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Equilibrium stacking in finite uniform approximation of 3-person games
played with staircase-function strategies
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Abstract A method of finite uniform approximation of 3-person games played with staircase-function strategies is
presented. A continuous staircase 3-person game is approximated to a staircase trimatrix game by sampling the player’s
pure strategy value set. The set is sampled uniformly so that the resulting staircase trimatrix game is cubic. An equilibrium
of the staircase trimatrix game is obtained by stacking the equilibria of the subinterval trimatrix games, each defined on an
interval where the pure strategy value is constant. The stack is an approximate solution to the initial staircase game. The
(weak) consistency, equivalent to the approximate solution acceptability, is studied by how much the players’ payoff and
equilibrium strategy change as the sampling density minimally increases. The consistency includes the payoff, equilibrium
strategy support cardinality, equilibrium strategy sampling density, and support probability consistency. The most important
parts are the payoff consistency and equilibrium strategy support cardinality (weak) consistency, which are checked in the
quickest and easiest way. However, it is practically reasonable to consider a relaxed payoff consistency, by which the player’s
payoff change in an appropriate approximation may grow at most by ε as the sampling density minimally increases. The
weak consistency itself is a relaxation to the consistency, where the minimal decrement of the sampling density is ignored.
An example is presented to show how the approximation is fulfilled for a case of when every subinterval trimatrix game has
pure strategy equilibria.
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1. Introduction

In rationalizing the distribution of limited resources, 3-person noncooperative games are applied as often as a game
model representing two sides becomes impossible or inconsistent [15, 17, 23, 25]. Although trimatrix games are the
simplest 3-person games, equilibrium points in such games are not always determinable. An infinite or continuous
3-person game may not even have an equilibrium. Nevertheless, the best choice is to approximate an infinite or
continuous game to a finite one, which always has an equilibrium [17, 18, 9, 24].

A possible action of the player called a pure strategy can be as a simple (point) action, as well as a process
consisting of an order of simple actions. In the simplest case, the player’s pure strategy is a short action (operation,
move, maneuver, etc.) whose duration is negligible and thus is represented as just a (time) point. In a far more
complicated case, the player’s pure strategy is a function of time [21, 20, 16, 10], so the player’s action is a
complex process [6, 8, 26, 19].

Trimatrix games played with point strategies have been studied much deeper compared to 3-person games
played with function-strategies. This is frankly explained by that a trimatrix game is finite, whereas a 3-person
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game played with function-strategies must be infinite or continuous (unless every player has a finite set of one’s
function-strategies). A pure strategy situation consisting of three function-strategies each defined on a time interval
(or, generally speaking, on a finite measure set) is mapped into a real value by a player’s functional [22, 10, 16].
The real value is the player’s payoff [21, 10, 16, 20]. If each of the players is allowed to use just a finite set of one’s
function-strategies, the 3-person game can be rendered down to a trimatrix game, whichever the complexity of the
functionals is [17, 11, 12].

2. Motivation to finite approximation of 3-person games

To render a 3-person game with strategies as (time) functions down to a trimatrix game, there are two fundamental
conditions: discretization of time and the set of possible values of every player’s function-strategy. The first
fundamental condition can be presumed to be naturally fulfilled due to any process is interpreted static on a
sufficiently short time span [1, 7, 25, 26]. Then a time interval, on which the pure strategy is defined, is naturally
broken into a set of subintervals, on which the strategy is (approximately) constant. Moreover, the system to be
game-modeled may be managed so that the form of the strategies players will use is forcedly defined. An example
of this is the problem of rationalizing industrial wastewater treatment modeled by a dyadic 3-person game, in which
the system is managed by a government [15]. In such a game-model set-up, points of discontinuities (breakpoints)
being the same for all the players (subjects of environmental pollution) are defined by the government.

With the time discretization, the second fundamental condition allows to have finite sets of the players’ pure
strategies. While the players may use strategies of whichever form they want, the number of their factual actions
has a natural limit in any non-everlasting game [2, 7, 13, 14, 25, 26]. Thus, the set of function-strategies used in a
3-person game is finite anyway, and any (non-everlasting) 3-person game is played as if it is a trimatrix game.

To approximate a continuous game means obtaining its simplified version whose exact solution would be an
approximate but still acceptable solution to the initial game [3, 12, 16]. The simplified game is usually finite.
The continuous game approximation is based on sampling the sets of players’ pure strategies [11, 12, 16]. An
approximate solution (e. g., an equilibrium situation) is considered acceptable if it changes minimally by changing
the sampling step minimally. The solution change is a complex notion involving the solution payoff, the solution
strategy support cardinality, the support density, and the closeness of the solution strategies.

Obviously, this method cannot be applied straightforwardly to approximate a 3-person game with staircase-
function strategies. However, on every time subinterval the players’ strategies are constant, so the game on this
subinterval can be directly approximated by the method. It remains only to properly “glue” together the subinterval
approximations.

3. Objective and tasks to be fulfilled

Issued from the impossibility of solving 3-person games played with staircase-functions strategies, the objective is
to develop a method of finite approximation of such games. For achieving the objective, the following tasks are to
be fulfilled:

1. To formalize a 3-person game, in which the players’ strategies are functions of time.
2. To formalize a 3-person game, in which the players’ strategies are staircase functions. In such a game, the

set of the player’s pure strategies is a continuum of staircase functions of (discrete) time.
3. To state conditions of sampling the set of possible values of the player’s pure strategy so that the game be

defined on a product of staircase-function finite spaces.
4. To state conditions of the appropriate finite approximation.
5. To discuss applicability and significance of the method for the game theory and to make an appropriate

conclusion on it.
The paper proceeds as follows. Section 4 introduces a 3-person game with strategies as functions. A 3-person

game with staircase-function strategies is formalized in Section 5. Section 6 describes how the pure strategy value
axis is sampled. The question of whether an approximate solution can be accepted or not is answered in Section 7.
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A visual exemplification is presented in Section 8 showing a carefully reasoned analysis of the approximation. The
study is discussed and concluded in the last two sections.

4. A 3-person game with strategies as functions

In a 3-person game, in which the player’s pure strategy is a function of time, denote a strategy of the first, second,
and third players by x (t), y (t), and z (t), respectively. Let these function-strategies be defined almost everywhere
on interval [t1; t2] by t2 > t1. These function-strategies are presumed to be bounded, i. e.

amin ⩽ x (t) ⩽ amax by amin < amax, (1)

bmin ⩽ y (t) ⩽ bmax by bmin < bmax, (2)

and

cmin ⩽ z (t) ⩽ cmax by cmin < cmax. (3)

Besides, the square of the function-strategy is presumed to be Lebesgue-integrable. Thus, pure strategies of the
player belong to a rectangular functional space of functions of time:

X = {x (t) , t ∈ [t1; t2] , t1 < t2 : amin ⩽ x (t) ⩽ amax by amin < amax} ⊂ L2 [t1; t2] , (4)

Y = {y (t) , t ∈ [t1; t2] , t1 < t2 : bmin ⩽ y (t) ⩽ bmax by bmin < bmax} ⊂ L2 [t1; t2] , (5)

and

Z = {z (t) , t ∈ [t1; t2] , t1 < t2 : cmin ⩽ z (t) ⩽ cmax by cmin < cmax} ⊂ L2 [t1; t2] (6)

are the sets of the players’ pure strategies, respectively.
The player’s payoff in situation

{x (t) , y (t) , z (t)} (7)

is presumed to be an integral functional [10, 16]. Thus, the first, second, and third players’ payoffs are

F
(
x (t) , y (t) , z (t)

