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1. Introduction

Its well-known in number theory a complex number whose real and imaginary parts are both integers: Gaussian
Integer. The Gaussian integers are the set: Z[i] := {a+ bi | a, b ∈ Z}, where i2 = –1. Gaussian integers are closed
under addition and multiplication and form commutative ring, which is a subring of the field of complex numbers.
When considered within the complex plane the Gaussian integers constitute the 2- dimensional integer lattice. The
Gaussian integers form unique factorization domain: it is irreducible if and only if it is a prime(Gaussian primes).
The field of Gaussian rationals consists of the complex numbers whose real and imaginary part are both rational
(see, e.g., [11]).
The norm of a Gaussian integer is its product with its conjugate:

N(a+ bi) = (a+ bi)(a− bi) = a2 + b2.

The norm is multiplicative, that is, one has:

N(zw) = N(z)N(w), z, w ∈ Z[i].

In [19] was introduced the following subset of the Gaussian Integers:
ZP[i] := {a+ bi | a, b ∈ P}, where P is a subset of the Prime numbers, ZP[i] ⊂ Z[i].
Another well-known integral subclass of complex numbers are Eisenshtein integers: complex numbers of the form:
z = a + bω, where a and b are integers and ω2 + ω + 1 = 0 . The Eisenshtein integers form a triangular lattice in the
complex plane, in contrast with Gaussian integers, which form a square lattice in the complex plane. The Eisenstein
integers form a commutative ring as well and similar to Gaussian integers form a Euclidean domain,which supposes
unique factorization of Eisenshtein integers into Eisenshtein primes. Similar integral subclasses can be defined for
quaternions: Lipschitz and Hurwitz Integers(quaternions).
Quaternions are generally represented in the form: q = a+ bi + cj + dk, where, a ∈ R, b ∈ R, c ∈ R, d ∈ R, and
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926 POLAR INTEGERS AND POLAR OPTIMIZATION

i, j and k are the fundamental quaternion units and are a number system that extends the complex numbers [2, 7].
The set of all quaternions H is a normed algebra, where the norm is multiplicative: ||pq || = ||p || ||q ||, p ∈ H, q ∈
H, ||q ||2 = a2 + b2 + c2 + d2.
This norm makes it possible to define the distance d(p, q) = ||p− q || which makes H into a metric space.
Lipschitz Integer(quaternion) is defined as:

L := {q : q = a+ bi + cj + dk | a, b, c, d ∈ Z}.

Lipschitz Integer (quaternion) is a quaternion, whose components are all integers.
In [19] was introduced the following subset of the Lipschitz Integers:

LP := {q : q = a+ bi + cj + dk | a, b, c, d ∈ P},LP ⊂ L.

Hurwitz Integers(quaternion) are defined as:

HU := {q : q = a+ bi + cj + dk | a, b, c, d ∈ Z +
1

2
}.

and, correspondingly we can introduce:

HUP := {q : q = a+ bi + cj + dk | a, b, c, d ∈ P +
1

2
},HUP ⊂ HU.

