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Abstract In this article, we introduce some reliability concepts for the bivariate Pareto Type II distribution including
joint hazard rate function, CDF for parallel and series systems, joint mean residual lifetime, and joint vitality function. The
maximum likelihood and Bayesian estimation methods are utilized to estimate the model parameters. Simulation is carried
out to assess the performance of the maximum likelihood and Bayesian estimators, and it is found that the two approaches
work quite well in estimation process. Finally, a real lifetime data is analyzed to show the flexibility and the importance of
the introduced bivariate mode.
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1. Introduction

Several continuous distributions have been extensively utilized for modeling real data in many practical fields,
and consequently several classes of distributions have been proposed in the statistical literature. See, Jehhan et al.
(2018), Eliwa et al. (2018, 2020, 2021), El-Morshedy et al. (2020), El-Morshedy and Eliwa (2019). The major
aim of proposing various extensions of probability distributions is to get the most fit distribution to real data.
Since there are types of data sets univariate (continuous/discrete) and bivariate (continuous/discrete) where this
data can be generated in natural such as failure times, temperature, windspeed, daily/death cases of Covid-19 in
different countries, score of teams in any game, number of students who admitted to study various sciences in
any country, lifetime of any component/device, among others. To study the previous examples of date in case of
bivariate observations, we should get bivariate extensions to a univariate one by utilizing several approaches like
shock mode Marshall-Olkin as an example. The Marshall-Olkin technique is the most popular approach in this
regard because the generated probability distribution from this method has more flexibility as compared to another
one generated utilizing another technique. The authors in statistical literature aimed to propose several extensions,
modifications, or generalization of bivariate model to study different types of data sets in various areas, see for
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instance, Ibrahim et al. (2019), Rafiei and Iranmanesh. (2020), El-Sherpieny et al. (2022), Eliwa and El-Morshedy
(2019), and El-Morshedy et al. (2020a, 2020b). Bivariate Pareto (BP) model is popular model in many applied
areas, and has many applications, see Lindley and Singpurwalla (1986), Basu (1990), Sankaran and Nair (1993),
Veenus and Nair (1994), Rachev et al. (1995), Nadarajah and Kotz (2006), Nadarajah (2009), Asimit et al. (2010),
Papadakis and Tsionas (2010), Hakamipour et al. (2011), among others. In this paper, we focus our efforts to derive
some reliability properties of one of the most important distributions in the statistical literature, called the bivariate
Pareto Type II (BPT-T2) distribution.

2. The BPT-T2 Distribution

The random variable Y is said to have Pareto Type II with parameters ϑ > 0 and ζ > 0, say PT-T2(ϑ, ζ), if its CDF
is given by

F (y) = 1−
(
ζ

y

)ϑ

; y ≥ ζ > 0. (1)

Veenus and Nair (1994) proposed a BPT-T2 distribution with joint reliability (JR) function

R (x1, x2) =

(
ζ

max(x1, x2)

)ϑ3 2∏
i=1

(
ζ

xi

)ϑi

; x1, x2 ≥ ζ > 0, (2)

where 0 < ζ ≤ min(x1, x2) < ∞ and ϑj > 0; j = 1, 2, 3. The marginal of Xi; i = 1, 2 is given by

RXi
(xi) =

(
ζ

xi

)ϑi+ϑ3

; xi ≥ ζ > 0. (3)

Equation (3) represents the survival function (SF) of the PT-T2 distribution with parameters (ϑi + ϑ3, ζ ). Also, we
find that X1 and X2 are independent iff ϑ3 = 0. Further, the marginal distribution to X1 and X2 can be written in
a form

FXi (xi) =
(ϑi + ϑ3)xi

xi − [(1− ϑi − ϑ3)mwi
(xi)]

; i = 1, 2, (4)

where mwi
(xi) is the marginal of mean waiting time (MWT). The corresponding joint CDF is given as

F (x1, x2) = 1−
(

ζ

x1

)ϑ1+ϑ3

−
(

ζ

x2

)ϑ2+ϑ3

+

(
ζ

max (x1, x2)

)ϑ3 2∏
i=1

(
ζ

xi

)ϑi

. (5)

