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Abstract The main objective of this paper is to introduce a flexible two-parameter distribution which has not been
considered in the literature before. The proposed distribution is referred to as a discrete new generalized two parameter
Lindley distribution. Discrete Lindley and Geometric distributions are sub-models of the proposed distribution. Its
probability mass function exhibits different shapes including decreasing, unimodal and decreasing-increasing-decreasing.
Our proposed distribution has only two-parameters and its hazard rate function can accommodate increasing, constant,
decreasing and bathtub shapes. Moreover, this distribution can describe equi and over dispersed data. Several distributional
properties are obtained and several reliability characteristics are derived such as cumulative distribution function, hazard rate
function, second hazard rate function, mean residual life function, reversed hazard rate function, accumulated hazard rate
function and also its order statistics. In addition, the study of the shapes of the hazard rate function is provided analytically
and also by plots. Estimation of the parameters is done using the maximum likelihood method. A simulation study is
conducted to assess the performance of the maximum likelihood estimators. Finally, the flexibility of the model is illustrated
using three real data sets.
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1. Introduction

In statistical literature, several distributions have been proposed as discrete analogues of continuous ones. These
discretized distributions have useful applications in reliability analysis, for example, where time can be interpreted
as a discrete random variable in many cases such as: the number of times a piece of equipment is operated; the life
time of a certain device being measured by the number of cycles it completes etc. Various discretization methods
have been considered. For more details, readers are encouraged to see Chakraborty (2015). One of the discretization
methods is based on the reliability function. If the underlying continuous failure time Y has the reliability function
RY (y), the probability mass function (PMF) of the discrete random variable X associated with that continuous
distribution can be written as

PX (x)= RY (x)− RY (x+ 1) , x = 0, 1, 2, . . . . (1)

This method was proposed by Nakagawa and Osaki (1975) to discretize a continuous distribution, the discrete
Weibull distribution, and obtain some reliability properties. After that, many researchers used this method to
propose new discretized distributions such as Gómez-Déniz and Calderı́n-Ojeda (2011) who introduced the discrete
Lindley (dL) distribution and recently, Opone et al. (2021) who introduced discrete Marshall-Olkin Weibull
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distribution. This method gained great attention mainly because it preserves same functional form of the reliability
function (RF) that is RY (x) = RX (x). Consequently, many reliability characteristics and properties should
remain unchanged. This method is also useful in practice because if the RF of the continuous random variable
has a compact form, then, the resulting PMF will be in a compact form. Possibly this method is the easiest method
of construction (Chakraborty (2015)). As a result, the method of discretizing using the reliability function will be
used in constructing the discretized distribution used in this study.

Although, many discretized distributions have been proposed in the literature, few of them possess bathtub (BT)
hazard rate (HR) functions. Some examples of the distributions having this property follow. Nooghabi et al. (2011)
introduced the 3-parameter discrete modified Weibull distribution. Nekoukhou and Bidram (2015) proposed a 3-
parameter exponentiated discrete Weibull distribution. Jayakumar and Babu (2019) obtained a 5-parameter discrete
Additive Weibull Geometric distribution and El-Morshedy et al. (2019) proposed a two-parameter exponentiated
discrete Lindley (EDLi) distribution. Recently, Opone et al. (2021) proposed the 3-parameter discrete Marshall-
Olkin Weibull distribution.

Most of the above mentioned papers do not study the shape of the HR function analytically depending mainly on
plots to illustrate the shape of the HR; plots can be quite misleading in many cases as will be shown in this paper in
Section 2 through an analytical study of the shapes of the HR function of EDLi distribution given by El-Morshedy
et al. (2019).

Lindley (1958) proposed the one parameter Lindley distribution and Ghitany et al. (2008) showed that it has more
flexibility than the exponential distribution in modeling some lifetime data sets. It has only increasing HR function.
Therefore, several generalizations were conducted to accommodate various shapes such as increasing, decreasing,
constant, BT and upside-down bathtub shaped hazard rates. The new generalized two parameter Lindley (NG2PL)
distribution was proposed by Ekhosuehi et al. (2018) as one of the generalization of the one-parameter Lindley
(1958). The unknown parameters were estimated by maximum likelihood (ML) method and it was illustrated
through a graph that the HR can take various shapes, increasing, decreasing, constant and BT. The RF of the
NG2PL distribution is a two-component mixture of Exponential (θ) and Gamma (α, θ) distributions with mixing
proportion p = θ

θ+1 . The RF of NG2PL distribution as given in Ekhosuehi et al. (2018) is

RY (y; α, θ) =
θ Γ (α) e−θy + Γ (α, θy)

(θ + 1) Γ (α)
, y > 0 (2)

where α, θ > 0, Γ (α) and Γ (α, θy) are respectively the complete gamma function and upper incomplete
gamma function.

The importance of this distribution comes from several reasons. It appears that the NG2PL distribution is the
only two-parameter distribution from the Lindley family of continuous distributions whose HR can take increasing,
constant, decreasing, and BT shapes. Also, there are two important sub-models from the NG2PL distribution;
namely the exponential distribution when α = 1 and the Lindley distribution when α = 2. Moreover, the dNG2PL
distribution can be represented as a mixture distribution.

The main objective of this paper is introducing a new discrete distribution by discretizing the NG2PL distribution
proposed by Ekhosuehi et al. (2018). The new discretized distribution will be referred to as discrete new generalized
two parameter Lindley (dNG2PL) distribution. In addition to being a two-parameter model, the new model has
some advantages. It can be represented as a mixture distribution of two discrete distributions. The importance
of mixture distributions comes from their ability to model the case of heterogeneous populations and hence they
have many applications in medical sciences, biology, engineering, finance and economics. In addition, dNG2PL
distribution can fit over and equi dispersed data. Moreover, it possesses four shapes of HR namely, increasing,
decreasing, constant and BT.

The rest of this paper is organized as follows. Section 2 presents an analytical study of the shape of the
HR function of EDLi distribution. Sections 3 and 4 introduce discrete new generalized two parameter Lindley
distribution and its distributional properties, respectively. In Section 5, the reliability characteristics of the proposed
distribution are obtained. This includes a theoretical study of its hazard rate function and its shapes. In Section 6,
maximum likelihood estimation of the parameters of the proposed distribution is developed. Finally, in Sections 7
and 8, respectively a simulation study and three real data sets are given to illustrate the results.

