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Abstract One of the most noticeable ways of illustrating the degree of concentration in a theoretical or empirical frequency
distribution is via the Leimkuhler curve. Leimkuhler curve is particularly appropriate in the field of informetrics where the
variable of interest is the number of citations, relevant references, borrowing of a monograph, etc. In informetrics, interest
usually focuses on the most productive sources, and the equivalent graphical representation is via the Leimkuhler curve.
In this paper, some statistical properties of the Leimkuhler curve, a plot of the cumulative proportions of total productivity
against the cumulative proportions of sources, where the sources are ordered non-increasingly concerning their productivity
levels are discussed. Also, some aspects of the Leimkuhler curve and its connection with other criteria are derived. Finally,
several concentration measures are obtained using the data of the impact factors in eight scientific fields.

Keywords Leimkuhler curve, Lorenz curve, Gini index, Weighted distribution, Distortion function, Tail value at risk,
Inverse distribution function.

AMS 2010 subject classifications 91B80, 62N05, 91B15, 62P20

DOI: 10.19139/soic-2310-5070-1349

1. Introduction

There is a long history of the illustration of concentration of production in informetrics by both graphical and
numerical means. It can be argued that the founding articles of Lotka [26] and Bradford [6] are both essentially
concerned with such concentration aspects.
Leimkuhler [24] derived a mathematical form for the Bradford distribution,

f(x) =
log(1 + βx)

log(1 + β)
, 0 ≤ x ≤ 1, (1)

depending on a single parameter interpretable from the verbal formulation of Bradford’s law. Sarabia et al. [37]
proposed a general methodology for generating new classes of parametric Lorenz curve (LC) and Leimkuhler
curve (LKC) that contain the original curve as limiting or particular curve. The mathematical form of Bradford
distribution (1) is derived by using this methodology. Trueswell [42] propounded a graphical presentation of the
concentration of data concerning book usage, subsequently developed by Burrell [7], who noted its equivalent to
the Lorenz curve (Lorenz [25] ) in econometrics. The Lorenz curve is a graphical method of illustrating inequality
in, for example, income and wealth distribution (Kleiber and Kotz [23]; Sarabia [36]; Sarabia et al. [34]). The
Leimkuhler curve plots the cumulative proportion of total productivity against the cumulative proportion of sources
(Burrell [10]; Egghe [15]). Leimkuhler’s approach is considered a variant of the Lorenz curve of concentration for
bibliometric data (Burrell [7], [8]; Rousseau [33]). The difference between the two constructions is only the sorting
order of the values (Burrell [9]; Sarabia [35]).
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The Lorenz curve is defined by points (p, L(p)), where p represents the cumulative proportion of the income-
receiving units, and L(p) the cumulative proportion of incomes, but the Leimkuhler curve is defined by point
(p,K(p)), where p represents the cumulative proportion of total productivity, and K(p) the cumulative proportion
of sources. The difference between the two is that for the Lorenz curve, the sources (individuals) are arranged in
increasing order of productivity (income), while for the Leimkuhler curve, they are arranged in decreasing order.
The Leimkuhler curve bears similarity with the industrial concentration curve that graphs cumulative market shares
against rank-ordered number of firms, where the firms are ranked from the largest to the smallest. (See Hannah and
Kay [21] ). In fact, the inverse generalized Lorenz curve also has a similar construction (Jenkins and Lambert [22]).
The Gini coefficient (Gini [20]), which is derived from the Lorenz or Leimkuhler curve, is the most well-known
and broadly used measure of inequality in giving graphical and numerical summaries of the concentration of
bibliometric distributions. The index measures the inequality among values of a frequency distribution (e.g.,
incomes in economics, or numbers of citations in bibliometrics ). The index has been connected to the field of
bibliometrics since Carpenter [11] drew the attention to the similarity of Pratt’s [31] measure of class concentration
in bibliometrics to the Gini coefficient . In the 1990s bibliometricians investigated the possibility of using other
measures of concentration and found that the Gini coefficient performs well in the field (Burrell [8]; Egghe [16]).

The contents of this paper are as follows.

Section 2 presents some preliminaries regarding the Leimkuhler and Lorenz curves. The transformation and
weighted of the Leimkuhler curve are described in section 3. Section 4 introduces Parametric Leimkuhler curve.
We review Leimkuhler ordering in section 5. The distorted Leimkuhler curve is expressed in section 6. We display
the relation between risk measure and Leimkuhler curve is expressed in section 7. In section 8 Some connections
between the Leimkuhler curve and other criteria of inequality are derived. In section 9 applications with data taken
from Thomson Reuters Journal Citation Reports Edition 2019, in eight scientific fields, are considered. Finally,
some conclusions are presented in section 10.