)
=

∫
[t1; t2]

f
(
x (t) , y (t) , z (t) , t

)
dµ (t), (8)

G
(
x (t) , y (t) , z (t)

)
=

∫
[t1; t2]

g
(
x (t) , y (t) , z (t) , t

)
dµ (t), (9)

H
(
x (t) , y (t) , z (t)

)
=

∫
[t1; t2]

h
(
x (t) , y (t) , z (t) , t

)
dµ (t), (10)

respectively, where

f
(
x (t) , y (t) , z (t) , t

)
, (11)
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g
(
x (t) , y (t) , z (t) , t

)
, (12)

h
(
x (t) , y (t) , z (t) , t

)
(13)

are functions of x (t), y (t), z (t), explicitly including time t. Therefore, the continuous 3-person game〈
{X, Y, Z} ,

{
F
(
x (t) , y (t) , z (t)

)
, G

(
x (t) , y (t) , z (t)

)
, H

(
x (t) , y (t) , z (t)

)}〉
(14)

with function-strategies is defined on product

X × Y × Z ⊂ L2 [t1; t2]× L2 [t1; t2]× L2 [t1; t2] (15)

of rectangular functional spaces (4) — (6) of players’ pure strategies. In practical reality, 3-person game (14) with
strategies as functions is presumed to be played discretely through time interval [t1; t2]. Then a function-strategy
becomes staircase. The number of subintervals at which the player’s pure strategy is constant must be the same for
every player. This is defined by the (physical, economical, biological, social, etc.) laws of a system modeled by the
game.

5. A 3-person game with staircase-function strategies

So, denote by N the number of subintervals at which the player’s pure strategy is constant, where N ∈ N\ {1}.
Then the player’s pure strategy is a staircase function having only at most N different values. Let

{
τ(i)

}N−1

i=1
be

the time points at which the staircase-function strategy changes its value, where

t1 = τ(0) < τ(1) < τ(2) < . . . < τ(N−1) < τ(N) = t2. (16)

The time interval breaking by (16) is the same for every player. This is naturally defined by the laws of the system.
Then {

x
(
τ(i)

)}N

i=0
,
{
y
(
τ(i)

)}N

i=0
,
{
z
(
τ(i)

)}N

i=0
(17)

are the values of the players’ strategies in a play-off of game (14). Obviously, points
{
τ(i)

}N

i=0
are not necessarily

to be equidistant.
The staircase-function strategies are right-continuous [4]:

lim
ε>0
ε→0

x
(
τ(i) + ε

)
= x

(
τ(i)

)
, (18)

lim
ε>0
ε→0

y
(
τ(i) + ε

)
= y

(
τ(i)

)
, (19)

lim
ε>0
ε→0

z
(
τ(i) + ε

)
= z

(
τ(i)

)
, (20)

for i = 1, N − 1, whereas

lim
ε>0
ε→0

x
(
τ(i) − ε

)
̸= x

(
τ(i)

)
, (21)

Stat., Optim. Inf. Comput. Vol. 12, January 2024



V. ROMANUKE 49

lim
ε>0
ε→0

y
(
τ(i) − ε

)
̸= y

(
τ(i)

)
, (22)

lim
ε>0
ε→0

z
(
τ(i) − ε

)
̸= z

(
τ(i)

)
, (23)

for i = 1, N − 1. It is easy to see that a strategy value on subinterval
[
τ(N−1); τ(N)

]
should not change, i. e.

x
(
τ(N−1)

)
= x

(
τ(N)

)
,

y
(
τ(N−1)

)
= y

(
τ(N)

)
,

z
(
τ(N−1)

)
= z

(
τ(N)

)
.

So,

lim
ε>0
ε→0

x
(
τ(N) − ε

)
= x

(
τ(N)

)
, (24)

lim
ε>0
ε→0

y
(
τ(N) − ε

)
= y

(
τ(N)

)
, (25)

lim
ε>0
ε→0

z
(
τ(N) − ε

)
= z

(
τ(N)

)
. (26)

Constant values (17) by (16) mean that game (14) can be thought of as it is a succession of N continuous
3-person games〈

{[amin; amax] , [bmin; bmax] , [cmin; cmax]} , {F (αi, βi, γi) , G (αi, βi, γi) , H (αi, βi, γi)}
〉

(27)

defined on parallelepiped

[amin; amax]× [bmin; bmax]× [cmin; cmax] (28)

by

αi = x (t) ∈ [amin; amax] and βi = y (t) ∈ [bmin; bmax] and γi = z (t) ∈ [cmin; cmax]

∀ t ∈
[
τ(i−1); τ(i)

)
for i = 1, N − 1 and ∀ t ∈

[
τ(N−1); τ(N)

]
, (29)

where the factual players’ payoffs in situation {αi, βi, γi} are

F (αi, βi, γi) =

∫
[τ(i−1); τ(i))

f (αi, βi, γi, t) dµ (t) ∀ i = 1, N − 1 (30)

by

F (αN , βN , γN ) =

∫
[τ(N−1); τ(N)]

f (αN , βN , γN , t) dµ (t), (31)
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G (αi, βi, γi) =

∫
[τ(i−1); τ(i))

g (αi, βi, γi, t) dµ (t) ∀ i = 1, N − 1 (32)

by

G (αN , βN , γN ) =

∫
[τ(N−1); τ(N)]

g (αN , βN , γN , t) dµ (t), (33)

and

H (αi, βi, γi) =

∫
[τ(i−1); τ(i))

h (αi, βi, γi, t) dµ (t) ∀ i = 1, N − 1 (34)

by

H (αN , βN , γN ) =

∫
[τ(N−1); τ(N)]

h (αN , βN , γN , t) dµ (t). (35)

Thus, game (14) with staircase-function strategies can be called staircase. A pure-strategy situation in the staircase
game (14) is a succession of N situations

{
{αi, βi, γi}

}N

i=1
in games (27), where each situation corresponds to

its subinterval. The succession allows considering players’ payoffs in situation (7) in a simpler form.

Theorem 1
In a pure-strategy situation of the staircase game (14), represented as a succession of N games (27), functionals
(8) — (10) are re-written as subinterval-wise sums

F
(
x (t) , y (t) , z (t)

)
=

N∑
i=1

F (αi, βi, γi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, γi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , γN , t) dµ (t), (36)

G
(
x (t) , y (t) , z (t)

)
=

N∑
i=1

G (αi, βi, γi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

g (αi, βi, γi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

g (αN , βN , γN , t) dµ (t), (37)

H
(
x (t) , y (t) , z (t)

)
=

N∑
i=1

H (αi, βi, γi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

h (αi, βi, γi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

h (αN , βN , γN , t) dµ (t). (38)
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Proof
Situation {αi, βi, γi} is tied to half-subinterval

[
τ(i−1); τ(i)

)
by i = 1, N − 1 and to subinterval

[
τ(N−1); τ(N)

]
by i = N . Each of functions (11) — (13) in this situation is some function of time t. Denote a function
corresponding to (11) by ψi (t). For situation {αi, βi, γi} function

ψi (t) = 0 ∀ t /∈
[
τ(i−1); τ(i)

)
, (39)

and for situation {αN , βN , γN} function

ψN (t) = 0 ∀ t /∈
[
τ(N−1); τ(N)

]
. (40)

Therefore,

f (x (t) , y (t) , z (t) , t) =

N∑
i=1

ψi (t) (41)

in a pure-strategy situation (7) of the staircase game (14), by using (39) and (40). Consequently,

F
(
x (t) , y (t) , z (t)

)
=

∫
[t1; t2]

f
(
x (t) , y (t) , z (t) , t

)
dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

ψi (t) dµ (t) +

∫
[τ(N−1); τ(N)]

ψN (t) dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, γi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , γN , t) dµ (t) =

=

N∑
i=1

F (αi, βi, γi) (42)

in a pure-strategy situation (7) of the staircase game (14). Obviously, subinterval-wise sums (37) and (38) are
proved similarly to (39) — (42).