Thus, Hurwitz Integer (quaternion) is a quaternion, whose components are either all integers or all half-integers.
The initial motivation for the introduction of the Polar System was the study of circular and orbital motion.
Polar Coordinates are used in navigation, e.g., air traffic control, modeling of radially symmetric systems, e.g.,
groundwater flow equation, gravitational fields, radio antennas. Radially asymmetric systems may also be modeled
with Polar Coordinates: e.g., microphone’s pickup pattern(see, e.g., [4]).
The Spherical Coordinate System is used in geography, astronomy, ergonomic design, 3D game development, 3-
dimensional modeling of loudspeaker, partial differential equations, volume integrals, rotational matrices(see, e.g.,
[14]).
The Cylindrical Coordinate System is used for computation of water flow in a straight pipes with round cross-
sections, heat distribution in a metal cylinder, electromagnetic fields, accretion disks in astronomy and so on(see,
e.g., [13]).
It is well-known that an optimization problem can be represented in the following way: given a function f :
G → R from some set G to the real numbers; sought: an element x0 ∈ G such that f(x0) ≤ f(x) for all x ∈
G,(“minimization”), or such that f(x0) ≥ f(x) for all x ∈ G (“maximization”).
Typically, G is some subset of the Euclidean space Rn, specified by a set of constraints and the function f is called
an objective function or target function.
Its well-known in Optimization Theory the case when G is some subset of integer points: Integer Optimization
(see, e.g., [6, 9]). A general model of mixed-integer optimization could be written as: max/min f(x) subject to
g1(x) ≤ 0, . . . , gm(x) ≤ 0, x ∈ Rk × Zs , where f, g1, . . . , gm : Rn → R are arbitrary nonlinear functions.
In [18, 19] Complex, Quaternionic and Prime Optimization are considered.
The purpose of this paper is to introduce and describe novel subclasses of numbers: Polar Complex Integers,
Polar Complex Hurwitz-like Integers, Polar Quaternionic Integers, Polar Quaternionic Hurwitz-like Integers, Polar
Euclidean Integers, Polar Euclidean Hurwitz-like Integers, Spherical Euclidean Integers, Spherical Euclidean
Hurwitz-like Integers, Cylindrical Euclidean Integers, Cylindrical Euclidean Hurwitz-like Integers and the
corresponding optimization problems.

2. Polar Complex Integers

Let us introduce a new subclass of complex numbers and a new approach for their definition accordingly: Polar
Complex Integers.
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Its well-known for a complex number z = Re(z) + Im(z)i = a+ bi, a ∈ R, b ∈ R, i2 = –1, to use an alternative
option for coordinates in the complex plane: polar coordinate system that uses the distant of the point z from the
origin and the angle, subtended between the positive real axis and the line segment in a counterclockwise sense(see,
e.g., [3, 12, 16, 17]).
The absolute value of the complex number: r = |z| is the distance to the origin of the point, representing the
complex number z in the complex plane.
The argument of z: φ = arg(z), is the angle of the radius with the positive real axis . Note that there are two
notations of angle φ: in degree and in radian.
Together, r and φ gives another way of representing complex numbers, the polar form. Recovering the original
rectangular coordinates from the polar form is done by the formula called trigonometric form:

z = r(cosφ+ i sinφ).

Recall that addition of two complex numbers can be done geometrically by constructing the corresponding
parallelogram.
Given two complex numbers: z1 = r1(cosφ1 + i sinφ1) and z2 = r2(cosφ2 + i sinφ2), multiplication of z1 and z2
in polar form is given by:

z1z2 = r1r2(cos(φ1 + φ2) + i sin(φ1 + φ2)).

Similarly, division is given by:
z1
z2

=
r1
r2

(cos(φ1 − φ2) + i sin(φ1 − φ2)).

Using polar form, let us introduce the following new subclass of complex numbers, Polar Complex Integers:

PZ[i] := {z : z = r(cosφ+ i sinφ) |z ∈ C, r ∈ Z, φ ∈ Z,−180◦ < φ ≤ 180◦}.

Theorem 1. Polar Complex Integers are closed under multiplication.
Proof. It follows from the formula:

z1z2 = r1r2(cos(φ1 + φ2) + i sin(φ1 + φ2)).

Theorem 2. Polar Complex Integers are not closed under addition.
Proof. Let us consider z1 = 0 + 1i and z2 = 1 + 0i. For degree notation, where z1 = 1(cos 90◦ + i sin 90◦) and
z2 = 1(cos 0◦ + i sin 0◦), absolute value of z1 + z2 is an irrational number.
Theorem 3. Polar Complex Integers are not closed under division.
Proof. It follows from the formula:

z1
z2

=
r1
r2

(cos(φ1 − φ2) + i sin(φ1 − φ2)).