2. Preliminaries

Let X be a non-negative random variable with finite and positive mean E(X) = µ. The distribution function
and survival function of X are denoted by F and F̄ = 1− F respectively. The quantile function is assigned by
F−1(t) = inf{x : F (x) ≥ t, t ∈ (0, 1)}. The most widely used graphical tool for describing and analyzing the size
distribution and wealth is the Lorenz curve that was introduced by Lorenz [25]. For the income random variable
X , the Lorenz curve is defined by

L(p) =

∫ p

0
F−1(t)dt∫ 1

0
F−1(t)dt

, 0 ≤ p ≤ 1, (2)

the function L(p) is the cumulative percentage of total income held by individuals having the 100p% lowest
incomes.

In this paper, the main result is depicted in the terms of the Leimkuhler curve K(p), which is

K(p) =

∫ 1

1−p
F−1(t)dt∫ 1

0
F−1(t)dt

, 0 ≤ p ≤ 1, (3)

that represent the proportion of total productivity that accrues to sources having the 100p% largest productivity.
The Leimkuhler curve is a reverse-mirror image of the Lorenz curve reflected through the diagonal 45-degree line.
The definition of the Lorenz and Leimkuhler curves L(p) and K(p) imply that these curves are coupled by the
connection

K(p) + L(1− p) = 1 (4)

The Lorenz and Leimkuhler curves L(p) and K(p) are monotone increasing from the value zero (i.e. L(0) = 0 and
K(0) = 0) to the value one (i.e. L(1) = 1 and K(1) = 1). Consequently, the Lorenz and Leimkuhler curves are
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bounded from below and from above as follows:

0 ≤ L(p) ≤ p ≤ K(p) ≤ 1. (5)

The Lorenz curve L(p) is bounded from below by the floor L(p) = 0 of the unit square and is bounded from above
by the diagonal line L(p) = p of the unit square. The Leimkuhler curve is bounded from below by the diagonal
line K(p) = p of the unit square and is bounded from above by the ceiling K(p) = 1 of the unit square. These
bounds manifest the two socio-economic extremes of human societies: perfect equality and perfect inequality.
Perfect equality is the case of a purely egalitarian distribution of wealth. In terms of the Lorenz curves, perfect
equality is characterized by the diagonal line of the unit square: L(p) = p = K(p) (0 ≤ p ≤ 1). In the context of
societies with infinitely large populations, perfect inequality constitutes 0% of the society’s population has 100%
of the society’s overall wealth. In terms of the Lorenz and Leimkuhler curves, perfect inequality is characterized
by the floor and the ceiling of the unit square: L(p) = 0 (0 ≤ p < 1) and K(p) = 1 (0 < p ≤ 1).

Moreover, the Lorenz curve is convex and the Leimkuhler curve is concave, because The first derivative of LKC

w.r.t. p implies K ′(p) =
1

µ
F−1(1− p), for all 0 ≤ p ≤ 1 and K ′′(p) =

−1

µf(x)
, where F (x) = 1− p.

The Gini index is the best known and the most widely applied inequality index in economics and informetrics in
particular and across science in general. The Gini index G is depicted as the area between the Leimkuhler and
Lorenz curves. The Gini coefficient can theoretically range from 0 (complete equality) to 1 (complete inequality)
as:

G =

∫ 1

0

[K(p)− L(p)]dp = 1−
∫∞
0

F̄ (x)2dx

E(x)
. (6)

A low Gini index indicates more equal productivity distribution while a high Gini index indicates more unequal
productivity distribution. As an illustration, consider a classical Pareto distribution with a distribution function

F (x) = 1− (
x

σ
)
−α

, x ≥ σ (7)

where σ > 0 is a scale parameter and α > 0 is a shape parameter. The Lorenz and Leimkuhler curves of the classical
Pareto distribution respectively is given by

L(p;α) = 1− (1− p)1−
1
α , 0 ≤ p ≤ 1,

K(p;α) = p1−
1
α , 0 ≤ p ≤ 1.

Using relation (6), the Gini index of the classical Pareto distribution is

G(α) =
1

2α− 1
.
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Figure 1. Plot of the Lorenz and Leimkuhler curves and Gini index of the classical Pareto distribution for α = 2.

Figure 1 presents three panels, each depicting visualizations related to the Lorenz curve, Leimkuhler curve, and
the Gini index for a classical Pareto distribution with the shape parameter α = 2. The Lorenz curve (highlighted
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in the middle panel) is a graphical representation used to show the cumulative distribution of wealth or income in
a population. A perfectly equal distribution would follow the line of equality (a 45-degree diagonal line), but the
Lorenz curve generally bows below this line, indicating inequality. The farther the curve is from the line of equality,
the higher the level of inequality. The Leimkuhler curve (shown in the first panel) is closely related to the Lorenz
curve. The area between the line of equality and the Leimkuhler curve can be used to measure the inequality in
rank-based productivity distribution. The third panel combines the concepts of the Lorenz and Leimkuhler curves,
showing the area between the Lorenz curve and the line of equality, which represents the Gini coefficient.