Although Theorem 1 does not provide a method of solving the 3-person staircase game, it provides a fundamental
decomposition of the game. By this decomposition each subinterval game (27) can be solved separately. The
solutions of subinterval games are then stacked (stitched) together.

6. Sampling along the pure strategy value axis

In a classical 3-person game (27), the players have their sets of pure strategies [amin; amax], [bmin; bmax], and
[cmin; cmax]. Let these sets be sampled uniformly with a step determined by an integer S, S ∈ N. So,

A (S) =
{
a(s)

}S+1

s=1
=

{
amin +

s− 1

S
· (amax − amin)

}S+1

s=1

⊂ [amin; amax] (43)

and

B (S) =
{
b(s)

}S+1

s=1
=

{
bmin +

s− 1

S
· (bmax − bmin)

}S+1

s=1

⊂ [bmin; bmax] (44)
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and

C (S) =
{
c(s)

}S+1

s=1
=

{
cmin +

s− 1

S
· (cmax − cmin)

}S+1

s=1

⊂ [cmin; cmax] (45)

are the sampled pure strategy sets of the first, second, and third players, respectively. The roughest sampling is by
S = 1, when

A (1) =
{
a(1), a(2)

}
= {amin, amax} (46)

and

B (1) =
{
b(1), b(2)

}
= {bmin, bmax} (47)

and

C (1) =
{
c(1), c(2)

}
= {cmin, cmax} . (48)

With the sampling by (43) — (45), the succession of N continuous 3-person games (27) by (16) — (26) and
(29) — (35) becomes a succession of N trimatrix (S + 1)× (S + 1)× (S + 1) games〈{{

a(m)
}S+1

m=1
,
{
b(j)

}S+1

j=1
,
{
c(q)

}S+1

q=1

}
, {Fi (S) , Gi (S) , Hi (S)}

〉
(49)

with first player’s 3-dimensional payoff matrices

Fi (S) = [φimjq (S)](S+1)×(S+1)×(S+1) (50)

whose elements are

φimjq (S) =

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), c(q), t

)
dµ (t) for i = 1, N − 1 (51)

and

φNmjq (S) =

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), c(q), t

)
dµ (t), (52)

the second player’s 3-dimensional payoff matrices

Gi (S) = [ρimjq (S)](S+1)×(S+1)×(S+1) (53)

whose elements are

ρimjq (S) =

∫
[τ(i−1); τ(i))

g
(
a(m), b(j), c(q), t

)
dµ (t) for i = 1, N − 1 (54)

and

ρNmjq (S) =

∫
[τ(N−1); τ(N)]

g
(
a(m), b(j), c(q), t

)
dµ (t), (55)
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and the third player’s 3-dimensional payoff matrices

Hi (S) = [θimjq (S)](S+1)×(S+1)×(S+1) (56)

whose elements are

θimjq (S) =

∫
[τ(i−1); τ(i))

h
(
a(m), b(j), c(q), t

)
dµ (t) for i = 1, N − 1 (57)

and

θNmjq (S) =

∫
[τ(N−1); τ(N)]

h
(
a(m), b(j), c(q), t

)
dµ (t). (58)

Note that with the sampling by (46) — (48), there is a succession of 3-person dyadic games [15, 18].
So, if integer S for game (14) by condition (29) is somehow selected, the continuous staircase game is

approximated and represented as a succession of N trimatrix (S + 1)× (S + 1)× (S + 1) games. It is well-known
that a finite 3-person game always has an equilibrium either in pure or mixed strategies. Thus the game is rendered
to a trimatrix game in order to obtain a staircase equilibrium. However, there is a much easier way to solve a finite
staircase 3-person game.

Theorem 2
Game (14) on product (15) of rectangular functional spaces (4) — (6) made a finite staircase game by condition
(29) and sampling (43) — (45) is always solved as a stack of successive equilibria of N trimatrix games (49) by
(50) — (58). The player’s payoff in the stacked equilibrium is the sum of the respective subinterval equilibrium
payoffs.

Proof
An equilibrium situation in the trimatrix game always exists, either in pure or mixed strategies. Denote by

Ui (S) =
[
u
(m)
i (S)

]
1×(S+1)

and
Zi (S) =

[
z
(j)
i (S)

]
1×(S+1)

and
Wi (S) =

[
w

(q)
i (S)

]
1×(S+1)

the mixed strategies of the first, second, and third players, respectively, in trimatrix game (49). The respective sets
of mixed strategies of the players are

U =

{
Ui (S) ∈ RS+1 : u

(m)
i (S) ⩾ 0,

S+1∑
m=1

u
(m)
i (S) = 1

}
(59)

and

Z =

{
Zi (S) ∈ RS+1 : z

(j)
i (S) ⩾ 0,

S+1∑
j=1

z
(j)
i (S) = 1

}
(60)

and

W =

{
Wi (S) ∈ RS+1 : w

(q)
i (S) ⩾ 0,

S+1∑
q=1

w
(q)
i (S) = 1

}
, (61)
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so
Ui (S) ∈ U ,

Zi (S) ∈ Z,

Wi (S) ∈ W,

and

{Ui (S) , Zi (S) , Wi (S)} (62)

is a situation in game (49). Let

{U∗
i (S) , Z

∗
i (S) , W

∗
i (S)} =

{[
u
(m)∗
i (S)

]
1×(S+1)

,
[
z
(j)∗
i (S)

]
1×(S+1)

,
[
w

(q)∗
i (S)

]
1×(S+1)

}
(63)

by
U∗

i (S) ∈ U ,

Z∗
i (S) ∈ Z,

W∗
i (S) ∈ W

be an equilibrium situation in game (49). In situation (63) the players receive their payoffs

{p∗i (S) , r∗i (S) , v∗i (S)} . (64)

Then {
{U∗

i (S) , Z
∗
i (S) , W

∗
i (S)}

}N

i=1
=

=

{{[
u
(m)∗
i (S)

]
1×(S+1)

,
[
z
(j)∗
i (S)

]
1×(S+1)

,
[
w

(q)∗
i (S)

]
1×(S+1)

}}N

i=1

(65)

is a set of equilibrium situations of N games (49) by (50) — (58). So, the stack of equilibria

{U∗
i (S)}

N
i=1 =

{[
u
(m)∗
i (S)

]
1×(S+1)

}N

i=1

(66)

is a stacked (“staircase”) strategy of the first player in the staircase game (14). The equilibria

{Z∗
i (S)}

N
i=1 =

{[
z
(j)∗
i (S)

]
1×(S+1)

}N

i=1

(67)

are stacked likewise into a “staircase” strategy of the second player, and

{W∗
i (S)}

N
i=1 =

{[
w

(q)∗
i (S)

]
1×(S+1)

}N

i=1

(68)

is a “staircase” strategy of the third player in this game. Then for the set of equilibria (65), inequalities

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

φimjq (S)u
(m)
i (S) z

(j)∗
i (S)w

(q)∗
i (S) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)
i (S) z

(j)∗
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), c(q), t

)
dµ (t) ⩽
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⩽
S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), c(q), t