Stat., Optim. Inf. Comput. Vol. 11, September 2023



980 A DISCRETE NEW GENERALIZED TWO PARAMETER LINDLEY DISTRIBUTION

2. Hazard Rate Shapes for Continuous and Discrete Exponentiated Lindley Distributions

The main objective of this Section is to study theoretically the HR shapes of the EDLi distribution which was
proposed by El-Morshedy et al. (2019) who illustrated the shapes of its HR merely by plots. This distribution is the
discrete analogue of the continuous exponentiated Lindley (EL) distribution distributed by Nadarajah et al. (2012).
First the HR shapes of the continuous EL distribution will be studied. Then a proposition given by Noughabi et al.
(2013), which determines the shapes of the HR of the discrete model in terms of the continuous one, will be used
to determine the shape of the HR of EDLi distribution.

2.1. The Hazard Rate of the Continuous Exponentiated Lindley distribution

The shape of the HR function of the continuous EL distribution proposed by Nadarajah et al. (2012) will be studied
using the approach of Glaser (1980). The main results of Glaser (1980) are given in Appendix B. The probability
density function of the continuous EL distribution is given by

f1 (y; α, λ) =
αλ2

1 + λ
(1 + y) [V (y)]α−1 e−λ y, y > 0, α > 0, λ > 0, (3)

where

V (y) = 1− 1 + λ+ λ y

1 + λ
e−λ y,

let

η1(y) = − ∂ ln f1 (y; α, λ)

∂ y
.

It can be shown that

η1(y) = λ− (1 + y)−1 − c (α− 1) e−λ y (1 + y)

V (y)
, (4)

where c = λ2

1+λ .
It can also be noted that

lim
y→0

η 1(y) =

 ∞ if α < 1,
λ− 1 if α = 1,
−∞ if α > 1.

lim
y→∞

η 1(y) = λ.

Hence, if α< 1, η1 (y) cannot be increasing or upside down bathtub and for α ≥ 1, η 1(y) cannot be decreasing or
BT.

The following lemma provides the shapes of the HR function.
Lemma 1
Let h1(y; α, λ) denotes the HR function of the continuous EL distribution.

i) If α ≥ 1, then h1(y; α, λ) is increasing.

ii) If α < 1, then h1(y; α, λ) is either decreasing or bathtub.
Proof

i) Part a: For α = 1.
Referring to (4), (1 + y) −1 is a decreasing function in y indicating that η 1(y) is an increasing function in y, hence
h1(y; α, λ)is an increasing function in y.
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Part b: For α > 1.
Both (1 + y) −1 and c (α−1) e−λ y (1+y)

V (y) are decreasing functions in y indicating that η 1(y) and consequently
h1(y; α, λ) are increasing functions in y.
Hence, part (i) of Lemma (1) is established.

ii) For α < 1, − (1 + y) −1 is an increasing function in y and − c (α−1) e−λ y (1+y)
V (y) ≥ 0 is a decreasing function

in y.
∵ lim

y→0
η 1(y) = ∞ for α < 1

Then initially η 1(y) is a decreasing function in y. We have two cases:
a) Case 1: If the rate of decrease of the function − c (α−1) e−λ y (1+y)

V (y) is always greater than the rate of increase
of the function − (1 + y) −1 then η 1(y) and hence h1(y; α, λ) will always be decreasing functions in y for α < 1.

b) Case 2: If the rate of decrease of the function − c (α−1) e−λ y (1+y)
V (y) is greater than the rate of increase of the

function − (1 + y) −1 for y < y0 and the situation is reversed for y > y0 then η 1(y) will be decreasing for y < y0
and increasing for y > y0. Thus, η 1(y) will attain its minimum at y = y0. Hence, η 1(y) has a BT shape. Based
on Glaser’s (1980) Lemma given in Appendix B, we evaluate lim

y→0
f1(y; α, λ) using ( 3), it can be shown that

lim
y→0

V (y) = 0

∵ α < 1, then lim
y→0

f1 (y; α, λ) = ∞.

Hence for case 2, h1(y; α, λ) has a BT shape and part (ii) of Lemma (1) is established.

2.2. The Hazard Rate of the Exponentiated Discrete Lindley distribution

Let h1(x; α, λ) denote the HR function of the EDLi distribution. Using the proposition of Noughabi et al. (2013)
given in the Appendix B, it clear that the HR function of EDLi distribution has the following shapes:

i) If α ≥ 1, h 1(x; α, λ) is increasing in x.
ii) If α < 1, h 1(x; α, λ) is either decreasing, bathtub or increasing.

Hence the only possible shapes of the HR function of EDLi distribution are increasing, decreasing and BT. The
other shapes of the HR function stated by El-Morshedy et al. (2019) namely decreasing-increasing-decreasing,
increasing-decreasing-increasing, J- shaped and unimodal are incorrect.

3. Discrete New Generalized Two-Parameter Lindley Distribution

In this Section, we will obtain the dNG2PL distribution by discretizing the NG2PL distribution proposed by
Ekhosuehi et al. (2018).
Using the discretization method based on the RF given in (2), the PMF of the dNG2PL distribution, is given by

PX(x; α, θ) =
1

(θ + 1)Γ(α)
{ [θ Γ(α) e−θ x + Γ(α, θx) ] − [θ Γ(α) e−θ (x+1) + Γ(α, θ(x+ 1))]}, (5)

where Γ(a, z)is the upper incomplete gamma function.
After some simplifications, PX(x; α, θ) will take the form

PX(x; α, θ) =
1

(θ + 1)Γ(α)

{
θ Γ(α) (1− e−θ) e−θ x + Γ(α, θx, θ(x+ 1))

}
, x = 0, 1, 2, . . . ; (α, θ) > 0, (6)

where Γ(α, θx, θ(x+ 1)) =
∫ θ(x+1)

θx
uα−1 e−u du =

∫ x+1

x
θα uα−1 e−θ u du.
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The RF is given by

RX(x; α, θ) =
1

(θ + 1)Γ(α)

{
θ Γ(α) e−θ x + Γ(α, θx)

}
, x = 0, 1, 2, ... ; (α, θ) > 0. (7)

It is known that, using the reliability function method, the RF of NG2PL distribution and dNG2PL distribution are
the same.
The cumulative distribution function of dNG2PL distribution is as follows

FX(x; α, θ) = 1− P (X > x) = 1−RX(x+ 1; α, θ)

= 1− 1

(θ + 1)Γ(α)

{
θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))

}
, x = 0, 1, 2, ...; (α, θ ) > 0.