Intuitively productivity distribution of the random variable and it’s LKC representation is equivalent. So, we can
obtain the pdf from LKC.

Proposition 1
Suppose that K(p) is a Leimkuhler curve and consider K ′′(p) exists and is negative everywhere in an interval
(x1, x2) then, F has a finite probability density in the interval (µK ′(x+

1 ), µK
′(x+

2 )) which is given by

f(x) =
−1

µK ′′(p)F̄ (x)
. (8)

Proof

The first derivative of LKC w.r.t. p implies K ′(p) =
1

µ
F−1(1− p), for all 0 ≤ p ≤ 1, where F (x) = 1− p, leads

to K ′(F̄ (x)) =
x

µ
. So, K ′′(F̄ (x))(−f(x)) =

1

µ
equivalent to f(x) =

−1

µK ′′(p)F̄ (x)
.

This method is a version of Proposition 1 which is given by Burrell [9].

The ratio of the Lorenz curve at p to its value at 1− p measures the fraction of income that the lowest 100p%
of the population have relative to the upper 100p% via the Leimkuhler curve. For the status of the lower and
upper-income group Gastwirth [19] defined

J(p) =
L(p)

1− L(1− p)
=

L(p)

K(p)
(9)

as the ratio of the total income of poorest pth fraction of population to the total income of the highest pth fraction
and the ratio of the total income of the middle pth fraction of the population to that of the upper pth fraction is
reflected by

Jm(p) =
L(0.5 +

p

2
)− L(0.5− p

2
)

1− L(1− p)
=

K(0.5 +
p

2
)−K(0.5− p

2
)

K(p)
. (10)

The measure of polarization as named Wolfson’s index of bipolarization originally proposed for a population
divided into two groups in view of the median (Wolfson [43]). This measure can be expressed as

WX =
2µ

m
(2K(0.5)− 1−G) (11)

where µ, m and G are mean, median and Gini index respectively.

3. Transformation and weighted version of Leimkuhler curve

Transformations are used to present data on different scale in statistics. The nature of a transformation determines
how the scale of an untransformed variable will be affected. Consider a random variable X and let h : R → R be
a transformation Y = h(X), then we wish to know the Leimkuhler of this transformation (Y = h(X)) and its link
with the Leimkuhler curve of X in the general case and special cases as below:
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Proposition 2
Let X be a random variable with expectation µ and Leimkuhler curve K(.). Then the Leimkuhler curve of
Y = h(X) (h is invertible) is

K∗(p) =
1

E(h(X))

∫ ∞

F−1(1−p)

h(z)f(z)dz.

Proof
Via definition of LKC we have

K∗(p) =
1

E(Y )

∫ 1

1−p

D−1(t)dt,

where D and F are distribution functions of Y and X respectively. On nothing that D−1(t) = h(F−1(t)),

K∗(p) =
1

E(Y )

∫ 1

1−p

h(F−1(t))dt

=
1

E(h(X))

∫ ∞

F−1(1−p)

h(z)f(z)dz.

Remark 1
When Y = aX + b, then

K∗(p) =
1

aµ+ b
[a

∫ ∞

F−1(1−p)

zf(z)dz + b(1− F (F−1(1− p)))]

=
aµK(p) + bp

aµ+ b

= wp+ (1− w)K(p)

where w =
b

aµ+ b
. In this case b = 0 (a = 1) implies K∗(p) = K(p) (K∗(p) =

µK(p) + bp

µ+ b
),

which is Sarabia [35] achievement.

Weighted distribution with a generally weighted w(.) defined by Rao [32] and Patil and Rao [29], [30] as

fw(x) =
w(x)f(x)

E(w(X))
where f is the referenced distribution.

The distribution function of w can be represented as

Fw(x) =
1

E(w(X))

∫ F (x)

0

w(F−1(u))du = Lw(x)(F (x)) (Kw(x)(F (x))) (12)

if w(.) is increasing (decreasing). For the case w(x) = ϕ(F (x)) where includes distribution such as order statistics,
record value, Jones model, . . . , etc, we have

Fw(x) =
1∫ 1

0
ϕ(t)dt

∫ F (x)

0

ϕ(u)du = Lϕ(F )(F (x)) (Kϕ(F )(F (x)))

if ϕ(.) is increasing (decreasing). In view of Bartoszewicz [3], we have the following assertions for Leimkuhler
curve in weighted cases:

• If the odd number of wi(.), i = 1, 2, . . . n be decreasing then, for w(x) = w1(w2(. . . (wn(x)))), Fw(x) =
Kw(F (x)), which can be proved by induction.
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• For the case w∗(x) =
∏n

i=1 wi(x), when all wi(.) be decreasing, then Fw∗(x) = Kw∗(F (x)), but this relation
for other choices may be correct, which is depending on w′

is.