The corresponding joint PDF is given by

f (x1, x2) =

 f1 (x1, x2) ; Ψ
f2 (x1, x2) ; Ψ∗

f0 (x) ; Ψ∗∗,
(6)

where Ψ, Ψ∗ and Ψ∗∗ represent the terms x1 < x2, x2 < x1 and x1 = x2 = x, respectively, for positive domain,

f1 (x1, x2) = ϑ1 (ϑ2 + ϑ3)

(
ζ

x1

)ϑ1+1(
ζ

x2

)ϑ2+ϑ3+1

,

f2 (x1, x2) = ϑ2 (ϑ1 + ϑ3)

(
ζ

x1

)ϑ1+ϑ3+1(
ζ

x2

)ϑ2+1

,

and

f0 (x) = ϑ3

(
ζ

x

)ϑ1+ϑ2+ϑ3+1

.
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Figure 1 shows the 3D plot of the joint PDF for some specific parameter values ϑ1 = 0.5, ϑ2 = 0.5, ϑ3 = 0.5, and
ζ = 3.
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Figure 1. The joint PDF of the BPT − T2 model.

Assume X1 and X2 are the lifetimes of two components in two different systems (series and parallel). Then, the
distributions of Sseries = min(X1, X2) and Tparallel = max(X1, X2) are given by

Fseries (s) = 1−
(
ζ

s

)ϑ1+ϑ2+ϑ3

,

and

Fparallel (t) = 1−
(
ζ

t

)ϑ1+ϑ3

−
(
ζ

t

)ϑ2+ϑ3

+

(
ζ

t

)ϑ1+ϑ2+ϑ3

, (7)

respectively. Assume Y ∼ PT-T2(ϑ, ζ) distribution and Y is independent on (X1, X2) then

R = Pr [Y < Tparallel] =

(
ϑ

ϑ1 + ϑ3 + ϑ
+

ϑ

ϑ2 + ϑ3 + ϑ
− ϑ

ϑ1 + ϑ2 + ϑ3 + ϑ

)
. (8)
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3. Reliability Properties

3.1. Bivariate increasing (decreasing) failure on average BIFRA (BDFRA)

Assume two vectors u = (0, u) and v = (0, v), then the distance is

d (u, v) = ∥u, v∥ =
√

u2 + v2,

see Zohdy (2013). A distribution F has BIFRA (BDFRA) if

1√
u2 + v2

∫ u

0

∫ v

0

h(x1, x2) dx1dx2, (9)

is increasing (decreasing) in v > 0 for all fixed u > 0. Moreover, if Equation (9) is increasing (decreasing) in u > 0
for all fixed v > 0. If (X1, X2) ∼ BPT-T2 distribution, then

1√
x2
1 + x2

2

logR (x1, x2) =
1√

x2
1 + x2

2

{(ϑ1 + ϑ2 + ϑ3) logζ − ϑ1logx1 − ϑ2logx2 − ϑ3logmax (x1, x2) } < 0,

is decreasing in x1 (x2) > 0 for fixed x2 (x1) > 0. Thus, BPT-T2 distribution is BDFRA.

3.2. Hazard rate (HR) components

Basu (1971) introduced the first definition of the HR in case of bivariate observations, i.e. h(x1, x2) =
f(x1, x2)/R(x1, x2). If (X1, X2) ∼ BPT-T2 distribution, then the BFR function is given by

h (x1, x2) =

 h1 (x1, x2) ; Ψ
h2 (x1, x2) ; Ψ∗

h0 (x) ; Ψ∗∗,
(10)

where

h1 (x1, x2) =
ζ2ϑ1 (ϑ2 + ϑ3)

x1x2
, h2 (x1, x2) =

ζ2ϑ2 (ϑ1 + ϑ3)

x1x2
, h0 (x) =

ζϑ3

x
.

Figure 2 shows the 3D plot of the joint HRF for some specific parameter values ϑ1 = 0.5, ϑ2 = 0.5, ϑ3 = 0.5, and
ζ = 4.