Corollary 1. Polar Complex Integers are mutually primes if and only if their absolute values are mutually primes.
Theorem 4. Polar Complex Integers form countable infinite set.
Proof. It follows from the definition.
Similarly to aforementioned Hurwitz integers, let us introduce Polar Complex Hurwitz-like Integers:

PHU[i] := {z : z = r(cosφ+ i sinφ) |z ∈ C, r ∈ Z +
1

2
, φ ∈ Z +

1

2
,−180◦ < φ ≤ 180◦},

and similarly to aforementioned Gaussian Rationals, the corresponding set of Polar Complex Rationals can be
introduced as well.
Theorem 5. Polar Complex Hurwitz-like Integers form countable infinite set.
Proof. It follows from the definition.
The corresponding Prime-subclasses can be introduced as well:

PZP[i] := {z : z = r(cosφ+ i sinφ) |z ∈ C, r ∈ P, φ ∈ P,−180◦ < φ ≤ 180◦},PZP[i] ⊂ PZ[i],

PHUP[i] := {z : z = r(cosφ+ i sinφ) |z ∈ C, r ∈ P +
1

2
, φ ∈ P +

1

2
,−180◦ < φ ≤ 180◦},

PHUP[i] ⊂ PHU[i].
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928 POLAR INTEGERS AND POLAR OPTIMIZATION

3. Unicentered Radial Lattices of Polar Complex Integers and Polar Complex Hurwitz-like Integers

As we mentioned above, when considered within the complex plane, the Gaussian integers constitute the 2-
dimensional integer lattice and the Eisenshtein integers form a triangular lattice in the complex plane, in contrast
with Gaussian integers, which form a square lattice in the complex plane.
As it follows from the definition:

PZ[i] := {z : z = r(cosφ+ i sinφ) |z ∈ C, r ∈ Z, φ ∈ Z,−180◦ < φ ≤ 180◦},

by fixing the integer radius r ∈ Z, Polar Complex Integers, when considered within the complex plane, constitute
Unicentered Radial Lattice.
Accordingly, for the Polar Complex Hurwitz-like Integers, as it follows from the definition :

PHU[i] := {z : z = r(cosφ+ i sinφ) |z ∈ C, r ∈ Z +
1

2
, φ ∈ Z +

1

2
,−180◦ < φ ≤ 180◦},

by fixing the integer radius r ∈ Z, Polar Complex Hurwitz-like Integers, when considered within the complex
plane, constitute Unicentered Radial Lattice as well.

4. Polar Quaternionic Integers

Similarly, we can introduce Polar Quaternionic Integers.
Indeed, its well known to represent quaternions as pairs of complex numbers:

q = a+ bi + cj + dk ⇐⇒ (a+ bi, c+ di).(Cayley-Dickson construction)

Correspondingly, considering each of two parts in polar form:

a+ bi = r(cosφ+ i sinφ), c+ di = ρ(cosψ + i sinψ),

let us introduce Polar Quaternionic Integers:

PL := {q : q = a+ bi + cj + dk ⇐⇒ (a+ bi, c+ di), a+ bi = r(cosφ+ i sinφ),
c+ di = ρ(cosψ + i sinψ) |q ∈ H, r ∈ Z, φ ∈ Z, ρ ∈ Z, ψ ∈ Z,−180◦ < φ ≤ 180◦,−180◦ < ψ ≤ 180◦},

and Polar Quaternionic Hurwitz-like Integers:
PHHU := {q : q = a+ bi + cj + dk ⇐⇒ (a+ bi, c+ di), a+ bi = r(cosφ+ i sinφ), c+ di = ρ(cosψ +

i sinψ) | q ∈ H, r ∈ Z + 1
2 , φ ∈ Z + 1

2 , ρ ∈ Z + 1
2 , ψ ∈ Z + 1

2 ,−180
◦ < φ ≤ 180◦,−180◦ < ψ ≤ 180◦}.