)
dµ (t) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

φimjq (S)u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S) = p∗i (S) ∀ Ui (S) ∈ U for i = 1, N − 1, (69)

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

φNmjq (S)u
(m)
N (S) z

(j)∗
N (S)w

(q)∗
N (S) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)
N (S) z

(j)∗
N (S)w

(q)∗
N (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), c(q), t

)
dµ (t) ⩽

⩽
S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), c(q), t

)
dµ (t) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

φNmjq (S)u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S) = p∗N (S) ∀ UN (S) ∈ U (70)

and inequalities

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

ρimjq (S)u
(m)∗
i (S) z

(j)
i (S)w

(q)∗
i (S) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

g
(
a(m), b(j), c(q), t

)
dµ (t) ⩽

⩽
S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

g
(
a(m), b(j), c(q), t

)
dµ (t) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

ρimjq (S)u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S) = r∗i (S) ∀ Zi (S) ∈ Z for i = 1, N − 1, (71)

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

ρNmjq (S)u
(m)∗
N (S) z

(j)
N (S)w

(q)∗
N (S) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)
N (S)w

(q)∗
N (S)

∫
[τ(N−1); τ(N)]

g
(
a(m), b(j), c(q), t

)
dµ (t) ⩽

⩽
S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S)

∫
[τ(N−1); τ(N)]

g
(
a(m), b(j), c(q), t

)
dµ (t) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

ρNmjq (S)u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S) = r∗N (S) ∀ ZN (S) ∈ Z (72)
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and inequalities

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

θimjq (S)u
(m)∗
i (S) z

(j)∗
i (S)w

(q)
i (S) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)∗
i (S)w

(q)
i (S)

∫
[τ(i−1); τ(i))

h
(
a(m), b(j), c(q), t

)
dµ (t) ⩽

⩽
S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

h
(
a(m), b(j), c(q), t

)
dµ (t) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

θimjq (S)u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S) = v∗i (S) ∀ Wi (S) ∈ W for i = 1, N − 1, (73)

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

θNmjq (S)u
(m)∗
N (S) z

(j)∗
N (S)w

(q)
N (S) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)∗
N (S)w

(q)
N (S)

∫
[τ(N−1); τ(N)]

h
(
a(m), b(j), c(q), t

)
dµ (t) ⩽

⩽
S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S)

∫
[τ(N−1); τ(N)]

h
(
a(m), b(j), c(q), t

)
dµ (t) =

=

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

θNmjq (S)u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S) = v∗N (S) and ∀ WN (S) ∈ W (74)

hold. So, inequalities

N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

φimjq (S)u
(m)
i (S) z

(j)∗
i (S)w

(q)∗
i (S) +

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

φNmjq (S)u
(m)
N (S) z

(j)∗
N (S)w

(q)∗
N (S) =

=

N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)
i (S) z

(j)∗
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), c(q), t

)
dµ (t)

+

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)
N (S) z

(j)∗
N (S)w

(q)∗
i (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), c(q), t

)
dµ (t) ⩽

⩽
N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), c(q), t

)
dµ (t)

+
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+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
i (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), c(q), t

)
dµ (t) =

=

N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

φimjq (S)u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S) +

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

φNmjq (S)u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S) =

N∑
i=1

p∗i (S) = p∗ (S) (75)

and
N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

ρimjq (S)u
(m)∗
i (S) z

(j)
i (S)w

(q)∗
i (S) +

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

ρNmjq (S)u
(m)∗
N (S) z

(j)
N (S)w

(q)∗
N (S) =

=

N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

g
(
a(m), b(j), c(q), t

)
dµ (t)

+

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)
N (S)w

(q)∗
i (S)

∫
[τ(N−1); τ(N)]

g
(
a(m), b(j), c(q), t

)
dµ (t) ⩽

⩽
N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

g
(
a(m), b(j), c(q), t

)
dµ (t)

+

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
i (S)

∫
[τ(N−1); τ(N)]

g
(
a(m), b(j), c(q), t

)
dµ (t) =

=

N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

ρimjq (S)u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S) +

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

ρNmjq (S)u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S) =

N∑
i=1

r∗i (S) = r∗ (S) (76)

and
N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

θimjq (S)u
(m)∗
i (S) z

(j)∗
i (S)w

(q)
i (S) +

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

θNmjq (S)u
(m)∗
N (S) z

(j)∗
N (S)w

(q)
N (S) =

=

N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)∗
i (S)w

(q)
i (S)

∫
[τ(i−1); τ(i))

h
(
a(m), b(j), c(q), t

)
dµ (t)

+
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+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)∗
N (S)w

(q)
i (S)

∫
[τ(N−1); τ(N)]

h
(
a(m), b(j), c(q), t

)
dµ (t) ⩽

⩽
N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S)

∫
[τ(i−1); τ(i))

h
(
a(m), b(j), c(q), t

)
dµ (t)

+

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
i (S)

∫
[τ(N−1); τ(N)]

h
(
a(m), b(j), c(q), t

)
dµ (t) =

=

N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

θimjq (S)u
(m)∗
i (S) z

(j)∗
i (S)w

(q)∗
i (S) +

+

S+1∑
m=1

S+1∑
j=1

S+1∑
q=1

θNmjq (S)u
(m)∗
N (S) z

(j)∗
N (S)w

(q)∗
N (S) =

N∑
i=1

v∗i (S) = v∗ (S) (77)

hold as well. Therefore, inequalities (75) — (77) along with using Theorem 1 allow to conclude that the stack of
successive equilibria (65) is an equilibrium situation in game (14) by (29) sampled by (43) — (45). The players’
payoffs

{p∗ (S) , r∗ (S) , v∗ (S)} (78)

in this situation are calculated as the sum of the respective subinterval equilibrium payoffs as it is done in the right
side of inequalities (75) — (77).

As the solutions of the subinterval trimatrix games are independent, these games are solved in parallel, without
caring of the succession. Once N equilibrium situations in the subinterval trimatrix games are found, they are
successively stacked (stitched) and the stack, according to Theorem 2, is an equilibrium in the staircase game (14)
sampled by (43) — (45).

In general case, the sampling along the pure strategy value axis can be non-uniform, and each player can have
its own number of the sampled points (it is S + 1 in the above-considered proposition, whereas S is the number of
pure strategy value intervals). Nevertheless, this is quite specific case, so it is not considered now.

7. Approximate equilibrium solution consistency

Obviously, integer S for approximating game (14) by condition (29) cannot be selected arbitrarily. The conditions
of the appropriate finite approximation can be stated by using the known method of obtaining the approximate
solution of a continuous game [16, 12]. There are four groups of the conditions, whereas the requirement of the
smooth sampling of the payoff functionals is inapplicable here [16].

An easy-to-find condition of the finite approximation appropriateness is the equilibrium payoff change:

|p∗i (S)− p∗i (S + 1)| ⩽ |p∗i (S − 1)− p∗i (S)| for i = 1, N (79)

and

|r∗i (S)− r∗i (S + 1)| ⩽ |r∗i (S − 1)− r∗i (S)| for i = 1, N (80)

and

|v∗i (S)− v∗i (S + 1)| ⩽ |v∗i (S − 1)− v∗i (S)| for i = 1, N. (81)
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Each of conditions (79) — (81) means that, as the sampling density minimally increases, the player’s equilibrium
payoff change in an appropriate approximation should not grow. This is the basic requirement to an approximate
equilibrium.

Definition 1
The stack of successive equilibrium situations (65) is called payoff-S-consistent if inequalities (79) — (81) hold.
Stack (66) of equilibrium strategies is called first-player-payoff-S-consistent if inequalities (79) hold. Stack
(67) of equilibrium strategies is called second-player-payoff-S-consistent if inequalities (80) hold. Stack (68) of
equilibrium strategies is called third-player-payoff-S-consistent if inequalities (81) hold.