For example, If X has a classical Pareto distribution with a scale parameter (σ > 0) and a shape parameter (α > 0),
we take w(x) = xβ (β < 0), then From (12)

Fw(x) = Kw(F (x)) = 1− (
x

σ
)
β−α

.

Now let w(x) = w1(w2(. . . (wn(x)))) = xB be decreasing, where wi(x) = xbi , (bi < 0), i = 1, 2, . . . n (n be a odd
number), B =

∏n
i=1 bi, then

Fw(x) = Kw(F (x)) = 1− (
x

σ
)
B−α

.

For the decreasing function w∗(x) =
∏n

i=1 wi(x) = xB∗
, where wi(x) = xbi , (bi < 0), B∗ =

∑n
i=1(bi), then

Fw∗(x) = Kw∗(F (x)) = 1− (
x

σ
)
B∗−α

.

4. Parametric Leimkuhler curve

Finding an appropriate functional form of LC and LKC is an important practical and theoretical problem. In this
section, some functional forms of LKC are presented:

Proposition 3
If K(p) is a given LKC, then Kα(p) = [K(p)]α is also a LKC if and only if

0 < α < 1− K(p).K ′′(p)

(K ′(p))2
for all 0 < p < 1. (13)

Proof
The proof is similar to which mentioned in Proposition 2 of Burrell [9].

• Let K(p) = p , then Kα(p) = pα is also a LKC if and only if α ∈ [0, 1].
• Let K1(p) and K2(p) be two LKCs, the functional form Kα,β(p) = 1− (1−K1(p))

α(1−K2(p))
β , where

α, β ≥ 1 is a genuine LKC, because it is easy to see that Kα,β(0) = 0,Kα,β(1) = 1, K ′
α,β(p) ≥ 0 and

K ′′
α,β(p) ≤ 0, p ∈ (0, 1).

• Let K(p) be a strictly increasing baseline Leimkuhler curve, Kα,γ(p) = [1−K−1(1− p)]αpγ , where α > 0
and γ ≥ 1, then it is a new functional form that a genuine LKC.

Some of the Leimkuhler forms characterize special distribution as follows:

Proposition 4
Suppose that X is a non-negative random variable, have uniform distribution U(0, 2cµX) if and only if K(p) =
a+ bp+ cp2 for c < 0, b > 0, a ∈ R.

Proof
On using the conditions of LKC, it is trivial.

In view of Sarabia et al. [39] we obtain following Proposition:

Proposition 5
Let Ki(p), i = 1, 2 be two LKCs then the functional form K12(p) = K1(K2(p)), 0 ≤ p ≤ 1 defines a new genuine
LKC.
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Proof
The following conditions imply the proof:

(i)K12(0) = K1(K2(0)) = K1(0) = 0, K12(1) = K1(K2(1)) = K1(1) = 1
(ii)K ′

12(p) = (K1(K2(p))
′ = K ′

1(K2(p)).K
′
2(p) ≥ 0

(iii)K ′′
12(p) = K ′

2(p).K
′′
1 (K2(p)) +K ′′

2 (p).K
′
1(K2(p)) ≤ 0, for all 0 < p < 1.

The extension of the Proposition can be expressed as below:

• Let Ki(p), i = 1, 2, ..., k be LKC then the functional form K12..k(p) = K1(K2...Kk(p)) is a new genuine
LKC too, which can be achieved via mathematical induction supposing that Kk−1(p) = K1(K2(...Kk−1(p)))
is a LKC.

• Let G1, G2 be two Gini indices corresponding to Leimkuhler curves K1(p) and K2(p). If K1(p) < K2(p) for
every p ∈ (0, 1). Then G1 < G2 . i.e. Gini index is increasing functional of LKC.

In view of hybrid models of the LC (Ogwang et al. [28]) we have this assertion for LKC:

Proposition 6
Let Y1 = K1(p) and Y2 = K2(p) be two Leimkuhler curves with Gini indices G1 and G2 respectively. Then
a convex combination Y = K(p) = δK1(p) + (1− δ)K2(p) of two models is a LKC, for all 0 ≤ δ ≤ 1 and its
corresponding Gini index is G = δG1 + (1− δ)G2.