From Equation (10), it is noted that the joint HR is decreasing in x1 and x2. Another concept related to the HR
function, Johnson and Kotz (1975). If (X1, X2) ∼ BPT-T2 distribution, then

h (X1 | X2 > x2) =


ϑ1

x1
; Ψ

ϑ1+ϑ3

x1
; Ψ∗,

(11)

and

h (X2 | X1 > x1) =


ϑ2+ϑ3

x2
; Ψ

ϑ2

x2
; Ψ∗,

(12)

To test the monotonicity of the HR at X1 < X2, we form at first the following formula

f (x1 | X2 > x2) =
ϑ1ζ

γ1+1

xϑ1+2
1

,
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Figure 2. The joint HRF of the BPT − T2 model.

it is found that d
dx1

η (x1) < 0 where (η(s) = − d
ds lnf(s) ), hence h1(x1, x2) is DFR in x1. Similarly, h2(x1, x2) is

DFR in x2. On the other hand, in case of 1 > X2 , we form

f (x2 | X1 > x1) =
ϑ2ζ

ϑ2+1

xϑ2+2
2

,

then d
dx2

η (x2) < 0, hence h2(x1, x2) is DFR in x2. Similarly, h1(x1, x2) is DFR in x1. Cox (1972) defined the
BVFRF as a vector

h (x) =
(
h (x) |Sseries

, h12(x1|x2)|X2:Failure
, h21(x2|x1)|X1:Failure

)
. (13)

If (X1, X2) ∼ BPT-T2 distribution, then the components of Cox vector can be expressed as(
ϑ1+ϑ2+ϑ3

x
,
ϑ1+ϑ3
x1

,
ϑ2+ϑ3
x2

)
,

respectively. Based on Oakes (1989) and Clayton (1978) concepts, it is found that h(x1|X2=x2)
h(x1,x2)

greater than one, by
another way, for (X1, X2) ∼ BPT-T2, it is found that the association between X1 and X2 greater than one.

3.3. Bivariate vitality function (BVF)

The BVF of (X1, X2) defined on positive domain as a binomial vector, where

vj (z1, z2) = E (Zj | Z1 > z1, Z2 > z2) ; j = 1, 2. (14)

Stat., Optim. Inf. Comput. Vol. 12, January 2024



M. S. ELIWA, A. TYAGI, M. ALIZADEH AND M. EL-MORSHEDY 261

For more details, see Sankaran and Nair (1991). Under condition of X1 < X2, if (X1, X2) ∼ BPT-T2 distribution,
then the binomial vector can be proposed as(

x1 +
x1

ϑ1 − 1
, x2 +

x2

ϑ2+ϑ3 − 1

)
,

for ϑ1 > 0 and ϑ2 + ϑ3 > 0. Similarly, for X1 > X2, we get the binomial vector can be introduced as(
x1 +

x1

ϑ1+ϑ3 − 1
, x2 +

x2

ϑ2+ϑ3 − 1

)
,

for ϑ2 > 0 and ϑ1 + ϑ3 > 0. Another extension of BVF can be expressed

v (x) =
(
v (x) |Sseries

, v12(x1|x2)|X2:Failure
, v21(x2|x1)|X1:Failure

)
.

If (X1, X2) ∼ BPT-T2 distribution, then

v (x) =

(
(ϑ1+ϑ2+ϑ3)x

ϑ1+ϑ2+ϑ3 − 1
,

ϑ1x1

ϑ1 − 1
,
(ϑ2+ϑ3)x2

ϑ2+ϑ3 − 1

)
.

3.4. Bivariate mean residual lifetime (BMRL)

The BMRL can be expressed as

m (x1, x2) =
1

R(x1, x2)

∫ ∞

t

∫ ∞

t

R (x1, x2) dx1dx2. (15)

If (X1, X2) ∼ BPT-T2 distribution, then

m(t) =


t2

(ϑ1+ϑ3−1)(ϑ2−1) ; ϑ1 + ϑ3 > 1, ϑ2 > 1

t2

(ϑ2+ϑ3−1)(ϑ1−1) ; ϑ2 + ϑ3 > 1, ϑ1 > 1,

(16)

is increasing in t ≥ 0. A second definition for the BMRL was proposed by Arnold and Zahedi (1988) as a binomial
vector as

mj (z1, z2) = E (Zj − zj | Z1 > z1, Z2 > z2) ; j = 1, 2.

Under condition of X1 > X2, if (X1, X2) ∼ BPT-T2 distribution, then the MRL function gradient is given by

m (x1, x2) =

(
x1

ϑ1 + ϑ3 − 1
,

x2

ϑ2 − 1

)
; ϑ1 + ϑ3 > 1, ϑ2 > 1,

which is increasing. Similarity, in case of X1 < X2, we get

m (x1, x2) =

(
x1

ϑ1 − 1
,

x2

ϑ2 + ϑ3 − 1

)
; ϑ1 > 1, ϑ2 + ϑ3 > 1,

which is increasing. Moreover, Asha and Jagathnath (2008) defined another definition to BMRL which takes the
following form

m (x) =
(
m (x) |Sseries

, m12(x1|x2)|X2:Failure
,m21(x2|x1)|X1:Failure

)
.