(8)

The graphical presentation of the PMF of dNG2PL distribution for some fixed values of the parameters is shown
in Figure 1. It is observed that the PMF plots have decreasing, unimodal and decreasing-increasing-decreasing
shapes.

Figure 1. The PMF plots of dNG2PL distribution with different combinations for α and θ
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Particular Cases
• For α = 1, the dNG2PL distribution in (5) reduces to the geometric distribution.

• For α = 2 , the dNG2PL distribution in (5) reduces to the one parameter discrete Lindley distribution.

4. Distributional Properties

In this Section, the mixture representation of the PMF of dNG2PL distribution, the moments and the order statistics
are derived.

4.1. Mixture Representation of the Probability Mass Function

The NG2PL distribution can be represented as mixture distribution as shown by Ekhosuehi et al. (2018). We shall
prove in this subsection that the PMF of dNG2PL distribution can also be written as a mixture distribution. This
representation will be used in simulating observations from the dNG2PL distribution as explained in Section 7.

The RF of the NG2PL distribution as a mixture representation is given as follows

RY (y; α, θ) = p

∫ ∞

y

θ e−θu du + (1− p)
θα

Γ(α)

∫ ∞

y

uα−1 e−θ u du (9)

where y > 0 and p = θ
θ+1 .

Result
The PMF of dNG2PL distribution can be represented as a two component mixture of Geometric(e−θ) distribution
and discrete Gamma(α, θ) distribution. Therefore, the PMF of dNG2PL distribution as mixture distribution is

PX(x ; α, θ) = p (e−θ x − e−θ (x+1) ) + (1− p)

∫ x+1

x

θα

Γ(α)
uα−1 e−θ udu, x = 0, 1, 2, ... ; (α, θ) > 0,

(10)
where (e−θ x − e−θ (x+1) ) is the PMF of the Geometric (e−θ)distribution which is a discrete analogue of
exponential (θ) distribution (See, Roy (1993)) and θ k

Γ(k)

∫ x+1

x
z k−1 e−θ k dz denotes the PMF of the discrete

gamma distributions as proposed by Chakraborty and Chakravarty (2012).
Proof:
The RF of dNG2PL distribution as a mixture distribution is as follows

RY (x; α, θ) = p

∫ ∞

x

θ e−θ udu + (1− p)

∫ ∞

x

θα

Γ(α)
uα−1 e−θ udu.
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Therefore, the PMF of the mixture of dNG2PL distribution can be derived as follows

PX(x; α, θ) = RY (x; α, θ)−RY (x+ 1; α, θ),

= p

∫ ∞

x

θe−θudu+ (1− p)

∫ ∞

x

θα

Γ(α)
uα−1e−θ udu−

[
p

∫ ∞

x+1

θ e−θ udu + (1− p)

∫ ∞

x+1

θα

Γ(α)
uα−1e−θ udu

]
,

= p

[∫ ∞

x

θ e−θ udu−
∫ ∞

x+1

θ e−θ u du

]
+ (1− p)

[∫ ∞

x

θα

Γ(α)
uα−1 e−θ udu−

∫ ∞

x+1

θα

Γ(α)
uα−1 e−θ udu

]
,

= p

∫ x+1

x

θ e−θ udu+ (1− p)

∫ x+1

x

θα

Γ(α)
uα−1 e−θ udu,

= p (e−θ x − e−θ(x+1)) + (1− p)

∫ x+1

x

θα

Γ(α)
uα−1 e−θ udu,

where x = 0, 1, 2, ...; (α, θ) > 0,
Hence, the result given by (10) follows.

4.2. Moments

Moments can be used to study the characteristics of a distribution. So, in this subsection, we will derive the
moments of the dNG2PL distribution.

4.2.1. The Non-Central Moments of Discrete New Generalized two-Parameter Lindley Distribution Suppose that
X is a discrete non-negative integer valued random variable with RF given in (7). Chakraborti et al. (2017) proposed
the r-th moment of a nonnegative random variable X and derived formulas in terms of the RF. The r-th moment of
X for dNG2PL distribution is given by

µ′
r = E (Xr) =

∞∑
x=0

((x+ 1)r − xr)R(x+ 1; α, θ), r ≥ 1,

µ′
r =

1

(θ + 1)Γ(α)

∞∑
x=0

((x+ 1)r − xr)
{
θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))

}
. (11)

As a special case, the mean and variance of dNG2PL distribution are obtained as follows

µ1
′
=

1

(θ + 1)Γ(α)

∞∑
x=0

{
θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))

}
. (12)

Var (X) = µ′
2 − (µ′

1)
2

=
1

(θ + 1)Γ(α)

∞∑
x=0

(2x+ 1)
{
θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))

}

−

[
1

(θ + 1)Γ(α)

∞∑
x=0

{
θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))

}]2

.

(13)

The mean and variance of the dNG2PL distribution for different values of θ and α are calculated numerically
and displayed in Table 1. From this table, we observe that for fixed values of α as the values of θ increase both the
values of the mean and the variance decrease. Also, the values of the mean and variance of the dNG2PL distribution
increase as the parameter α increases for a fixed value of θ.
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4.2.2. Index of Dispersion Index of dispersion (ID) is one of the properties of a distribution. ID is defined as the
ratio between the variance to the mean. ID indicates whether the distribution is suitable for over or under or equi-
dispersed data. If ID > 1(< 1) the distribution is over dispersed (under dispersed) and if ID=1 the distribution is
equi- dispersed. The ID of the dNG2PL distribution is calculated numerically for different values of θ and α. Table
1 provides these results. From Table 1, we can observe that depending on the values of parameters, the variance
can be equal or greater than the mean. Therefore, dNG2PL distribution is appropriate for modeling equi or over
dispersed data.

Table 1: Values of the mean, (variance) and ID for different combinations of α and θ
.