Proof
The proof follows from the conditions of LKC:
K(0) = δK1(0) + (1− δ)K2(0) = 0 and K(1) = δK1(1) + (1− δ)K2(1) = 1 and K ′(p) = δK ′

1(p) + (1−
δ)K ′

2(p) ≥ 0 beacause K ′
1(p),K

′
2(p) ≥ 0

K ′′(p) = δK ′′
1 (p) + (1− δ)K ′′

2 (p) ≤ 0 because K ′′
1 (p),K

′′
2 (p) ≤ 0.

A possible solution for obtaining better fit consists in building more complex models combining some of the
classical models using the convex linear combination of LKCs.

Remark 2
Let K1(p),K2(p), . . . , Km(p) be Leimkuhler curves, the following K(p) are LKCs for i = 1, 2, . . . ,m.

(i) K(p) =
∑m

i=1 wiKi(p), wi ≥ 0,
∑m

i=1 wi = 1.
(ii) K(p) = 1−

∏m
i=1(1−Ki(p))

α, α ≥ 0.
(iii) K(p) = min{K1(p),K2(p), . . . ,Km(p)}, p ∈ [0, 1].

Let X be a non-negative integer real value of random variable with probability mass function pj = P (X =
j); j = 0, 1, 2, 3, · · · where

∑∞
j=0 pj = 1, then probability generating function of it can be expressed as AX(s) =

E(sX) =
∑∞

j=0 pjs
j which is convergent for |s| < 1. We state assertions related to the Leimkuhler curve and

moment generating function via the similar arguments in Sarabia et al. [37]. Notes based on Leimkuhler curve the
below Proposition is derived.

Proposition 7
Let K0(p) be a LKC curve where the first and second derivative of it w.r.t. p exist. Consider X be a discrete
random variable which takes value 1, 2, 3, · · · with probability πj = P (X = j) ≥ 0 for j = 1, 2, · · · and AX(.)
be the corresponding generating function of X which the first and second derivative of it w.r.t. s exist. Then
K̃(p, π) = 1−AX(1−K0(p)) defines a LKC.

Proof
We have K̃(0, π) = 1−AX(1−K0(0)) = 1−A(1) = 0,
K̃(1, π) = 1−AX(1−K0(1)) = 1−A(0) = 1,
K̃ ′(p, π) = K ′

0(p)A
′
X(1−K0(p)) > 0 and
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K̃ ′′(p, π) = K ′′
0 (p)A

′
X(1−K0(p))− (K ′

0(p))
2A′′

X(1−K0(p)) < 0,
hence K̃(p, π) is a LKC.

As an example assume that πj =
1

n
, j = 1, 2, . . . when n = 1, 2, . . . and AX(z) =

1− zn

n(1− z)
, then K̃(p, π) =

1−AX(1−K0(p)) = 1− 1− (1−K0(p))
n

nK0(p)
.

5. Leimkuhler ordering

We can use some stochastic ordering about LKC. If two Leimkuhler curves do not intersect, they can be ordered.

Definition 1
Suppose that X1 and X2 be two non-negative random variables with positive finite expectation, the random variable
X1 is said to be at least as unequal as X2 in the Leimkuhler sense (X1 ≤LKC X2) if K1(p) ≤ K2(p) for all
p ∈ [0, 1], that is

X1 ≤LKC X2 ⇐⇒ K1(p) ≤ K2(p), 0 ≤ p ≤ 1. (14)

Another well-known partial order to compare the skewness of two probability distribution is the star-shaped
order. The star-shaped order is stronger than the Leimkuhler order.
Let X1 and X2 be two non-negative random variables with distribution functions F1 and F2 respectively. Also,
star-shaped ordering is defined as follows (Arnold et al. [1]):

Definition 2

X1 is star-shaped with respect to X2, (X1 ≤⋆ X2) if
F−1
1 (x)

F−1
2 (x)

is a non-increasing function of x.

The star-shaped ordering implies Leimkuhler ordering as seen in below:

Proposition 8
Suppose that X1 and X2 be two non-negative random variables with positive finite expectation. If X1 ≤⋆ X2, then
X1 ≤LKC X2 and K1(p) ≤ K2(p) for all p ∈ [0, 1].

Proof
The proof is similar to that of Theorem 9.3 of Sarabia [36] about LC.

In view of Theorem 1 of Moothathu [27] we have the following property:

Lemma 1
Let X1 and X2 be two positive random variables with quantile functions F−1

1 and F−1
2 , and Leimkuhler curves

K1(p) and K2(p) respectively and let U(t) =
F−1

1 (t)

F−1
2 (t)

. Then, for every p in (0, 1),
(i)K1(p) > K2(p) if U(t) is increasing in(0, 1).
(ii)K1(p) < K2(p) if U(t) is decreasing in(0, 1).
(iii)K1(p) = K2(p) if U(t) = C, constant in(0, 1).