If (X1, X2) ∼ BPT-T2 distribution, then

m (x) =

(
x

ϑ1+ϑ2+ϑ3 − 1
,

x1

ϑ1+ϑ3 − 1
,

x2

ϑ2+ϑ3 − 1

)
,

for ϑ1+ϑ2+ϑ3 > 1, ϑ1+ϑ3 > 1 and ϑ2+ϑ3 > 1.
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4. Estimation Methods

4.1. Maximum likelihood estimation (MLE)

In this section, the parameters of the BPT-T2 model are estimated utilizing MLE approach. Suppose
(X11,X21), (X12,X22), ..., (X1n,X2n) is a random sample from BPT-T2 distribution where n1=(i,X1i<X2i),
n2=(i,X1i>X2i), n3=(i,X1i=X2i=Xi) and n =

∑3
j=1 nj . The likelihood function l (ϑ1, ϑ2, ϑ3, ζ) of this

sample is given by

l (ϑ1, ϑ2, ϑ3, ζ)=

n1∏
i=1

f1 (x1i, x2i)

n2∏
i=1

f2 (x1i, x2i)

n3∏
i=1

f0 (xi, xi). (17)

The log-likelihood (L) function is

L (ϑ1,ϑ2,ϑ3, ζ) = n1ln (ϑ1 [ϑ2+ϑ3]) − (ϑ1 + 1)

n1∑
i=1

ln

(
x1i

ζ

)
− (ϑ2+ϑ3 + 1)

n1∑
i=1

ln

(
x2i

ζ

)

+ n2ln (ϑ2 [ϑ1+ϑ3]) − (ϑ2 + 1)

n2∑
i=1

ln

(
x2i

ζ

)
− (ϑ1+ϑ3 + 1)

n2∑
i=1

ln

(
x1i

ζ

)

+ n3ln (ϑ3) − (ϑ1 + ϑ2+ϑ3 + 1)

n3∑
i=1

ln

(
xi

ζ

)
.

The normal equations with respect to ϑ1, ϑ2, ϑ3 and ζ are given by

∂L

∂ϑ1
=

n1

ϑ1
−

n1∑
i=1

ln

(
x1i

ζ

)
+

n2

ϑ1+ϑ3
−

n2∑
i=1

ln

(
x1i

ζ

)
−

n3∑
i=1

ln

(
xi

ζ

)
, (18)

∂L

∂ϑ2
=

n1

ϑ2+ϑ3
−

n1∑
i=1

ln

(
x2i

ζ

)
+

n2

ϑ2
−

n2∑
i=1

ln

(
x2i

ζ

)
−

n3∑
i=1

ln

(
xi

ζ

)
, (19)

∂L

∂ϑ3
=

n1

ϑ2+ϑ3
−

n1∑
i=1

ln

(
x2i

ζ

)
+

n2

ϑ1+ϑ3
−

n2∑
i=1

ln

(
x1i

ζ

)
+

n3

ϑ3
−

n3∑
i=1

ln

(
xi

ζ

)
, (20)

and
∂L

∂ζ
=

(ϑ1 + ϑ2+ϑ3 + 2)

ζ

{
n1 + n2 +

n3 (ϑ1 + ϑ2+ϑ3 + 1)

(ϑ1 + ϑ2+ϑ3 + 2)

}
. (21)

By equating Equations (18) to (21) by zeros and solve them by using R package. The (1− δ)100% confidence

intervals of the parameters ϑ̂i > 0; i = 1, 2, 3 and ζ can be derived as ϑ̂i ± Z δ
2

√
var(ϑ̂i) and ζ ± Z δ

2

√
var(ζ) ,

respectively.