α / θ 0.5 0.7 1 3 6
0.942 0.632 0.390 0.044 0.002

0.5 (2.576) (1.355) (0.657) (0.046) (0.002)
2.735 2.144 1.685 1.045 1.000
1.401 0.900 0.530 0.056 0.002

0.9 (3.499) (1.774) (0.841) (0.060) (0.002)
2.498 1.971 1.587 1.071 1.000
2.212 1.402 0.789 0.069 0.003

1.5 (5.704) (2.820) (1.221) (0.071) (0.003)
2.579 2.011 1.548 1.029 1.000
2.885 1.784 1.073 0.104 0.004

2 (7.801) (3.802) (1.867) (0.116) (0.004)
2.704 2.131 1.740 1.115 1.000
5.478 3.463 2.040 0.249 0.024

4 (19.540) (10.078) (4.735) (0.301) (0.026)
3.567 2.910 2.321 1.209 1.083
10.943 6.864 4.044 0.563 0.026

8 (66.387) (34.227) (16.037) (1.075) (0.138)
6.067 4.986 3.966 1.909 1.095

4.2.3. Skewness and Kurtosis In this subsection, we will compute the values of skewness and kurtosis for different
combinations of the parameters α and θ. The skewness and the kurtosis are given respectively by
Skewness = µ′

3−3µ′
2 µ′

1 +2(µ′
1)

3

(V ar(X))3/2
, and

Kurtosis= µ′
4−4µ′

1 µ′
3 +6 (µ′

1 )2 µ′
2 −3 (µ′

1)
4

(V ar(X) )4 .

Table 2 presents these results. From Table 2, the skewness coefficient is always positive which means the dNG2PL
distribution is skewed to the right. In addition, the kurtosis is greater than 3 for most values which, means this
distribution has heavier tails than a normal distribution in these cases.
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Table 2: Values of the skewness and (kurtosis) for different combinations of α and θ
.

α / θ 0.5 1 3 6
0.5 2.681 2.782 4.976 21.202

(9.904) (10.011) (25.662) (447.366)
1.5 1.756 1.924 4.083 18.816

(4.423) (5.018) (17.884) (351.932)
4 0.907 1.208 2.432 6.567

(0.905) (1.478) (6.129) (43.695)

4.2.4. The Moment Generating Function Suppose X is a non-negative integer valued random variable, then for
any t ∈ R, we have

MX(t) = E(et x) = 1 +

∞∑
x=0

(et(x+1) − et x)R(x+ 1; α, θ)

[see Song and Wang (2019)].

Therefore, the moment generating function of dNG2PL distribution is given by

MX(t) = 1 +
1

(θ + 1)Γ(α)

∞∑
x=0

(et(x+1) − etx)
{
θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))

}
. (14)

4.2.5. Probability Generating Function Based on a result given by Song and Wang (2019), the probability
generating function is given by

E(tX) = 1 +

∞∑
x=0

(tx+1 − tx)R(x+ 1; α, θ),

= 1 +
1

(θ + 1)Γ(α)

∞∑
x=0

(tx+1 − tx)
{
θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))

}
, |t| ≤ 1.

(15)

4.3. Order Statistics

Order statistics is a fundamental tool in inference and non-parametric statistics. In this subsection, we establish
some results for the dNG2PL distribution related to order statistics. Let X1, X2, ..., Xn be a random sample from
dNG2PL distribution and X(1), X(2), ..., X(n) represents the corresponding order statistics. Then the cumulative
distribution function of r-th order statistic is given by

FX(r)
(x(r)) =

n∑
r=i

(
n
r

)
(FX(x(r); α, θ))

r(1− FX(x(r); α, θ))
n−r

FX(r)
(x(r)) =

(
1

(θ + 1)Γ(α)

)n n∑
r=i

(
n
r

) [
(θ + 1)Γ(α)− θ Γ(α) e−θ (x(r)+1) − Γ(α, θ (x(r) + 1))

]r
×

[
θ Γ(α) e−θ (x(r)+1) + Γ(α, θ (x(r) + 1))

]n−r

.

(16)

Using the binomial expansion theorem for (FX(xr; α, θ))
r, we obtain
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(FX(xr; α, θ))
r =

r∑
j=0

(
r
j

)
(−1)j

{
1

(θ + 1)Γ(α)

[
θ Γ(α) e−θ (x(r)+1) + Γ(α, θ (x(r) + 1))

]}j

. (17)

Therefore,

FX(r)
(x(r)) =

n∑
r=i

r∑
j=0

(
n
r

) (
r
j

)
(−1)j

{
1

(θ + 1)Γ(α)

[
θ Γ(α) e−θ (x(r)+1) + Γ(α, θ (x(r) + 1))

]}n−r+j

.

(18)
The PMF of the r-th order statistic is given by

fX(r)
(x(r)) =

(
n
r

)
(FX(x(r); α, θ))

r−1 (1− FX(x(r); α, θ))
n−r PX (x(r); α, θ)

fX(r)
(x(r)) =

(
n
r

) (
1

(θ + 1)Γ(α)

)n [
(θ + 1)Γ(α)− θ Γ(α) e−θ (x(r)+1) − Γ(α, θ (x(r) + 1))

]r−1

×
[
θ Γ(α) e−θ (x(r)+1) + Γ(α, θ (x(r) + 1))

]n−r

×
{
θ Γ(α) (1− e−θ) e−θ x(r) + Γ(α, θx(r), θ(x(r) + 1))

}
.

(19)

Important special cases of the order statistics are the minimum and maximum values of a sample. The PMF of
X(1) = min (X1, X2, ...., Xn) is

fX(1)
(x(1)) =

n

[ (θ + 1)Γ(α)]n

[
θ Γ(α) e−θ (x(1)+1) + Γ(α, θ (x(1) + 1))

]n−1

×
{
θ Γ(α) (1− e−θ) e−θ x(1) + Γ(α, θx, θ(x(1) + 1))

}
.

(20)

The PMF of X(n) = max (X1, X2, ...., Xn) is

fX(n)
(x(n)) =

n

[ (θ + 1)Γ(α)]n

[
(θ + 1)Γ(α)− θ Γ(α) e−θ (x(n)+1) − Γ(α, θ (x(n) + 1))

]n−1

×
{
θ Γ(α) (1− e−θ) e−θ x(n) + Γ(α, θx(n), θ(x(n) + 1))

}
.

(21)

5. Reliability Characteristics

In this Section, we will study theoretically the shapes of the HR of dNG2PL distribution and some reliability
characteristics.