The corresponding Prime-subclasses can be introduced as well:
PLP := {q : q = a+ bi + cj + dk ⇐⇒ (a+ bi, c+ di), a+ bi = r(cosφ+ i sinφ), c+ di = ρ(cosψ +

i sinψ) | q ∈ H, r ∈ P, φ ∈ P, ρ ∈ P, ψ ∈ P,−180◦ < φ ≤ 180◦,−180◦ < ψ ≤ 180◦}, PLP ⊂ PL,
PHHUP := {q : q = a+ bi + cj + dk ⇐⇒ (a+ bi, c+ di), a+ bi = r(cosφ+ i sinφ), c+ di = ρ(cosψ +

i sinψ) | q ∈ H, r ∈ P + 1
2 , φ ∈ P + 1

2 , ρ ∈ P + 1
2 , ψ ∈ P + 1

2 ,−180
◦ < φ ≤ 180◦,−180◦ < ψ ≤ 180◦},

PHHUP ⊂ PHHU,
and, similarly to aforementioned Gaussian Rationals, the corresponding set of Polar Quaternion Rationals can be
introduced as well.

5. Polar Euclidean Integers

Using Polar Coordinate System, let us introduce the following novel subclass of Integer numbers for Euclidean
two-dimensional Space R2: Polar Euclidean Integers:

PR2Z := {(x, y) : x = r cosφ, y = r sinφ |(x, y) ∈ R2, r ∈ Z, φ ∈ Z,−180◦ < φ ≤ 180◦},
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and Polar Hurwitz-like Integers:

PR2HU := {(x, y) : x = r cosφ, y = r sinφ |(x, y) ∈ R2, r ∈ Z +
1

2
, φ ∈ Z +

1

2
,−180◦ < φ ≤ 180◦},

and the corresponding Prime-subclasses can be introduced as well:

PR2ZP := {(x, y) : x = r cosφ, y = r sinφ |(x, y) ∈ R2, r ∈ P, φ ∈ P,−180◦ < φ ≤ 180◦},

PR2HUP := {(x, y) : x = r cosφ, y = r sinφ |(x, y) ∈ R2, r ∈ P +
1

2
, φ ∈ P +

1

2
,−180◦ < φ ≤ 180◦},

PR2ZP ⊂ PR2Z,PR2HUP ⊂ PR2HU.
Similar to the Polar Complex Integers, by fixing the integer radius r ∈ Z, Polar Euclidean Integers, when considered
within R2 plane, constitute Unicentered Radial Lattice.

6. Spherical Euclidean Integers

Using Spherical Coordinate System , let us introduce the following novel subclass of Integer numbers for the
Euclidean 3-dimensional Space: R3: Spherical Euclidean Integers:
SR3Z := {(x, y, z) : x = r cosφ sin θ, y = r sinφ sin θ, z = r cosφ |(x, y, z) ∈ R3, r ∈ Z, φ ∈ Z, θ ∈ Z,−180◦ <
φ ≤ 180◦, −90◦ < θ ≤ 90◦}, and Spherical Hurwitz-like Integers:
SR3HU := {(x, y, z) : x = r cosφ sin θ, y = r sinφ sin θ, z = r cosφ |(x, y, z) ∈ R3, r ∈ Z + 1

2 , φ ∈ Z + 1
2 , θ ∈

Z + 1
2 ,−180

◦ < φ ≤ 180◦,−90◦ < θ ≤ 90◦},
and the corresponding Prime-subclasses can be introduced as well:
SR3ZP := {(x, y, z) : x = r cosφ sin θ, y = r sinφ sin θ, z = r cosφ |(x, y, z) ∈ R3, r ∈ P, φ ∈ P, θ ∈ P,−180◦ <
φ ≤ 180◦, −90◦ < θ ≤ 90◦},
SR3HUP := {(x, y, z) : x = r cosφ sin θ, y = r sinφ sin θ, z = r cosφ |(x, y, z) ∈ R3, r ∈ P + 1

2 , φ ∈ P + 1
2 , θ ∈

P + 1
2 , −180

◦ < φ ≤ 180◦,−90◦ < θ ≤ 90◦},SR3ZP ⊂ SR3Z,SR3HUP ⊂ SR3HU.
Similar to the Polar Complex Integers, by fixing the integer radius r ∈ Z, Spherical Integers, when considered
within R3 Euclidean Space, constitute Unicentered Spherical Lattice.