It is clear that if each of stacks (66) — (68) is payoff-S-consistent for the respective player, then the stack of
successive equilibrium situations (65) is payoff-S-consistent. Nevertheless, even the basic requirement may be
unfeasible. Indeed, among those 3N inequalities just a few ones may be violated so that the difference between the
left and right absolute values is very small (insignificant). Or, they nearly all may be violated, but the differences are
insignificantly (negligibly) small. Then, it is useful and practically reasonable to consider the payoff consistency
adding a relaxation.

Definition 2
An approximate equilibrium (65) from stacks (66) — (68) is called ε-payoff-S-consistent if inequalities

|p∗i (S)− p∗i (S + 1)| − ε ⩽ |p∗i (S − 1)− p∗i (S)| by some ε > 0 for i = 1, N (82)

and

|r∗i (S)− r∗i (S + 1)| − ε ⩽ |r∗i (S − 1)− r∗i (S)| by some ε > 0 for i = 1, N (83)

and

|v∗i (S)− v∗i (S + 1)| − ε ⩽ |v∗i (S − 1)− v∗i (S)| by some ε > 0 for i = 1, N (84)

hold. Stack (66) of equilibrium strategies is called first-player-ε-payoff-S-consistent if inequalities (82) hold. Stack
(67) of equilibrium strategies is called second-player-ε-payoff-S-consistent if inequalities (83) hold. Stack (68) of
equilibrium strategies is called third-player-ε-payoff-S-consistent if inequalities (84) hold.

The next to payoff consistency condition is the change of the equilibrium strategy support cardinality. Denote
the supports of the equilibrium strategies of the players by

suppU∗
i (S) = {mu}Ui(S)

u=1 ⊂ {m}S+1
m=1 (85)

by the respective support probabilities{
u
(mu)∗
i (S)

}Ui(S)

u=1
⊂

{
u
(m)∗
i (S)

}S+1

m=1
(86)

and

suppZ∗
i (S) = {jz}Zi(S)

z=1 ⊂ {j}S+1
j=1 (87)

by the respective support probabilities{
z
(jz)∗
i (S)

}Zi(S)

z=1
⊂

{
z
(j)∗
i (S)

}S+1

j=1
(88)

and

suppW∗
i (S) = {qw}Wi(S)

w=1 ⊂ {q}S+1
q=1 (89)
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by the respective support probabilities{
w

(qw)∗
i (S)

}Wi(S)

w=1
⊂

{
w

(q)∗
i (S)

}S+1

q=1
. (90)

Then inequalities

Ui (S + 1) ⩾ Ui (S) for i = 1, N (91)

and

Zi (S + 1) ⩾ Zi (S) for i = 1, N (92)

and

Wi (S + 1) ⩾ Wi (S) for i = 1, N (93)

require that, by minimally increasing the sampling density, the cardinalities of the supports not decrease.

Definition 3
An approximate equilibrium (65) from stacks (66) — (68) is called weakly support-cardinality-S-consistent
if inequalities (91) — (93) hold. Support (85) is called weakly first-player-support-cardinality-S-consistent if
inequalities (91) hold. Support (87) is called weakly second-player-support-cardinality-S-consistent if inequalities
(92) hold. Support (89) is called weakly third-player-support-cardinality-S-consistent if inequalities (93) hold.

Obviously, requirements (91) — (93) can be supplemented (strengthened) by considering a minimal decrement
of the sampling density. Then inequalities

Ui (S) ⩾ Ui (S − 1) for i = 1, N (94)

and

Zi (S) ⩾ Zi (S − 1) for i = 1, N (95)

and

Wi (S) ⩾ Wi (S − 1) for i = 1, N (96)

are required.

Definition 4
An approximate equilibrium (65) from stacks (66) — (68) is called support-cardinality-S-consistent if inequalities
(91) — (96) hold. Support (85) is called first-player-support-cardinality-S-consistent if inequalities (91) and (94)
hold. Support (87) is called second-player-support-cardinality-S-consistent if inequalities (92) and (95) hold.
Support (89) is called third-player-support-cardinality-S-consistent if inequalities (93) and (96) hold.

Just as Definition 2 may be thought of as it is a “relaxation” of Definition 1 for the payoff consistency, Definition 3
is a “relaxed” (weak) version of the support cardinality consistency by Definition 4. Obviously, if each of stacks
(66) — (68) is (weakly) support-cardinality-S-consistent for the respective player, then the stack of successive
equilibrium situations (65) is (weakly) support-cardinality-S-consistent.

The third group of the conditions is the support index distance, which determines the support density defined
by the sampling density by integer S. As the sampling density minimally increases, the maximal gap between
the support indices should not increase. Let mu (S) and jz (S) and qw (S) be the respective support indices
corresponding to integer S on a subinterval by (29). Then inequalities

max
u=1, Ui(S+1)−1

[mu+1 (S + 1)−mu (S + 1)] ⩽ max
u=1, Ui(S)−1

[mu+1 (S)−mu (S)] for i = 1, N (97)
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and

max
z=1, Zi(S+1)−1

[jz+1 (S + 1)− jz (S + 1)] ⩽ max
z=1, Zi(S)−1

[jz+1 (S)− jz (S)] for i = 1, N (98)

and

max
w=1, Wi(S+1)−1

[qw+1 (S + 1)− qw (S + 1)] ⩽ max
w=1, Wi(S)−1

[qw+1 (S)− qw (S)] for i = 1, N (99)

are required.

Definition 5
An approximate equilibrium (65) from stacks (66) — (68) is called weakly sampling-density-S-consistent if
inequalities (97) — (99) hold. Stack (66) is called weakly first-player-sampling-density-S-consistent if inequalities
(97) hold. Stack (67) is called weakly second-player-sampling-density-S-consistent if inequalities (98) hold. Stack
(68) is called weakly third-player-sampling-density-S-consistent if inequalities (99) hold.

Just like in the case of the support cardinality consistency, requirements (97) — (99) can be supplemented
(strengthened) by considering a minimal decrement of the sampling density. Then inequalities

max
u=1, Ui(S)−1

[mu+1 (S)−mu (S)] ⩽ max
u=1, Ui(S−1)−1

[mu+1 (S − 1)−mu (S − 1)] for i = 1, N (100)

and

max
z=1, Zi(S)−1

[jz+1 (S)− jz (S)] ⩽ max
z=1, Zi(S−1)−1

[jz+1 (S − 1)− jz (S − 1)] for i = 1, N (101)

and

max
w=1, Wi(S)−1

[qw+1 (S)− qw (S)] ⩽ max
w=1, Wi(S−1)−1

[qw+1 (S − 1)− qw (S − 1)] for i = 1, N (102)

are required.

Definition 6
An approximate equilibrium (65) from stacks (66) — (68) is called sampling-density-S-consistent if inequalities
(97) — (102) hold. Stack (66) is called first-player-sampling-density-S-consistent if inequalities (97) and (100)
hold. Stack (67) is called second-player-sampling-density-S-consistent if inequalities (98) and (101) hold. Stack
(68) is called third-player-sampling-density-S-consistent if inequalities (99) and (102) hold.