Proof
The proof is similar to that of Theorem 1 of Fellman [18].

6. Distorted Leimkuhler curve

A distortion function is known as a probability transformation function. Risk theory based on distorted probability
can be considered as a dual theory of choice under risk in the sense that it uses the notion of distortion function
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as opposed to the utility function used in classical utility theory. Here we use the concept of distortion function
which is an increasing function h : [0, 1] → [0, 1] such that h(0) = 0 and h(1) = 1; in connection with LKC. Some
aspects of LKC related to distortion cases are as below:

Proposition 9
Let K(p) be a LKC and h be a twice differentiable distortion function such that h′′(t) ≥ 0, t ∈ (0, 1). Then
K̃(p) = h(K(p)), p ∈ [0, 1] can not defined a LKC; always.

Proof
Simply see K̃(0) = 0 and K̃(1) = 1. The first derivative of K̃(p) is K̃ ′(p) = h′(K(p))K ′(p) where h and
K are increasing implies K̃ ′(p) ≥ 0, with second derivative of K̃ ′(p) conclude K̃ ′′(p) = h′′(K(p))(K ′(p))2 +
h′(K(p))K ′′(p) since h′′ > 0, it should be K̃ ′′(p) ̸≤ 0.

Based on the above Proposition and its arguments some results are as a remark.

Remark 3
Let K(p) and h(p) be Leimkuhler curve and distorted function respectively, then

(i) For K̃(p) = 1− h(1−K(p)), K̃(p) is also a LKC.
(ii) Let h(p) = K1(p) be a LKC as a distorted function, then K̃(p) = K1(K(1− p)) defines also a LKC.

As an example, consider K1(p) =
p

1− (1− θ)(1− p)
, θ ∈ (0, 1], p ∈ [0, 1] then K̃(p) =

K(p)

1− (1− θ)(1−K(p))
= K1(K(p)) is also a LKC.

(iii) Let X be a discrete random variable take integer value with probability pj = P (X = j) > 0 and A be the
probability generating function parallel to Sordo et al. [41],

K̃(p) = 1− (1−K(p))αA(1−K(p))

with α ≥ 1 is also a LKC. For example let X ∼ P (θ), then A(t) = E(tX) = exp{−(1− t)θ} so, K̃(p) =
1− (1−K(p))αexp{−θK(p)} is also a LKC.

(iv) Let hi(.),Ki(p)(i = 1, . . . , k) be k distorted functions and k Leimkuhler curves respectively, then

K̃(p) = 1−
k∏

i=1

hi(1−Ki(p))

is a LKC.

For two distorted functions the following Proposition is noticeable:

Proposition 10
Let hi(.),Ki(p), (i = 1, 2) be two distorted functions and two LKCs, then

K̃(p) = 1− h1(1−K1(p))h2(1−K2(p))

is a LKC.

Proof
On noting Ki(p) i = 1, 2 are LKCs, then K̃(0) = 0 and K̃(1) = 1.
K̃ ′(p) = K ′

1(p)h
′
1(1−K1(p))h2(1−K2(p)) +K ′

2(p)h1(1−K1(p))h
′
2(1−K2(p)) which is positive. Drive twice

of K̃ ′ w.r.t. p implies

K̃ ′′(p) = K ′′
1 (p)h

′
1(1−K1(p))h2(1−K2(p))

− (K ′
1(p))

2h′′
1(1−K1(p))h2(1−K2(p))

− 2K ′
1(p)K

′
2(p)h

′
1(1−K1(p))h

′
2(1−K2(p))

+K ′′
2 (p)h1(1−K1(p))h

′
2(1−K2(p))

− (K ′
2(p))

2h1(1−K1(p))h
′′
2(1−K2(p))
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is negative. So, K̃(.) is a LKC.

7. Risk measure and Leimkuhler curve

Is the Leimkuhler curve can be related to risk measure? For answering this question we have studied this relation
via the following parallel to Lorenz curve arguments:

• Tail Value at risk is considered as the arithmetic mean of the VaRs of X from p on.
TVaR(X; p) =

µ

1− p
K(1− p), p ∈ (0, 1).

• Conditional tail expectation as
CTE(X; p) = E(X|X > VaR(X; p)) =

µ

1− p
K(F−1(p))

and conditional value at risk can be as

CVaR(X; p) = E(X − VaR(X; p)|X > VaR(X; p))

=
µ

1− p
K(F−1(p))− F−1(p), p ∈ (0, 1).

• Expected shortfall can be expressed by

ES(X; p) =

∫ ∞

F−1(p)

(x− F−1(p))f(x)dx

= µK(1− p)− (1− p)F−1(p), p ∈ (0, 1).