5.1. The Hazard Rate Function

In this subsection, we will derive the HR of dNG2PL distribution. Also, we will show that the HR of dNG2PL
distribution has increasing, decreasing, constant and BT shapes.
The HR of dNG2PL distribution is given by

hX(x; α, θ) =
PX(x; α, θ)

RY (x; α, θ)
= 1− RY (x+ 1; α, θ)

RY (x; α, θ)
,

= 1 − θ Γ(α) e−θ (x+1) + Γ(α, θ(x+ 1))

θ Γ(α) e−θ x + Γ(α, θx)
.

(22)
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In an analogous manner to Section 2, the shapes of the HR of the continuous NG2PL distribution will be studied
analytically using the approach of Glaser (1980) and then the propostion given by Noughabi et al. (2013) will be
used to determine the shapes of the HR of the dNG2PL distribution.

Theorem:
The HR of NG2PL distribution given by Ekhosueski et al. (2018) has the following shapes

a) Decreasing if 0 < α < 1.
b) Constant if α = 1.
c) Increasing if 1 < α ≤ 2,
d) Bathtub if α > 2.

Proof:
The probability density function of NG2PL distribution is given by

fY (y; α, θ) =
θ2

(θ + 1)
(1 +

θ α−2 yα−1

Γ(α)
) e−θ y, y > 0 ; (α, θ) > 0. (23)

Let η(y) = −∂ ln fY (y; α,θ)
∂ y as defined by Glaser (1980).

Therefore, η(y)and η′(y)for the NG2PL distribution are derived respectively as follows

η(y) = θ − (α− 1) θα−2 yα−2

Γ(α) + θα−2 yα−1
, (24)

η′(y) =
Γ(α) [−(α− 1) (α− 2) Γ(α) θα−2 yα−3 − (α− 1) (α− 2) θ2α−4 y2α−4 + (α− 1) 2 θ2α−4 y2α−4 ]

[Γ(α) + θα−2 yα−1] 2
.

(25)
The denominator in (25) is always positive. So, we will examine the numerator. The 2nd and 3rd terms of the
numerator of η′(y) are given by

− (α− 1) (α− 2) θ2α−4 y2α−4 + (α− 1) 2 θ2α−4 y2α−4 = (α− 1) θ2α−4 y2α−4.

Hence, the numerator can be simplified as follows

Γ(α) θα−2

y2
[−(α− 1) (α− 2) Γ(α) yα−1 + (α− 1) θ α−2 yα−2 ]

a) If 0 < α < 1, η′(y) < 0 ⇒ h Y (y; α, θ) is decreasing.
b) If α = 1 then η′(y) = 0 and hY (y; α, θ) is constant.
c) If 1 < α ≤ 2 then the numerator of η′(y)will be positive, hence, η′(y) > 0 ⇒ hY (y; α, θ) is increasing.
d) If α > 2 then we have that η′(y) changes sign from negative to positive at y = y0
where y0 = [ (α−2) Γ(α)

θα−2 ]
1

α−1 . Hence η(y) has a BT shape.
Based on the lemma of Glaser (1980) if
δ = lim

y→0
g(y) η(y) > 1, g(y) = 1

hY (y; α,θ) ,then hY (y; α, θ) is BT.

For the NG2PL distribution

lim
y→0

η(y) = lim
y→0

(θ − (α− 1) θα−2 yα−2

Γ(α) + θα−2 yα−1
) = θ

and
lim
y→0

g(y) = lim
y→0

θ Γ(α) + Γ(α)

θ2 Γ(α)
=

θ + 1

θ2
.

Therefore, δ = lim
y→0

η(y) g(y) = 1 + 1
θ > 1. As a result, the HR of NG2PL distribution is BT for α > 2.
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According to the proposition of Noughabi et al. (2013), the HR of dNG2PL distribution has the following shapes
a) Decreasing for 0 < α < 1,
b) Constant for α = 1,
c) Increasing for 1 < α ≤ 2,
d) BT for α > 2 except if the change point of hY (y; α, θ) say y∗ lies between 0 and 1 and hX(0) ≤ hX(1) then

hX(x; α, θ) is increasing.

To find y∗ we have to solve h′Y (y) = 0. The HR of NG2PL distribution which is given by Ekhosuehi et al. (2018)
is as follows

hY (y; α, θ) =
θ2 e−θ y (Γ(α) + θα−2 yα−1)

θ Γ(α) e−θ y + Γ(α, θ y)
, y > 0; (α, θ) > 0, (26)

The first derivative h′Y (y) is obtained as follows

h′Y (y) = θα+1 (α− 1) Γ(α) yα−2 e−2 θy

+ Γ(α, θy) [−θ3 Γ(α) e−θ y − θα+1 yα−1 e−θ y + θα (α− 1) yα−2 e−θ y]

+ [θα+2 Γ(α) yα−1 e−2 θ y + θ2α y2α−2 e−2 θy].

(27)

It is clear that there does not exist a closed form expression for the change point y∗, hence it has to be obtained
numerically.
The corresponding change point of dNG2PL distribution will be denoted by x∗. Table 3 displays the root of h′Y (y),
y∗ and its corresponding change point, x∗ for different combinations of (α, θ). Specifically
(α, θ) = (8, 0.3 ) , (4, 0.8 ) , (8, 4) , (5, 0.1 ) , (4, 0.4) , (6, 0.5) , (7, 0.4) , and (7, 0.3).

Table 3: Root of h ′
Y (y), y∗, the solution of hX (x i) − hX (x i+1 ) and the change point x∗

for dNG2PL distribution
(α, θ) y∗ h X (x i) − h X (x i+1 ) x∗

α= 8 , θ = 0 .3 8.751 0.001 xi+1 = 9

α= 4 , θ = 0 .8 1.635 0.052 xi+1 = 2

α= 8 , θ = 4 1.041 0.240 xi+1 = 2

α= 5 , θ = 0 .1 8.982 0.0001 xi+1 = 9

α= 4 , θ = 0 .4 2.338 0.005 xi+1 = 3

α= 6 , θ = 0 .5 4.065 0.001 xi+1 = 5

α= 7 , θ = 0 .4 5.870 0.004 xi+1 = 6

α= 7 , θ = 0 .3 7.365 0.001 xi+1 = 8
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Figure 2 illustrates graphically the various shapes of the HR of the dNG2PL distribution.