4.2. Bayesian estimation (BSE)

In order to obtain the Bayesian estimators for ϑ1, ϑ2, ϑ3 and ζ, it is necessary to derive the l (ϑ1, ϑ2, ϑ3, ζ) function
for the model. Let the BSE under the consideration non-negative parameter vector Θ = (ϑ1, ϑ2, ϑ3, ζ) is iid, which
have gamma (GA) prior distribution. Thus,

π(ϑ1) ∝ ϑ1
a1−1eb1ϑ1 ,

π(ϑ2) ∝ ϑ2
a2−1eb2ϑ2 ,

π(ϑ3) ∝ ϑ3
a3−1eb3ϑ3
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and
π (ζ) ∝ ζa4−1eb4ζ .

The hyper parameters ai and bi are non-negative and known where i = 1, 2, 3, 4. The posterior distribution (PODS)
of Θ is

G (ϑ1, ϑ2, ϑ3, ζ | X1, X2) =
l (X1, X2|ϑ1, ϑ2, ϑ3, ζ) π(ϑ1, ϑ2, ϑ3, ζ)∫∞

0

∫∞
0

∫∞
0

∫∞
0

l (X1, X2|ϑ1, ϑ2, ϑ3, ζ) π(ϑ1, ϑ2, ϑ3, ζ)dϑ1dϑ2dϑ3dζ

The PODS can be expressed as

G (ϑ1, ϑ2, ϑ3, ζ | X1, X2) ∝ l (X1, X2|ϑ1, ϑ2, ϑ3, ζ) π(ϑ1, ϑ2, ϑ3, ζ)

Thus, the BSEs of ϑ1, ϑ2, ϑ3 and ζ can be expressed as

ϑ̂1 ∝
∫ ∞

0

ϑ1 G (ϑ1, ϑ2, ϑ3, ζ | X1, X2) dϑ1,

ϑ̂2 ∝
∫ ∞

0

ϑ2 G (ϑ1, ϑ2, ϑ3, ζ | X1, X2) dϑ2,

ϑ̂3 ∝
∫ ∞

0

ϑ3 G (ϑ1, ϑ2, ϑ3, ζ | X1, X2) dϑ3,

and

ζ̂ ∝
∫ ∞

0

ζ G (ϑ1, ϑ2, ϑ3, ζ | X1, X2) dζ,

where φ̂ = E (φ | X1, X2) . MCMC technique is utilized to approximate/solve the previous equations.

5. Simulation

We assess the performance of estimation approaches, namely, the MLE and BSE techniques based on complete
sample with different sizes n = [50, 100, 200, 300] from N = 1000 replications. The assessment of the two
approaches is based of two terms, namely, bias (BI) and mean square error (MESQER). For an informative BSE,
we assume that all the hyper parameters are equal to 0.3. Tables 1 - 6 list the BI and the MESQER values for the
BPT-T2 model under various values of ϑ1, ϑ2, ϑ3 and ζ.
Table 1. The BI and MESQER values for BPT-T2(1.5,2.5,0.5,2.0) by using MLE method.

n → 50 100 200 300
Parameter ↓ BI MESQER BI MESQER BI MESQER BI MESQER
υ1 0.125269 0.119101 0.121110 0.113558 0.114663 0.110221 0.1049874 0.1016580
υ2 0.247369 0.179669 0.234697 0.175447 0.221335 0.170225 0.2014167 0.1551108
υ3 0.167325 0.126235 0.135421 0.122214 0.128215 0.114026 0.1042145 0.1081027
ζ 0.078369 0.098659 0.074358 0.095266 0.071054 0.091120 0.0092150 0.0844157

Table 2. The BI and MESQER values for BPT-T2(0.8, 1.5, 1.5, 0.5) by using MLE method.

n → 50 100 200 300
Parameter ↓ BI MESQER BI MESQER BI MESQER BI MESQER
υ1 0.278236 0.148547 0.271598 0.144552 0.258220 0.113110 0.2440012 0.047221
υ2 0.314569 0.287857 0.301110 0.245110 0.287223 0.218013 0.2110023 0.191745
υ3 0.281102 0.075957 0.233473 0.060201 0.195647 0.053005 0.1421140 0.042368
ζ 0.187125 0.088526 0.144156 0.081504 0.127954 0.074001 0.1200354 0.065556
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Table 3. The BI and MESQER values for BPT-T2(1.5,2.5,0.5,2.0) by using BSE method.