Clearly, Definition 5 is a “relaxed” (weak) version of the sampling density consistency by Definition 6. Besides,
these definitions are applicable to a stack whose equilibria are not of pure strategies. If each of stacks (66) — (68)
is (weakly) sampling-density-S-consistent for the respective player, then the stack of successive equilibrium
situations (65) is (weakly) sampling-density-S-consistent. It is worth noting that the support index distance
condition is always violated if a mixed equilibrium strategy is of just two nonzero probabilities. For instance,
if

suppU∗
i (S) = {mu}2u=1 ⊂ {m}S+1

m=1

by support probabilities {
u
(mu)∗
i (S)

}2

u=1
=

{
u
(1)∗
i (S) , u

(S+1)∗
i (S)

}
and

suppU∗
i (S + 1) = {mu}2u=1 ⊂ {m}S+2

m=1

by support probabilities {
u
(mu)∗
i (S + 1)

}2

u=1
=

{
u
(1)∗
i (S + 1) , u

(S+2)∗
i (S + 1)

}
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for some i, then the i-th inequality in (97) is violated because

max
u=1, Ui(S+1)−1

[mu+1 (S + 1)−mu (S + 1)] = (S + 2)− 1 = S + 1

and
max

u=1, Ui(S)−1
[mu+1 (S)−mu (S)] = (S + 1)− 1 = S.

At the same time, a support still can be support-cardinality-S-consistent in this case as

Ui (S + 1) = 2 ⩾ 2 = Ui (S) .

So, the support index distance condition is far more fragile than the support cardinality condition.
The fourth group of the conditions is the closeness of the equilibrium strategies (as polyline functions) by

the sampling density minimally increment. Denote by µ1 (i; m, S) a polyline whose vertices are probabilities{
u
(m)∗
i (S)

}S+1

m=1
, by µ2 (i; j, S) a polyline whose vertices are probabilities

{
z
(j)∗
i (S)

}S+1

j=1
, and by µ3 (i; q, S)

a polyline whose vertices are probabilities
{
w

(q)∗
i (S)

}S+1

q=1
. Then, by minimally increasing the sampling density,

the “neighboring” polylines should not be farther from each other, i. e.

max
[0; 1]

|µ1 (i; m, S)− µ1 (i; m, S + 1)| ⩽ max
[0; 1]

|µ1 (i; m, S − 1)− µ1 (i; m, S)| for i = 1, N (103)

and

max
[0; 1]

|µ2 (i; j, S)− µ2 (i; j, S + 1)| ⩽ max
[0; 1]

|µ2 (i; j, S − 1)− µ2 (i; j, S)| for i = 1, N (104)

and

max
[0; 1]

|µ3 (i; q, S)− µ3 (i; q, S + 1)| ⩽ max
[0; 1]

|µ3 (i; q, S − 1)− µ3 (i; q, S)| for i = 1, N (105)

along with

∥µ1 (i; m, S)− µ1 (i; m, S + 1)∥ ⩽ ∥µ1 (i; m, S − 1)− µ1 (i; m, S)∥ in L2 [0; 1] for i = 1, N (106)

and

∥µ2 (i; j, S)− µ2 (i; j, S + 1)∥ ⩽ ∥µ2 (i; j, S − 1)− µ2 (i; j, S)∥ in L2 [0; 1] for i = 1, N (107)

and

∥µ3 (i; q, S)− µ3 (i; q, S + 1)∥ ⩽ ∥µ3 (i; q, S − 1)− µ3 (i; q, S)∥ in L2 [0; 1] for i = 1, N. (108)

Definition 7
An approximate equilibrium (65) from stacks (66) — (68) is called probability-S-consistent if inequalities
(103) — (108) hold. Stack (66) is called first-player-probability-S-consistent if inequalities (103) and (106) hold.
Stack (67) is called second-player-probability-S-consistent if inequalities (104) and (107) hold. Stack (68) is called
third-player-probability-S-consistent if inequalities (105) and (108) hold.

If inequalities (79) — (81) and (91) — (108) hold for some i, then trimatrix game (49), assigned to the subinterval
between τ(i−1) and τ(i), has a consistent approximate solution to the corresponding continuous game (27) by (29)
of the equilibrium type. If inequalities (79) — (81), (91) — (93), (97) — (99), and (103) — (108) hold for some i,
the consistency is weak. On this basis, the (weak) consistency of an approximate equilibrium solution to a staircase
game (14) is formulated.
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Definition 8
The stack of successive equilibrium situations (65) is called a weakly S-consistent approximate equilibrium
solution of the continuous staircase 3-person game (14) if inequalities (79) — (81), (91) — (93), (97) — (99), and
(103) — (108) hold.

Obviously, a weakly S-consistent approximate equilibrium solution is strengthened if inequalities (94) — (96)
and (100) — (102) strengthening the support cardinality and sampling density consistency hold as well. Although
it is a rare case in practice, but it is nonetheless worth to define it.

Definition 9
The stack of successive equilibrium situations (65) is called an S-consistent approximate equilibrium solution of
the continuous staircase 3-person game (14) if inequalities (79) — (81) and (91) — (108) hold.

Clearly, an S-consistent approximate equilibrium solution is weakly consistent. Theoretically, the approximate
solution consistency proposes a better approximation than the weak consistency. However, it is a quite rare case
when an equilibrium (even in a classical continuous 3-person game, with ordinary point strategies) appears to
be even weakly consistent. Therefore, it is more reasonable to consider not the (weak) consistency “stack” by
(Definition 8) Definition 9 but its components by Definitions 1 — 7. Even if an approximate equilibrium is not
weakly consistent, it may be, e. g., payoff-consistent or ε-payoff-S-consistent (by a tolerated ε). Such ε might be
thought of as a payoff consistency concession [11, 12, 14, 15, 20, 25]. This can be sufficient to accept it as an
appropriate approximate solution to the staircase game (14).

To ascertain whether the stack of successive equilibrium situations (65) is weakly consistent or not, the three
bunches of N trimatrix games (49) should be solved, where the sampling density is defined by integers S − 1,
S, S + 1. Nevertheless, the consistency meant by some sampling density integer S does not guarantee that every
player will select such sampling density. Moreover, a trimatrix game may have more than just one equilibrium
situation. So, every player first decides on one’s payoff consistency, where inequalities (82) — (84) are checked by
some ε (its selection is not a trivial task also). If a player’s equilibria stack is ε-payoff-S-consistent, the respective
stack may be accepted as an approximate equilibrium solution to the staircase game (14). An approximate solution
may be accepted in a stronger sense, if it is ε-payoff-S-consistent for any S ⩾ S∗ starting from some S∗ ∈ N by a
tolerated ε. This is a fundamental step in the finite approximation.