Figure 2. The HR plots of dNG2PL distribution with different combinations for α and θ

5.2. The Second Hazard Rate Function

The second failure rate is

SFR(x) = log (
RX(x; α, θ)

RX(x+ 1; α, θ)
)

= log

{
θ Γ(α) e−θ x + Γ(α, θ x)

θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))

}
, x = 0, 1, 2, ...; (α, θ ) > 0.

(28)
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5.3. The Reversed Hazard Rate Function

Using (6) and (8), the reversed HR function is

r (x; α, θ) =
PX(x; α, θ)

FX(x; α, θ)
=

θ Γ(α) (1− e−θ) e−θ x + Γ(α, θx, θ(x+ 1))

(θ + 1)Γ(α)− θ Γ(α) e−θ (x+1) + Γ(α, θ (x+ 1))
(29)

x = 0, 1, 2, ...; (α, θ ) > 0.

5.4. Mean Residual Life Function

The mean residual life function as in Kemp (2004) is given by

L x =
∑
j≥ x

j∏
i=x

(1− h(X = i)) ,

=
∑
j≥ x

j∏
i=x

(
θ Γ(α) e−θ (i+1) + Γ(α, θ(i+ 1))

θ Γ(α) e−θ i + Γ(α, θi)
), x = 0, 1, 2, ...; (α, θ ) > 0.

(30)

A result in Kemp (2004) shows the link between increasing HR/ decreasing HR with decreasing / increasing
mean residual life function. According to Kemp’s result, the dNG2PL distribution has decreasing mean residual
life function when 1 < α ≤ 2 and has increasing mean residual life function when 0 < α < 1.

5.5. Accumulated Hazard Rate

The accumulated HR function is equal to the area under the step function plot of the hazard function. The
accumulated HR function is given as

HX =

x∑
j=0

h (X = j),

HX =

x∑
j=0

h (X = j),

=

x∑
j=0

[
1− θ Γ(α) e−θ (j+1) + Γ(α, θ(j + 1))

θ Γ(α) e−θ j + Γ(α, θj)

]
.

(31)

[see, Kemp (2004)].

6. Maximum Likelihood Estimation

In this Section, we discuss maximum likelihood estimation of the two parameters of the dNG2PL distribution.
Also, the asymptotic confidence intervals of the two parameters will be derived.
Let X1, X2, ..., Xn be a random sample of size n from dNG2PL distribution. Then the likelihood function is

L =

[
1

(θ + 1)Γ(α)

]n n∏
i=1

{
θ Γ(α) (1− e−θ) e−θ xi + Γ(α, θxi, θ(xi + 1))

}
, (32)

lnL = −n ln(θ + 1)− n ln(Γ(α)) +

n∑
i=1

ln (O1), (33)
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where
O1 = θ Γ(α) (1− e−θ) e−θ x + Γ(α, θx, θ(x+ 1)).

∂ ln L

∂ α
= −n ψ(α) +

n∑
i=1

D1,α

O1
. (34)

where
Ψ(α) = ∂

∂ α ln (Γ(α)) is the digamma function (See, Abramowitz and Stegun (1972)),

D1, α =
∂ O1

∂α
= θ Γ(α) ψ(α) (1− e−θ) e−θx + (ln(θ) + ln(u)) Γ(α, θx, θ(x+ 1)),

∂ Γ(α)

∂ α
= Γ(α) ψ(α).

∂ ln L

∂ θ
=

−n
θ + 1

+

n∑
i=1

1

O1
[Γ(α)D1, θ +D2, θ] , (35)

where

D1, θ =
∂

∂ θ
θ (1− e−θ) e−θx = (1− e−θ) e−θx + θ e−θ (x+1) − θ x (1− e−θ) e−θx,

D2, θ =
∂

∂ θ
Γ(α, θx, θ(x+ 1)) =

1

θ
[αΓ(α, θx, θ(x+ 1))− Γ(α+ 1, θx, θ(x+ 1)) ],

Hence, we have to solve the two ln-likelihood equations ∂ ln L
∂ α = 0 and ∂ ln L

∂ θ = 0.

It is clear that the solution of these two non-linear equations can not be done analytically. Numerical solution of
these equations provides the ML estimates of α and θ respectively.
The second order partial derivatives of the likelihood function which are useful in the computation of the variance-
covariance matrix for the estimators and also in constructing confidence intervals for the unknown parameters α
and θ, are presented as follows.

∂2 ln L

∂ α2
= −nΨ′(α) +

n∑
i=1

1

O1
2
{O1 [θ (1− e−θ) e−θx

(
Γ(α)Ψ′(α) + (Γ(α))2Ψ(α)

)
+ (ln (θ) + ln (u))

2
Γ(α, θx, θ(x+ 1))]− D2

1, α}.

(36)

∂2 ln L

∂ θ2 =
n

(θ + 1)2
+

n∑
i=1

1

O1
2
{O1[Γ(α) e

−θ (x+1)(2− 2θx− θ)

+ Γ(α) (1− e−θ) (−2x e−θ x + θ x2 e−θ x)

+
1

θ
((α− 1

θ
)D2, θ −D3, θ) ]− (Γ(α)D1, θ +D2, θ) D4, θ}.

(37)

∂2 ln L

∂θ ∂α
=

n∑
i=1

1

O1
2
{O1 [Γ(α)ψ(α)D1, θ + (ln(θ) + ln(u)) D2, θ +

1

θ
Γ(α, θx, θ(x+ 1)) ]−D1, αD4, θ}. (38)

where Ψ′(α) = ∂ Ψ(α)
∂ α is the polyGamma[1,α] function,
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D3, θ =
∂

∂ θ
Γ(α+ 1, θx, θ(x+ 1)) =

1

θ
[(α+ 1)Γ(α+ 1, θx, θ(x+ 1))− Γ(α+ 2, θx, θ(x+ 1)) ],

D4, θ =
∂ O1

∂ θ
= Γ(α)D1, θ +D2, θ.

The asymptotic variance-covariance matrix of the ML estimators of α and θ is given by

I−1 =

E(−∂
2 ln L

∂ α2
) E(−∂

2 ln L

∂ α∂θ
)

E(−∂
2 ln L

∂θ ∂ α
) E(−∂

2 ln L

∂ θ2
)


−1

Based on the above matrix, one can estimate the entries approximately by
E(−∂2 ln L

∂ α2 ) = − ∂2 ln L
∂ α2

∣∣∣
α=

⌢
α , θ=

⌢

θ
and so on.