• The expected proportional shortfall function defined by Belzunce et al. [5] as

EPS(X; p) = E((
X − VaR(X; p)

VaR(X; p)
)+) where (x)+ = max{x, 0}. It is expressible in terms of LKC also:

EPS(X; p) =
µK(1− p)− (1− p)F−1(p)

F−1(p)
, p ∈ (0, 1).

• A relative version of TV aR is given by

TV aRD =
TVaR(X; p)

E(X)
=

K(1− p)

1− p
.

• Given two random variables X and Y with respective distribution function F and G, X is less than Y in
stochastic order if VaR(X; p) ≤ VaR(Y ; p) which implies F−1(p) ≤ G−1(p), for p ∈ (0, 1).
It can be led to E(X)KX(p) ≤ E(Y )KY (p) and if E(X) = E(Y ) it leads to KX(p) ≤ KY (p).

• The tail value-at-risk is closely related to the increasing convex order that Sordo [40] obtained increasing
convex ordering can be characterized TVaR as

X ≤icx Y ⇒ TVaR(X; p) ≤ TVaR(Y ; p) ⇒ E(X)KX(p) ≤ E(Y )KY (p), p ∈ (0, 1).

• Let X and Y be two non-negative random variables with interval support; if X ≤PS Y , then KY (p) ≥
KX(p). Note that X ≤PS Y if EPS(X; p) ≤ EPS(Y ; p), for p ∈ DX ∩DY .

8. Connection between Leimkuhler curve and other criteria

The links between the Leimkuhler curve and other criteria which are important in economics and informetrics are
as below:
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• Zenga [45] introduced a new inequality curve Z(p), based on the ratio between the lower mean M−(p)

and the upper mean M+(p) of non-negative random variable by Z(p) = 1− M−(p)

M+(p)
, p ∈ (0, 1) where

M−(p) =

∫ p

0
F−1(t)dt

p
and M+(p) =

∫ 1

p
F−1(t)dt

1− p
.

Based on Zenga [45], it can be proved the following link between Z(p) and K(p) curves:

K(p) =
p

1− (1− p)[Z(1− p)]

• Crow [13] defined the population double cumulative curve as a Lorenz curve with origin moved to (1, 1) and
axes rotated 180◦ in the plane of the paper. It is applied in weather modification. Also, it is similar to the
Leimkuhler curve which is applicable in informetrics studies.

• The Right Concentration (RC) curve is defined by Belzunce et al. [4] as

RC(p) =
1

F−1(p)

∫ +∞

F−1(p)

F (x)dx+ 1

where can be expressed the LKC in related to RC curve as

K(p) =
F−1(1− p)

µ
[RC(1− p)− p].

• Arora et al. [2] defined the concept of cumulative mean income curve (COMIC) which has an important role
in measuring inequality. It is the mean income of the lower of the %100p of the income as

C(p) =
µ(1−K(1− p))

p
, 0 < p < 1.

which shows link with Leimkuhler curve.
• An important generalization of the Gini index is defined by Donaldson and Weymark [14] and Yitzaki [44]

as G(ν) = 1− ν(ν − 1)
∫ 1

0
(1− p)ν−2L(p)dp. It can be expressed via LKC as below:

G(ν) = 1− ν(ν − 1)
∫ 1

0
(y)ν−2(1−K(y))dy.

• Pietra index is another important equality measure that is defined as the maximal vertical deviation between
the Lorenz curve and the egalitarian line.

PL = max
0≤p≤1

{p− L(p)}.

It can be obtained via LKC as
PL = max

0≤p≤1
{K(p)− p}.

• The E-gini index which is defined by Charkravaty [12] can be expressed in terms of LKC

E-gini = 2[

∫ 1

0

(K(y)− y)αdy]

1

α .

• A hill curve (I(u)) is an inequality index where seen is Eliazar [17]. A vertical distances between LKC and
LC as

I(u) = K(u)− L(u), 0 < u < 1

and another version of it can be defined as

I(u) = L−1(u)−K−1(u), 0 < u < 1.