8. A visual exemplification

Consider a case in which t ∈ [0.12π; 0.2π], the sets of pure strategies of the players are

X = {x (t) , t ∈ [0.12π; 0.2π] : 5 ⩽ x (t) ⩽ 6} ⊂ L2 [0.12π; 0.2π] (109)

and

Y = {y (t) , t ∈ [0.12π; 0.2π] : 2 ⩽ y (t) ⩽ 4} ⊂ L2 [0.12π; 0.2π] (110)

and

Z = {z (t) , t ∈ [0.12π; 0.2π] : 1 ⩽ z (t) ⩽ 2.6} ⊂ L2 [0.12π; 0.2π] , (111)

respectively. Each of the players is allowed to change its pure strategy value at time points{
τ(i)

}7

i=1
= {0.12π+ 0.01πi}7i=1 ⊂ [0.12π; 0.2π] . (112)

So, the player possesses 8-subinterval staircase function-strategies defined on interval [0.12π; 0.2π]. The players’
payoff functionals are

F
(
x (t) , y (t) , z (t)

)
=

∫
[0.12π; 0.2π]

z (t) · sin
(
0.45t · x (t) y (t)− π

9

)
dµ (t), (113)
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G
(
x (t) , y (t) , z (t)

)
=

∫
[0.12π; 0.2π]

y (t) · cos
(
0.2t · x (t) z (t) + π

6

)
dµ (t), (114)

H
(
x (t) , y (t) , z (t)

)
=

∫
[0.12π; 0.2π]

x (t) · sin
(
0.75t · y (t) z (t)− π

5

)
dµ (t). (115)

Hence, the 3-person staircase game is represented as a succession of eight continuous 3-person games each
defined on a subinterval of set{{

[0.11π+ 0.01πi; 0.12π+ 0.01πi)
}7

i=1
, [0.19π; 0.2π]

}
. (116)

For these eight games, with the sampling by (43) — (45), the pure strategy sets of the players’ are

A (S) =
{
a(s)

}S+1

s=1
=

{
5 +

s− 1

S

}S+1

s=1

⊂ [5; 6] (117)

and

B (S) =
{
b(s)

}S+1

s=1
=

{
2 +

2s− 2

S

}S+1

s=1

⊂ [2; 4] (118)

and

C (S) =
{
c(s)

}S+1

s=1
=

{
1 +

1.6s− 1.6

S

}S+1

s=1

⊂ [1; 2.6] , (119)

respectively. Sets (117) — (119) for each of the subintervals in (116) imply the succession of eight trimatrix games〈{{
a(m)

}S+1

m=1
,
{
b(j)

}S+1

j=1
,
{
c(q)

}S+1

q=1

}
, {Fi (S) , Gi (S) , Hi (S)}

〉
=

=

〈{{
5 +

m− 1

S

}S+1

m=1

,

{
2 +

2j − 2

S

}S+1

j=1

,

{
1 +

1.6q − 1.6

S

}S+1

q=1

}
, {Fi (S) , Gi (S) , Hi (S)}

〉
for i = 1, 8. (120)

In games (120), there are eight first player’s payoff matrices (50) whose elements are

φimjq (S) =

∫
[0.11π+0.01πi; 0.12π+0.01πi)

c(q) · sin
(
0.45a(m)b(j)t− π

9

)
dµ (t) for i = 1, 7 (121)

and

φ8mjq (S) =

∫
[0.19π; 0.2π]

c(q) · sin
(
0.45a(m)b(j)t− π

9

)
dµ (t), (122)

there are eight second player’s payoff matrices (53) whose elements are

ρimjq (S) =

∫
[0.11π+0.01πi; 0.12π+0.01πi)

b(j) · cos
(
0.2a(m)c(q)t+

π

6

)
dµ (t) for i = 1, 7 (123)
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and

ρ8mjq (S) =

∫
[0.19π; 0.2π]

b(j) · cos
(
0.2a(m)c(q)t+

π

6

)
dµ (t), (124)

and there are eight third player’s payoff matrices (56) whose elements are

θimjq (S) =

∫
[0.11π+0.01πi; 0.12π+0.01πi)

a(m) · sin
(
0.75b(j)c(q)t− π

5

)
dµ (t) for i = 1, 7 (125)

and

θ8mjq (S) =

∫
[0.19π; 0.2π]

a(m) · sin
(
0.75b(j)c(q)t− π

5

)
dµ (t). (126)

The sectional views of the first player’s payoffs F (αi, 2, γi) and F (αi, 4, γi) on each subinterval of set (116)
are shown in Figure 1 for βi = 2 and βi = 4. It is clear that hypersurfaces F (αi, βi, γi) on open parallelepiped

(5; 6)× (2; 4)× (1; 2.6) (127)

do not have many extremums. The sectional views of the second player’s payoffs G (5, βi, γi) and G (6, βi, γi)
shown on each subinterval of set (116) in Figure 2 for αi = 5 and αi = 6 are roughly similar. The maximum at
βi = 4 and γi = 1 by any αi is quite noticeable. As the time progresses, the maximum and its vicinity do not
change. The sectional views of the third player’s payoffs H (5, βi, γi) and H (6, βi, γi) on each subinterval
of set (116) are shown in Figure 3 for αi = 5 and αi = 6. Hypersurfaces H (αi, βi, γi) on parallelepiped (127)
“appear” to be humpy-like but still they are roughly similar.

At S = 2 the finite 3-person staircase game has a pure strategy equilibrium. It is obtained as a stack of successive
pure strategy equilibria of eight trimatrix games (120). Except for subinterval [0.16π; 0.17π), every 3× 3× 3
trimatrix game on subintervals

[0.12π; 0.13π) ,

[0.13π; 0.14π) ,

[0.14π; 0.15π) ,

[0.15π; 0.16π) ,

[0.17π; 0.18π) ,

[0.18π; 0.19π) ,

[0.19π; 0.2π]

has two pure strategy equilibria. The 3× 3× 3 game on subinterval [0.16π; 0.17π) has just one. This exception
exists only for the sampling with S = 2. In other words, every subinterval trimatrix game has two pure strategy
equilibria by sampling with S ⩾ 3. This fact has been ascertained for the sampling by up to S = 56.

According to Theorem 2, the finite 3-person staircase game has 28 = 256 pure strategy equilibria (each of which
is a stack of the respective subinterval game equilibria). To select a single stacked equilibrium, a single equilibrium
should be selected on each subinterval. For this, a selection criterion is defined, by which the sum of the players’
payoffs is maximal. Figure 4 shows 8-subinterval-stacks of every player’s equilibria for S = 2, 36 (the circled line
corresponds to an equilibrium by which the sum of the players’ payoffs is maximal), where the first, second, and
third players’ stacks are shown in the left, middle, and right subplot, respectively. It is seen that these equilibria
have a tendency to converge (see the circled lines in Figure 5 with 8-subinterval-stacks of the player’s equilibria
for S = 30).
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Figure 1. The sectional views of the first player’s payoffs on each subinterval of set (116) by βi = 2 (the first and second
rows) and βi = 4 (the third and fourth rows)
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Figure 2. The sectional views of the second player’s payoffs on each subinterval of set (116) by αi = 5 (the first and second
rows) and αi = 6 (the third and fourth rows)
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Figure 3. The sectional views of the third player’s payoffs on each subinterval of set (116) by αi = 5 (the first and second
rows) and αi = 6 (the third and fourth rows)
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Figure 4. The pile of 8-subinterval-stacks of the player’s equilibria for S = 2, 36

A trivial fact here is that every approximate equilibrium from the stacks is support-cardinality-S-consistent
(by Definition 4). The more interesting one is that the stack in Figure 5 (see only the circled lines) is
payoff-30-consistent. Besides, there is a payoff-23-consistent stack (although it hardly can be seen distinctly in
Figure 4).

Approximate equilibrium solutions are ε-payoff-S-consistent for

ε = 0.01 · p∗i (S)

in (82),
ε = 0.01 · r∗i (S)

in (83), and
ε = 0.01 · v∗i (S)

in (84) at i = 1, 8 by

S ∈ {6, 7, 13, 14, 23, 25, 30, 32, 34, 35, 37, 41, 42, 46, 47, 48, 49, 50, 51, 53, 55} .

At the same time, approximate equilibrium solutions by

S ∈ {3, 4, 5, 9, 11, 12, 15}

are not ε-payoff-S-consistent for
ε = 0.25 · p∗i (S)

in (82),
ε = 0.25 · r∗i (S)
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Figure 5. The pile of 8-subinterval-stacks of the player’s equilibria for S = 30

in (83), and
ε = 0.25 · v∗i (S)

in (84) at i = 1, 8 nor they are ε-payoff-S-consistent for

ε = 0.5 · p∗i (S)

in (82),
ε = 0.5 · r∗i (S)

in (83), and
ε = 0.5 · v∗i (S)

in (84) at i = 1, 8 by
S ∈ {3, 4, 5, 9, 11, 15} .

