is close to one for k ≈ 20− 40 observations above
the threshold. For the wave and surge heights, Figure 10 (right) α is close to one for k ≈ 250− 750 observations
above the threshold. In the Loss-ALAE case, Figure 11 (right) α is close to one for k ≈ 250− 500 observations
above the threshold. These will be the thresholds for which the excesses follow a bounded Pareto distribution and
k should be chosen in this region. Up to now the threshold was chosen visually by inspecting the behavior of α.
We will choose the threshold value in a region where α is close to one. It is also possible to choose a threshold
without visual inspection by calculating the squared error between the simulated α’s and 1 at different thresholds.
This can easily be achieved by using (13). The conditional posterior of α, given ξ and the data above the threshold,
follows a Gamma distribution. For a set of ξ values, α’s can be simulated (from the Gamma distribution) at different
thresholds. The threshold that matches the smallest squared error can then be chosen (together with the ξ estimate
at that threshold). This approach was considered for the three datasets and the corresponding values were calculated
as follows:

• Bloemfontein rainfall: Threshold: k = 31, EVI estimate = 0.85.
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• Wave and surge heights: Threshold: k = 659, EVI estimate = 0.83011.
• Loss-ALAE: Threshold: k = 248, EVI estimate = 0.8288.

7. Conclusion

In this study we have shown that the TLPa distribution can be used successfully when modelling the minimum
transformed bivariate extreme values excesses above a threshold. The TLPa was previously used in a univariate
setting. In this paper the TLPa with dependance parameter, ξ, and generalization parameter, α, is fitted to bivariate
extreme observations. The parameter, α plays a valuable role in choosing the optimum threshold. It is well known
in EVT that above a suitable threshold the relative excesses follow a Pareto-type distribution. For this to hold, α
in the TLPa (also a POT model) must go to one. A Bayesian approach is considered, and a Beta prior is assumed
on the dependence parameter since we know the parameter lies between 0 and 1. The conditional distribution of
α given the dependence parameter and the data was derived in Section 4 and it is was shown that this conditional
distribution can be expressed as a Gamma distribution. This expression reduces the simulation time. The advantage
of our method is that the conditional posterior (13) can be used to choose a threshold without visual inspection by
considering the mean squared difference. This was shown in the real-life examples of Section 6.

Appendix

The conditional density of ξ|a, b, α, y is

p (ξ|α, a, b, y) ∝ ξa−1−n (1− ξ)(b−1)
e
− 1
ξ
∑n
i=1

log yi e
(α−1)

∑n
i=1 log

(
1−y

− 1
ξ

i

)

where

e
(α−1)

∑n
i=1 log

(
1−y

− 1
ξ

i

)
=

n∏
i=1

(
1− y−

1
ξ

i

)(α−1)

=

n∏
i=1

(
1− e−1/ξ

∑n
i=1 logyi

)α−1

.

Then Using Maclaurin expansion e−1/ξ
∑n
i=1 logyi ≈ 1− 1/ξ

∑n
i=1 logyi and e

(α−1)
∑n
i=1 log

(
1−y

− 1
ξ

i

)
=∏n

i=1

(
1
ξ logyi

)α−1

the posterior becomes

p(ξ|α, a, b, y) ∝ ξa−1−αn(1− ξ)(b−1)e−
1
ξ

∑n
i=1 log yi .

To show that p (ξ|α, a, b, y) is proper we have to show that
∫ 1

0
p (ξ|α, a, b, y) dξ = c, where c is a constant.

Approximate e−
1
ξ

∑n
i=1 log yi with Maclaurin expansion as 1− 1

ξ

∑n
i=1 log yi, then∫ 1

0

p (ξ|α, a, b, y) dξ =

∫ 1

0

ξa−1−αn (1− ξ)b−1
dξ−

n∑
i=1

log yi

∫ 1

0

ξa−2−αn (1− ξ)b−1
dξ = c

where c =
{

Γ(b)Γ(a−αn)
Γ(a+b−αn) −

∑n
i=1 log yi Γ(b)Γ(a−αn−1)

Γ(a+b−αn−1)

}−1
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