For large samples, the vector
⌢

Φ= (
⌢
α,

⌢

θ ) is consistent and asymptotically normal. That is lim
n→∞

⌢

Φ= Φ and also
⌢

Φ∼ N(0, I−1).
Hence, the 100(1− δ)% asymptotic confidence intervals for the parameters α and θ are given respectively by
⌢
α ±zδ/2

√
V (

⌢
α) and

⌢

θ ±zδ/2

√
V (

⌢

θ ) .

where V (
⌢
α) and V (

⌢

θ ) are the diagonal elements of I−1 and zδ/2
is the (1− δ

2 ) th quantile of the standard normal

distribution.

7. Simulation study

Here, a simulation study is conducted to assess the performance of the ML estimators of the model parameters
of dNG2PL distribution. We consider this for various sample sizes n = 20, 50, 100, 150 and three different
combinations of the parameters α and θ which cover decreasing-increasing-decreasing shape of PMF for
(α, θ) = (5, 0.5), unimodal shape of PMF for (3, 0.3) and decreasing shape of PMF for (0.9, 0.1).

The algorithm for the simulation study is given as follows
Step 1: Generate N=1000 samples of size n and specify the initial values of the two parameters α, θ.
Step 2: Generate ui∼ U(0, 1) , i = 1, 2, . . . ,n.
Step 3: If ui≤p = θ

θ+1 generate Xi∼ Geometric
(
e−θ

)
distribution, otherwise generate Xi∼ discrete gamma (α , θ)

distribution.
Step 4: Compute the ML estimates for the two unknown parameters.
Step 5: Repeat steps from 2 to 4, N times.
Step 6: Compute the average value (AV) of the estimators, the estimated average bias (AB), estimated mean square
error (MSE), and confidence interval (C.I) for each parameter for each sample size.
For the parameter θ, the average value (AV) of the estimates for a given value of the parameter and fixed sample
size n is calculated as AV

(
θ̂
)
= 1

N

∑N
i=1 θ̂i,

AB = 1
N

∑N
i=1

(
θ̂i − θ

)
, MSE

(
θ̂
)
= 1

N

∑N
i=1

(
θ̂i − θ

)
2, and

the 95 % asymptotic C.I = ( θ̂i ± 1.96

√
V (θ̂) ). Similarly, the corresponding measures for the parameter α may

be obtained.
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Since the ML estimators of the parameters cannot be obtained in closed forms, the Newton Raphson method is
used to compute the parameters estimates. We use maxLik function in R programme to compute the ML estimates.
The AVs along with their ABs, standard errors (SE), MSEs and the width (W) of the C.Is of the two parameters
(α, θ) are obtained and presented in Table 4 for (α, θ) = (5, 0.5), Table 5 for (α, θ) = (3, 0.3) and Table 6 for
(α, θ) = (0.9, 0.1) .
From Tables (4-6), we observe that as the sample size increases the AB, SE and MSE of the two estimators
decrease. This result is expected as increasing the sample size means observing more data and hence more
information is provided. The numerical results reveal that two properties of good estimators are satisfied which
are asymptotic unbiasedness and consistency. For the C.Is, as the sample size increases the width of the intervals
becomes narrower. Also, the average estimates of the parameters get closer to the initial values.

Table 4: Simulation results for α= 5, θ=0.5

n Parameter AV AB SE MSE W
20 α 5.303 0.303 1.727 6.887 6.770
20 θ 0.527 0.027 0.158 0.055 0.621
50 α 5.110 0.110 1.081 2.498 4.237
50 θ 0.511 0.011 0.097 0.020 0.381
100 α 5.055 0.055 0.755 1.145 2.960
100 θ 0.506 0.006 0.067 0.009 0.264
150 α 5.026 0.026 0.610 0.712 2.393
150 θ 0.503 0.003 0.054 0.006 0.214

Table 5: Simulation results for α= 3, θ=0.3

n Parameter AV AB SE MSE W
20 α 3.309 0.309 1.292 4.056 5.065
20 θ 0.325 0.025 0.117 0.030 0.457
50 α 3.096 0.096 0.866 1.755 3.395
50 θ 0.307 0.007 0.076 0.013 0.300
100 α 3.055 0.055 0.661 0.980 2.592
100 θ 0.304 0.004 0.057 0.007 0.224
150 α 3.018 0.018 0.553 0.669 2.168
150 θ 0.301 0.001 0.048 0.005 0.186

Table 6: Simulation results for α= 0.9, θ=0.1

n Parameter AV AB SE MSE W
20 α 1.206 0.306 0.468 1.140 1.836
20 θ 0.136 0.036 0.054 0.012 0.213
50 α 0.985 0.085 0.223 0.139 0.876
50 θ 0.114 0.014 0.028 0.002 0.110
100 α 0.954 0.054 0.147 0.047 0.578
100 θ 0.110 0.010 0.019 0.001 0.074
150 α 0.948 0.048 0.118 0.030 0.463
150 θ 0.109 0.009 0.015 0.001 0.060

8. Real Data

In this Section, we illustrate the flexibility of our model (dNG2PL) distribution using three real datasets. The first
two of them are discrete real data sets whereas the last one is count data set.
Discrete data:
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For each data set, the dNG2PL distribution is compared with some competing distributions based on some criteria.
These criteria are the ln-likelihood (ln L), Kolmogrov-Smirnov (K-S) statistic and its corresponding p-value,
Akaike Information Criterion (AIC) and Akaike Information Criterion with correction (AICc). They are calculated
for all the compared distributions in order to verify which distribution fits better to the data. The distribution with
the smallest values of the K-S, AIC and AICc and also largest ln L value and highest p-value is considered the
best for a given data. Here, AIC = −2 ln L + 2k, AICc = −2ln L + 2kn

n−k−1 where L is the likelihood
function evaluated at the maximum likelihood estimates, k is the number of parameters and n is the sample size.
The competing distributions whose PMFs are given in Appendix A are dL, EDLi, Discrete power Lindley (dPL),
discrete Weibull (dWE), discrete Burr (dB) and discrete weighted exponential (dWEX) distributions. The K-S
statistic was calculated using ks.test function in R.