7. Cylindrical Euclidean Integers

Using Cylindrical Coordinate System, let us introduce the following novel subclass of Integer numbers for the
Euclidean 3-dimensional Space R3: Cylindrical Euclidean Integers:

CR3Z := {(x, y, z) : x = r cosφ, y = r sinφ, z = z |(x, y, z) ∈ R3, r ∈ Z, φ ∈ Z, z ∈ Z,−180◦ < φ ≤ 180◦},

and Cylindrical Hurwitz-like Integers:

CR3HU := {(x, y, z) : x = r cosφ, y = r sinφ, z = z |(x, y, z) ∈ R3, r ∈ Z +
1

2
, φ ∈ Z +

1

2
, z ∈ Z +

1

2
,−180◦ < φ ≤ 180◦},

and the corresponding Prime-subclasses can be introduced as well:

CR3ZP := {(x, y, z) : x = r cosφ, y = r sinφ, z = z |(x, y, z) ∈ R3, r ∈ P, φ ∈ P, z ∈ P,−180◦ < φ ≤ 180◦},

CR3HUP := {(x, y, z) : x = r cosφ, y = r sinφ, z = z |(x, y, z) ∈ R3, r ∈ P +
1

2
, φ ∈ P +

1

2
, z ∈ P +

1

2
,−180◦ < φ ≤ 180◦},

CR3ZP ⊂ CR3Z,CR3HUP ⊂ CR3HU.
By fixing the integer radius r ∈ Z, Cylindrical Integers, when considered within R3 Euclidean Space, constitute
Uniaxial(around z-axis) Cylindrical Lattice (Note that Polar Coordinate System can be generalized for the n-
dimensional Euclidean Space Rn).
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8. Polar Complex Integer Optimization

Let us introduce a new class of Optimization problems, where G (see Section 1) is some subset of the Polar
Complex Integers and target functions f : C → R and f : Cn → R are real-valued complex variable functions:
“Polar Complex Integer Optimization”.

8.1. Polynomial Polar Complex Integer Optimization

pcop = {max |cnzn + ...+ c1z| subject to
|a1nzn + · · ·+ a11z| ≤ b1, · · · , |amnz

n + · · ·+ am1z| ≤ bm,
z ∈ PZ [i] , aij ∈ C, bi ∈ R, cj ∈ C, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

(More sophisticated examples would contain rational meromorphic complex functions).
Similar, if z ∈ PZP[i], or z ∈ PHU[i], or z ∈ PHUP[i].

8.2. Linear Polar Complex Integer Optimization

lpcopa = {max |c1z1 + ...+ cnzn| subject to
|a11z1 + ...+ a1nzn| ≤ b1, · · · , |am1z1 + ...+ amnzn| ≤ bm,
Re(a11z1 + ...+ a1nzn) ≤ d1, · · · , Re(am1z1 + ...+ amnzn) ≤ dm,
zj ∈ PZ[i], aij ∈ C, bi ∈ R, cj ∈ C, di ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

lpcopb = {max |c1z1 + ...+ cnzn| subject to
a11z1 + ...+ a1nzn = b1, · · · , am1z1 + ...+ amnzn = bm,

arg(a11z1 + ...+ a1nzn) = d1, · · · , arg(am1z1 + ...+ amnzn) = dm,

zj ∈ PZ[i], aij ∈ C, bi ∈ C, cj ∈ C, (Az = b), di ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.
Similar, if zj ∈ PZP[i], or zj ∈ PHU[i], or zj ∈ PHUP[i].