Stat., Optim. Inf. Comput. Vol. 14, October 2025



1636 PROPERTIES OF THE LEIMKUHLER CURVE WITH ITS APPLICATION IN JCR

9. Application

We use data on impact factors from the latest available (2019) edition of Thomson Reuters Journal Citation Reports
(JCR). Following Sarabia et al. [38] we use impact factors for scientific journals belonging to the following
scientific fields: Chemistry, Economics, Education, Information Science and Library Science (abbreviated as
Information SLS in table), Mathematics, Neuroscience, Psychology and Physics. A field of research is considered
by a JCR subject category or (for instance in the case of Mathematics) by a number of JCR subject categories taken
together.
We have considered only positive figures of the impact factor, that is, we have excluded journals with zero impact
factor.
Table 1 reports some summary statistics for the eight fields, including the number of journals with non-zero impact,
the mean, the quartiles, the Gini and Zenga indexes.
Comparing our data with data used by Sarabia et al. [38], we observe that the number of journals index in JCR has
increased between JCR 2010 Edition and JCR 2019 edition for each science category analyzed; the increases lie in
the range between 15% and 60%. Other results are close to those reported by Sarabia et al. [38].
The highest mean value corresponds to the Neuroscience field with a value of 3.870 and the lowest to the
Mathematics field with a value of 1.365. The Gini index is interpreted as a measure of concentration that ranges
from 0 to 1 where 0 corresponds to perfect equality (every paper in a journal receives the same number of citations)
and 1 corresponds to perfect inequality (all citations are received only by one single paper). Also, the Zenga index is
another measure of concentration. Three main differences between Gini and Zenga indexes. First, the Zenga index
increases more rapidly for low values of the variation and decreases more slowly when the variation approaches
intermediate values from above. Second, the Zenga index seems to be better predicted by the variation. Third,
although the Zenga index is always higher than the Gini one, the ordering of some pairs of cases may be inverted.
The highest Gini and Zenga values correspond to Physics with a value of 0.539 and 0.832 respectively, that higher
Gini and Zenga indexes indicate greater inequality and the lowest Gini and Zenga values correspond to Education
with a value of 0.314 and 0.656 that indicate smaller inequality.

Table 1. Summary statistics of the IF (empirical values) for selected fields, N denoted the number of journals with positive
impact factor.

Field N Mean First quartile Median Third quartile Std. Dev. Gini index Zenga index
Chemistry 654 3.828 1.417 2.406 4.181 5.044 0.503 0.821
Economic 371 1.805 0.846 1.414 2.240 1.485 0.399 0.739
Education 347 1.735 0.997 1.559 2.189 1.065 0.314 0.656

Information SLS 87 2.046 0.788 1.580 2.715 1.624 0.427 0.783
Mathematics 749 1.365 0.688 1.053 1.642 1.208 0.373 0.704
Neuroscience 271 3.870 2.224 3.056 4.426 3.397 0.371 0.715
Psychology 761 2.349 1.156 1.869 2.703 2.352 0.402 0.742

Physics 482 3.494 1.224 1.970 3.163 5.306 0.539 0.832

Figure 2 displays four panels, each panel includes the Lorenz curve and the Leimkuhler curve. The Gini
coefficient represented by the area between the Lorenz curve and the line of equality. A larger area between the
Lorenz curve and the line of equality indicates greater inequality. Chemistry appears to have the highest level
of inequality among the four fields, as indicated by the larger Gini coefficient, while Education shows the least.
Economics and Mathematics fall between the two, with Economics displaying more inequality than Mathematics.
Figure 3 presents Lorenz and Leimkuhler curves for Information, Physics, Psychology, and Neurosciences.
Neurosciences has the most equal distribution of productivity or resources, with the smallest Gini coefficient.
Psychology and Information show increasing levels of inequality, with Information displaying more inequality
than Psychology. Physics has the highest inequality, as indicated by the largest Gini coefficient.
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Figure 2. Lorenz and Leimkuhler curves for the impact factor in four categories: Economics, Mathematics, Education and
Chemistry
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Figure 3. Lorenz and Leimkuhler curves for the impact factor in four categories: Information science and Library science,
Physics, Psychology and Neurosciences
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Figure 4. Leimkuhler curves for the impact factor in four categories: Economics, Mathematics, Education and Chemistry
(left) and Information science and Library science, Physics, Psychology and Neurosciences (right)

Figure 4 presents two graphs, both depicting Leimkuhler curves for the impact factors of journals in different
academic categories. In the left figure, the Leimkuhler curve for Chemistry and the Leimkuhler curve for Education
are the farthest and closest curves to the equality line, respectively, confirming that they have the highest and
lowest Gini coefficients, as shown in Figure 2. Similarly, in the right figure, the Leimkuhler curves for Physics and
Neurosciences are, respectively, the farthest and the closest to the equality line, which confirms that they have the
highest and lowest Gini coefficients, as shown in Figure 3.

10. Conclusion

Leimkuhler curve as an inequality measure which is mostly applied in informetrics has properties that are achieved
some of them here.
Also, for variant families and cases, the connections with the Leimkuhler curve are obtained with attached remarks.
Applications with data taken from Thomson Reuters Journal Citation Reports Edition 2019, in eight scientific fields
are considered.
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