n → 50 100 200 300
Parameter ↓ BI MESQER BI MESQER BI MESQER BI MESQER
υ1 0.122101 0.117254 0.1180017 0.114091 0.115984 0.112219 0.107101 0.102001
υ2 0.204110 0.118118 0.1992258 0.114001 0.192186 0.111981 0.188101 0.106229
υ3 0.170459 0.125147 0.1668746 0.127223 0.143159 0.118159 0.124001 0.111328
ζ 0.089157 0.078896 0.0801010 0.065104 0.057219 0.052697 0.019025 0.034214

Table 4. The BI and MESQER values for BPT-T2(0.8, 1.5, 1.5, 0.5) by using BSE method.

n → 50 100 200 300
Parameter ↓ BI MESQER BI MESQER BI MESQER BI MESQER
υ1 0.177117 0.133365 0.1651287 0.121269 0.160998 0.114367 0.141783 0.035229
υ2 0.210256 0.146559 0.1503694 0.133239 0.112210 0.132217 0.108114 0.129225
υ3 0.290628 0.095125 0.2662104 0.071339 0.191220 0.061214 0.182004 0.031110
ζ 0.180369 0.076200 0.1352291 0.063188 0.115475 0.059100 0.106001 0.043201

Table 5. The BI and MESQER values for BPT-T2(0.5, 1.1, 1.1, 0.8) by using MLE method.

n → 50 100 200 300
Parameter ↓ BI MESQER BI MESQER BI MESQER BI MESQER
υ1 0.159825 0.112397 0.153579 0.101367 0.149875 0.100239 0.136971 0.087699
υ2 0.189698 0.130197 0.1887963 0.123697 0.179839 0.120369 0.169734 0.119863
υ3 0.126979 0.110236 0.123697 0.110098 0.119876 0.106975 0.117563 0.100194
ζ 0.102698 0.100970 0.100479 0.100873 0.029796 0.100131 0.018769 0.001977

Table 6. The BI and MESQER values for BPT-T2(0.5, 1.1, 1.1, 0.8) by using BSE method.

n → 50 100 200 300
Parameter ↓ BI MESQER BI MESQER BI MESQER BI MESQER
υ1 0.149687 0.110169 0.1486975 0.1100697 0.137639 0.110013 0.123697 0.102973
υ2 0.183647 0.113697 0.1821369 0.1112397 0.179687 0.110067 0.172369 0.100079
υ3 0.119873 0.114790 0.1175301 0.1132685 0.109769 0.110129 0.107469 0.102308
ζ 0.100036 0.079858 0.1000327 0.0712392 0.100113 0.043697 0.098768 0.014283

From Tables 1 - 6, it is noted that the BI and the MESQER decrease when n grows. These results indicate that the
MLE and BSE are good methods to estimate the model parameters.

6. Real Data

In this section, areal data set is analyzed using the BPT-T2 model. This data represents the failure times for 36
appliances subjected to an automated life test (see Lawless, 1983). Before analyzing the bivariate data by utilizing
the BPT-T2 model, we fit the marginals on this data. It is found that the p-values for the marginals lies between 0.591
and 0.754. Based on the p-values, the marginals of the BPT-T2 model fits the data. Now, we fit the BPT-T2 model
on this data. The MLEs of the unknown parameters are as follows ϑ1 = 0.00012, ϑ2 = 0.00096, ϑ3 = 0.00871
and ζ = 0.00047 with L = −270.25, while the Bayesian estimators are ϑ1 = 0.00015, ϑ2 = 0.00078, ϑ3 =
0.00867 and ζ = 0.00042. The estimators for both methods approximately to be equal. Comparing to the BP
distribution which was presented by Lindley and Singpurwalla (1986), we get BPT-T2 is better than BP where
L of the BP equals −274.16. The approximate 95% two-sided confidence interval of ϑ̂i > 0, i = 1, 2, 3 are
[0, 0.0019] , [0, 0.0024] and [0.003, 0.0095] respectively, but for ζ̂ equals [0, 0.001].
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7. Conclusions

We have introduced several statistical and reliability properties of the BPT-T2 distribution including joint hazard
rate function, CDF for parallel and series systems, joint mean residual lifetime, mean waiting time, and joint
vitality function. The MLE and BSE methods have been used to estimate the BPT-T2 parameters. Simulation has
been carried out to assess the performance of the MLE and BSE, and it was found that the two techniques work
quite well for estimation the BPT-T2 parameters. Finally, a real data set has been analyzed to show the usefulness
of the BPT-T2 distribution.
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