8.3. Quadratic Polar Complex Integer Optimization

qpcop = {max |z21 + ...+ z2n − iz1z2| subject to
|a11z1 + ...+ a1nzn| ≤ b1, · · · , |am1z1 + ...+ amnzn| ≤ bm,
Im(a11z1 + ...+ a1nzn) ≤ d1, · · · , Im(am1z1 + ...+ amnzn) ≤ dm,
zj ∈ PZ[i], aij ∈ C, bi ∈ R, cj ∈ C, di ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

Similar, if zj ∈ PZP[i], or zj ∈ PHU[i], or zj ∈ PHUP[i].

8.4. Nonlinear Polar Complex Integer Optimization

npcop = {max |ez − sin(πz) | subject to |cos(πz) | ≤ a, 0 ≤ Re(z) ≤ b, 0 ≤ Im(z) ≤ c
z ∈ PZ [i] , a ∈ R, b ∈ R, c ∈ R}.

Similar, if z ∈ PZP[i], or z ∈ PHU[i], or z ∈ PHUP[i].

9. Polar Quaternionic Integer Optimization

Let us introduce a new class of Optimization problems, where G (see Section 1) is some subset of the Polar
Quaternionic Integers and target functions f : H→ R and f : Hn→ R are real-valued complex variable functions:
“Polar Quaternionic Integer Optimization”.

9.1. Polynomial Polar Quaternionic Integer Optimization

qpop = {max ||cnqn + ...+ c1q|| subject to
||a1nqn + ...+ a11q|| ≤ b1, · · · , ||amnq

n + ...+ am1q|| ≤ bm,
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q ∈ PL, aij ∈ H, bi ∈ R, cj ∈ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.
By introducing the slack variables w1 ≥ 0, . . . , wm ≥ 0 the above inequalities can be converted into the following
equations:

||a1nqn + ...+ a11q ||+ w1 = b1, · · · , ||amnq
n + ...+ am1q ||+ wm = bm.

Similar, if q ∈ PLP, or q ∈ PHHU, or q ∈ PHHUP.

9.2. Linear Polar Quaternionic Integer Optimization

lpqopa = {max ||c1q1 + ...+ cnqn|| subject to
||a11q1 + ...+ a1nqn|| ≤ b1, · · · , ||am1q1 + ...+ amnqn|| ≤ bm,
qj ∈ PL, aij ∈ H, bi ∈ R, cj ∈ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

By introducing the slack variables w1 ≥ 0, . . . , wm ≥ 0 the above inequalities can be converted into the following
equations:

||a11q1 + ...+ a1nqn ||+ w1 = b1, · · · , ||am1q1 + ...+ amnqn ||+ wm = bm.

lpqopb = {max ||c1q1 + ...+ cnqn|| subject to
a11q1 + ...+ a1nqn = b1, · · · , am1q1 + ...+ amnqn = bm,

qj ∈ PL, aij ∈ H, bi ∈ H, cj ∈ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.
Similar, if qj ∈ PLP, or qj ∈ PHHU, or qj ∈ PHHUP.

9.3. Nonlinear Polar Quaternionic Integer Optimization

nqpopa = {max ||q41 + ...+ q4n|| subject to
b1 < ||a11q1 + ...+ a1nqn|| ≤ c1, · · · , bm < ||am1q1 + ...+ amnqn|| ≤ cm,
qj ∈ PL, aij ∈ H, bi ∈ R, ci ∈ R, bi ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, n ∈ N,m ∈ N}.

Similar, if qj ∈ PLP, or qj ∈ PHHU, or qj ∈ PHHUP.
nqpopb = {max ||ep − log(q) || subject to ||p|| ≤ a, ||q|| ≤ b,

p, q ∈ PL, a, b ∈ R}.
Similar, if p, q ∈ PLP, or p, q ∈ PHHU, or p, q ∈ PHHUP.