Some convergence nevertheless develops as the sampling density increases. This is confirmed by Figure 6 showing
how the players’ payoffs (78) in the 3-person staircase game vary as number S increases. Indeed, the payoff
gradually ceases oscillation (fluctuation) as S ⩾ 17 (Figure 7).

The payoff fluctuations are not equivalent, though. The second player’s payoff badly fluctuates with respect to
the first and third players, and this is clearly seen even in Figure 6. Besides, the second player’s payoff is negative.
However, the second player has no choice but to select the circled-line-stack in Figure 5, which is the same at
S = 20. Thus, the best decision for the second player is to use stack {Z∗

i (20)}
8
i=1 that implies using y∗ (t) = 2 by

t ∈ [0.12π; 0.18π) and y∗ (t) = 4 by t ∈ [0.18π; 0.2π]. The respective decisions from the first and third players
are to use stacks {U∗

i (20)}
8
i=1 and {W∗

i (20)}
8
i=1 which are similar to those circled-line-stacks in Figure 5 for

these players. This is the acceptable approximate equilibrium in the 3-person staircase game.
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Figure 6. The player’s payoff (from equilibria by which the sum of the players’ payoffs is maximal) versus S = 2, 56
in the 3-person staircase game (approximated by the sampling)

Even the considered example (being relatively trivial as the acceptable approximate equilibrium exists in
pure strategies) clearly shows that many additional problems may arise when fulfilling the appropriate finite
approximation of a 3-person staircase game. The multiplicity of subinterval equilibria may induce instability of
the players’ behavior [5, 7, 19, 13, 14], if there is no criterion of the single equilibrium selection. The behavior
instability worsens as the number of subinterval equilibria increases or just the number of subintervals increases. All
the more so when an equilibrium is in mixed strategies (no equilibrium in pure strategies). The behavior instability
is a serious problem in noncooperative games having multiple equilibria differing in the player’s payoffs [13, 14]. It
is particularly solved by equilibria refinement with using domination efficiency along with maximin (maximinimin
for trimatrix games) and the superoptimality rule [14]. So, the above-applied criterion of maximizing the sum of
the players’ payoffs (the collective utility maximization) is not single.

Solving the sampled staircase game straightforwardly, without considering each subinterval 3-person game
separately, is intractable. For instance, by sampling the exemplified game, where each of the players uses
8-subinterval staircase function-strategies, with S = 20, the resulting 218 × 218 × 218 matrix game cannot be
solved in a reasonable time span. Instead of this, eight trimatrix 21× 21× 21 games are solved. It has taken about
40 milliseconds (on an Intel Core i7 processor) not including the time spent on calculating entries (121) — (126)
of matrices Fi (S), Gi (S), Hi (S). The entire process has taken up to a minute.

9. Discussion

Obviously, solving subinterval trimatrix games separately and then stacking their solutions is a far more efficient
way to obtain an approximate solution of the sampled staircase game. Stacking the subinterval games’ pure-strategy
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Figure 7. The player’s payoff versus S = 17, 56 (a zoom-in from Figure 6)

equilibria is fulfilled trivially. When pure-strategy equilibria and mixed-strategy equilibria are stacked, the stacking
is fulfilled as well implying that the resulting pure-mixed-strategy solution (equilibrium) of the sampled staircase
game is realized successively, subinterval by subinterval, spending the same amount of time to implement both
pure strategy and mixed strategy solutions (equilibria). Along with that, a staircase equilibrium in mixed strategies
mixed with pure strategies is not a simple mathematical construction.

Although the case when an approximate equilibrium solution is (weakly) S-consistent is theoretically possible,
the most important conception is the ε-payoff consistency by Definition 2. However, it is not proved that limits

lim
S→∞

p∗i (S) ∀ i = 1, N (128)

and

lim
S→∞

r∗i (S) ∀ i = 1, N (129)

and

lim
S→∞

v∗i (S) ∀ i = 1, N (130)

exist and they are equal to the respective equilibrium payoffs of the subinterval continuous games. Second, if
limits (128) — (130) exist, it is not proved that this is followed by that an approximate equilibrium solution
is ε-payoff-S-consistent for any S ⩾ S∗ (for some S∗ ∈ N). Even the ε-payoff consistency of a pure-strategy
staircase equilibrium is fragile enough (just like in the above-considered example). It is clear that the fragility
of a consistency type (payoff, support cardinality, support index distance, closeness of the equilibrium strategies)
loosens as the number of subintervals increases.

Time variable t explicitly included into (8) — (10) means that the system changes (and the players modify their
actions) as time goes by. This is quite a natural convention, but if time t is not explicitly included into the function
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under the integrals in (8) — (10), then the payoff value depends only on the length of the subinterval. If the length
does not change, every subinterval has the same trimatrix game. The triviality of the equal-length-subinterval
solution is explained by a standstill of the players’ strategies.

10. Conclusion

A 3-person game defined on a product of staircase-function continuous spaces is approximated to a staircase
trimatrix game by sampling the player’s pure strategy value set. The set is sampled uniformly so the resulting
staircase trimatrix game is cubic. Owing to Theorem 2, an equilibrium of the staircase trimatrix game is obtained
by stacking the equilibria of the subinterval trimatrix games, each defined on an interval where the pure strategy
value is constant.

The stack of the subinterval trimatrix game equilibria is an approximate equilibrium solution to the initial
staircase game. The (weak) consistency of the approximate solution is studied by how much the players’
payoff and equilibrium strategy change as the sampling density minimally increases. Thus, the consistency,
equivalent to the approximate solution acceptability, includes the payoff (Definitions 1 and 2), equilibrium
strategy support cardinality (Definitions 3 and 4), equilibrium strategy sampling density (Definitions 5 and 6),
and support probability consistency (Definition 7). The most important parts are the payoff consistency and
equilibrium strategy support cardinality (weak) consistency, which are checked in the quickest and easiest way.
In addition, it is practically reasonable to consider a relaxed payoff consistency. The relaxed payoff consistency by
(82) — (84) means that, as the sampling density minimally increases, the player’s payoff change in an appropriate
approximation may grow at most by ε. The weak consistency (Definition 8) itself is a relaxation to the consistency
by Definition 9, where the minimal decrement of the sampling density is ignored.

Therefore, the suggested method of finite approximation of 3-person staircase games consists in the uniform
sampling, solving subinterval trimatrix games, and stacking their equilibria if they are consistent. The finite
approximation is regarded appropriate if at least the respective approximate (stacked) equilibrium is ε-payoff
consistent (Definition 2) for every player. The presented method is a significant contribution to the (noncooperative)
3-person game theory. It allows approximately solving a continuous 3-person game with staircase-function
strategies in a far simpler manner by “breaking” this game into a succession of subinterval games. The subinterval
games are solved incomparably faster, so the method is practically applicable. Once the (weak) consistency by
Definition 8 or the ε-payoff consistency by Definition 2 is confirmed, the approximate equilibrium solution can be
accepted [3, 13, 14, 7, 11, 12].

A serious problem is the multiplicity of subinterval equilibria. This problem may not be unambiguously settled.
Its gravity deepens as the number of subintervals increases due to then the number of stacks (by the collective
utility maximization criterion) immensely grows. A future research of staircase game finite approximation should
concern this question.
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