10. Polar Euclidean Integer Optimization

Let us introduce a new class of Optimization problems, where G (see Section 1) is some subset of the Polar
Euclidean Integers and target functions f : R2 → R : “Polar Euclidean Integer Optimization”.

10.1. Linear Polar Euclidean Integer Optimization

lpeop = {max c1x+ c2y subject to
a11x+ a12y ≤ b1, a21x+ a22y ≤ b2,
(x, y) ∈ PR2Z, aij ∈ R, bi ∈ R, cj ∈ R, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2}.

Similar, if (x, y) ∈ PR2HU, or (x, y) ∈ PR2HUP, or (x, y) ∈ PR2ZP.

10.2. Nonlinear Polar Euclidean Integer Optimization

npeop = {max x4 + y4 subject to
a11x+ a12y ≤ b1, a21x+ a22y ≤ b2,
(x, y) ∈ PR2Z, aij ∈ R, bi ∈ R, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2}.

Similar, if (x, y) ∈ PR2HU, or (x, y) ∈ PR2HUP, or (x, y) ∈ PR2ZP.
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11. Spherical Euclidean Integer Optimization

Let us introduce a new class of Optimization problems, where G (see Section 1) is some subset of the Spherical
Euclidean Integers and target functions f : R3 → R : “Spherical Euclidean Integer Optimization”.

11.1. Linear Spherical Euclidean Integer Optimization

lseop = {max c1x+ c2y + c3z subject to
a11x+ a12y + a13z ≤ b1, a21x+ a22y + a23z ≤ b2,
(x, y, z) ∈ SR3Z, aij ∈ R, bi ∈ R, cj ∈ R, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}.

Similar, if (x, y, z) ∈ SR3HU, or (x, y, z) ∈ SR3HUP, or (x, y, z) ∈ SR3ZP.

11.2. Nonlinear Spherical Euclidean Integer Optimization

nseop = {max x2 + y2 + z2 − xy subject to
a11x+ a12y + a13z ≤ b1, a21x+ a22y + a23z ≤ b2,
(x, y, z) ∈ SR3Z, aij ∈ R, bi ∈ R, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}.

Similar, if (x, y, z) ∈ SR3HU, or (x, y, z) ∈ SR3HUP, or (x, y, z) ∈ SR3ZP.

12. Cylindrical Euclidean Integer Optimization

Let us introduce a new class of Optimization problems, where G (see Section 1) is some subset of the Cylindrical
Euclidean Integers and target functions f : R3 → R : “Cylindrical Euclidean Integer Optimization”.

12.1. Linear Cylindrical Euclidean Integer Optimization

lceop = {max c1x+ c2y + c3z subject to
a11x+ a12y + a13z ≤ b1, a21x+ a22y + a23z ≤ b2,
(x, y, z) ∈ CR3Z, aij ∈ R, bi ∈ R, cj ∈ R, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}.

Similar, if (x, y, z) ∈ CR3HU, or (x, y, z) ∈ CR3HUP, or (x, y, z) ∈ CR3ZP.

12.2. Nonlinear Cylindrical Euclidean Integer Optimization

nceop = {max x2 + y2 + z2 − xy subject to
a11x+ a12y + a13z ≤ b1, a21x+ a22y + a23z ≤ b2,
(x, y, z) ∈ CR3Z, aij ∈ R, bi ∈ R, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}.

Similar, if (x, y, z) ∈ CR3HU, or (x, y, z) ∈ CR3HUP, or (x, y, z) ∈ CR3ZP.

13. Mixed Polar-Spherical-Cylindrical-Prime-Integer-Real-Complex- Quaternionic Optimization

mpscop = {min xz2||p2 − pq + r2|| |iz41 − z22z3| − x2 + y3t2+

||p21 − p1q1s+ r21|| Im(iz44 − z25z6z7) + u41v
4
1 − u32v32+

u23v
2
3 + u4v4 − u45v45w4

5 + u36v
3
6w

3
6 − u27v27w2

7 + u38v
3
8w

3
8+

u49v
4
9w

4
9 − u310v310w3

10 + u211v
2
11w

2
11 − u312v312w3

12

subject to
xy ≥ N,
a1 ≤ ||p|| ≤ b1, a2 ≤ ||q|| ≤ b2, a3 ≤ ||r|| ≤ b3, a4 ≤ |z1| ≤ b4,
a5 ≤ |z2| ≤ b5, a6 ≤ |z3| ≤ b6, a7 ≤ x ≤ b7, a8 ≤ y ≤ b8, a9 ≤ z ≤ b9,
a10 ≤ t ≤ b10, x ∈ Z, y ∈ Z, z ∈ P, t ∈ R,
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a11 ≤ ||p1|| ≤ b11, a12 ≤ ||q1|| ≤ b12, a13 ≤ ||s|| ≤ b13, a14 ≤ r1 ≤ b14,
a15 ≤ z4 ≤ b15, a16 ≤ z5 ≤ b16, a17 ≤ z6 ≤ b17, a18 ≤ z7 ≤ b18,
ai ∈ R, bi ∈ R, ai ≥ 0, 1 ≤ i ≤ 18,

ci ≤ ui ≤ di, ei ≤ vi ≤ fi, ci ∈ R, di ∈ R, ei ∈ R, fi ∈ R, 1 ≤ i ≤ 12,

gj ≤ wj ≤ hj , gj ∈ R, hj ∈ R, 5 ≤ j ≤ 12, N ∈ N,
p ∈ H, q ∈ L, r ∈ LP, z1 ∈ C, z2 ∈ Z[i], z3 ∈ ZP[i],
p1 ∈ PL, q1 ∈ PHHU, s ∈ PLP, r1 ∈ PHHUP,

z4 ∈ PZ[i], z5 ∈ PHU[i], z6 ∈ PZP[i], z7 ∈ PHUP[i],
(u1, v1) ∈ PR2Z, (u2, v2) ∈ PR2HU, (u3, v3) ∈ PR2ZP,

(u4, v4) ∈ PR2HUP, (u5, v5, w5) ∈ SR3Z, (u6, v6, w6) ∈ SR3HU,
(u7, v7, w7) ∈ SR3ZP, (u8, v8, w8) ∈ SR3HUP,

(u9, v9, w9) ∈ CR3Z, (u10, v10, w10) ∈ CR3HU,
(u11, v11, w11) ∈ CR3ZP, (u12, v12, w12) ∈ CR3HUP}.

14. Open Problems

Despite wide proliferation of Integer Optimization, it would be preferable to develop specific methods and
algorithms for the Polar Integer Optimization problems. The corresponding complexity evaluation for the Polar
Integer Optimization Problems would be developed as well: for example in binary encoded length of the coefficients
(see, e.g., [1, 5, 9]), and, in particular, finding conditions for the polynomial-time optimization.
Recall that PRIMES is in P (see, e.g., [1, 5]).

15. Conclusion

We unveiled a special class of complex numbers, wherein their absolute values and arguments, given in a Polar
Coordinate System are integers, which when considered within the complex plane, constitute Unicentered Radial
Lattice and similarly for quaternions, as well as for Euclidean Polar, Spherical and Cylindrical Coordinate Systems.
The corresponding Optimization problems were unveiled as well.
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9. R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear Integer Programming, in 50 Years of Integer Programming

1958–2008: The Early Years and State-of-the-Art Surveys (eds. M. Junger, T. Liebling, D. Naddef, W. Pulleyblank, W. Reinelt, G.
Rinaldi and Wolsey), Springer-Verlag, Berlin, pp. 561–618, 2010.

10. G. James, Modern Engineering Mathematics, Trans-Atlantic Pubns Inc., 2015.
11. I. Kleiner, From Numbers to Rings: The Early History of Ring Theory, Elem. Math, Birkhäuser, Basel, vol. 53, pp. 18–35, 1998.
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