First data set:
This data is data set 424 of Hand et al. (1993). The data consists of the time to death (in weeks) of AG positive
leukemia patients. The data are 1, 1, 4, 5, 16, 22, 26, 39, 56, 65, 65, 100, 108, 121, 134, 143, and 156.

Table 7: Parameter estimates and goodness of fit for various models fitted for the time to death
(in weeks) of AG positive leukemia patients

Estimate SE ln L K-S p-val AIC AICc
dNG2PL θ̂=0.013 0.005 -87.205 0.148 0.851 178.409 179.267

α̂=0.823 0.253
dL θ̂=0.031 0.005 -91.858 0.215 0.412 185.717 185.983
EDLi â=0.981 0.006 -87.234 0.149 0.843 178.468 179.326

b̂=0.436 0.131
dPL θ̂=0.146 0.070 -87.763 0.149 0.847 179.526 180.383

α̂=0.643 0.109
dWE q̂=0.978 0.019 -87.352 0.15 0.841 178.704 179.562

β̂ =0.925 0.191
dB θ̂=0.995 0.001 -96.167 0.312 0.074 196.333 197.19

α̂=63.563 1.155
dWEX λ̂=0.016 0.004 -87.365 0.152 0.825 178.73 179.587

α̂=219.567 4.194

Table 7 presents the ML estimates with their SEs as well as the ln L, K-S statistic and its p-value, AIC and AICc.
Although all compared distributions fit the data, the proposed model has the lowest value of the K-S statistics and
its corresponding p-value has largest value. Also, our proposed model has largest ln L and smallest AIC and AICc
values. Consequently, our proposed model can be considered the best model against the competing models based
on the given criteria.

Second data set:
The second data comprises the 2003 final examination marks of 48 slow space students in mathematics in the
Indian Institute of Technology at Kanpur. This data set was previously analyzed by Bakouch et al. (2014). The data
are 4, 5, 6, 6, 7, 7, 8, 11, 12, 12, 13, 14, 14, 15, 15, 15, 15, 15, 18, 18, 18, 19, 19, 19, 20, 21, 21, 23, 23, 23, 25, 27,
28, 29, 31, 34, 34, 37, 39, 40, 44, 50, 50, 58, 60, 65, 70, and 86.
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Table 8: Parameter estimates and goodness of fit for various models fitted for the final examinations marks

Estimate SE ln L K-S p-val AIC AICc
dNG2PL θ̂=0.083 0.018 -198.072 0.089 0.843 400.144 400.411

α̂=2.277 0.470
dL θ̂=0.073 0.007 -198.262 0.105 0.668 398.524 398.611
EDLi â=0.919 0.011 -197.429 0.094 0.785 398.858 399.125

b̂=1.349 0.308
dPL θ̂=0.052 0.020 -197.788 0.098 0.743 399.575 399.842

α̂=1.101 0.106
dWE q̂=0.994 0.003 -198.608 0.109 0.614 401.217 401.483

β̂ =1.546 0.166
dB θ̂=0.952 0.019 -247.484 0.385 0 498.968 499.234

α̂=6.743 2.666
dWEX λ̂=0.076 0.015 -197.599 0.092 0.81 399.199 399.465

α̂=0.006 0.377

The ML estimates of the parameters, SEs, K-S statistics and the corresponding p-values, AIC and AICc are given
in Table 8. From Table 8, it is observed that all models fit the data set except the dB distribution. However, the
dNG2PL distribution has the smallest K-S statistic and largest p-value whereas the dL distribution has the smallest
values of AIC and AICc critera.

Count Data:
This data consists of the counts of cysts of kidneys using steroids. This data was analyzed by El-Morshedy et al.
(2019). The dNG2PL distribution is compared with dL, dPL, EDLi, discrete Gamma (dG), dB, dWE and dWEX
distributions. The count data is displayed in Table 9 , we compute the ML estimates of the parameters of the
considered distributions, ln L, chi-square (χ2) statistic, corresponding p-value, degrees of freedom (df), AIC and
AICc criteria. It is observed from Table 9, based on the p-value, that all the distributions fit the data except the dL
and dWEX distributions. The dNG2PL distribution has the smallest χ2value and the largest p-value. Based on AIC
and AICc criteria, the EDLi distribution has the smallest values followed by the dNG2PL distribution.

Table 9: Parameter estimates and goodness of fit for various models fitted for the counts of cysts
of kidneys using steroids

X Freq dNG2PL dL dPL EDLi dG dB dWE dWEX
0
1
2
3
4
5
6
7
8
9
10
11

65
14
10
6
4
2
2
2
1
1
1
2

64.93
15.18
9.03
5.95
4.11
2.91
2.09
1.52
1.11
0.82
0.60
1.75

40.25
29.83
18.36
10.35
5.53
2.86
1.44
0.71
0.35
0.17
0.08
0.07

63.67
17.32
9.32
5.71
3.75
2.58
1.83
1.33
0.98
0.74
0.57
2.20

64.97
14.39
9.01
6.14
4.33
3.10
2.24
1.62
1.18
0.85
0.62
1.55

64.59
15.78
9.08
5.87
4.00
2.81
2.02
1.47
1.08
0.80
0.60
0.45

64.74
19.18
8.48
4.63
2.86
1.92
1.36
1.01
0.78
0.61
0.49
0.41

63.64
17.45
9.30
5.68
3.73
2.56
1.82
1.32
0.98
0.74
0.57
2.21

45.75
27.07
15.66
9.06
5.24
3.03
1.76
1.02
0.59
0.34
0.20
0.11

Total 110 110 110 110 110 110 110 110 110
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Estimate SE ln L x2 df p-val AIC AICc
dNG2PL θ̂=0.275 0.058 -167.131 0.501 3 0.919 338.263 338.375

α̂=0.328 0.075
dL θ̂=0.829 0.059 -189.11 43.479 4 0.000 380.220 380.257
dPL θ̂=1.314 0.126 -167.947 0.984 3 0.805 339.893 339.893

α̂=0.563 0.062
EDLi â=0.672 0.048 -166.95 0.507 3 0.917 337.900 338.012

b̂=0.264 0.056

dG
⌢

k=0.401 0.084 -167.28 0.558 3 0.906 338.561 338.673
θ̂=0.231 0.057

dB θ̂=0.278 0.045 -171.139 2.469 3 0.481 346.278 346.390
α̂=1.053 0.167

dWE q̂=0.421 0.047 -167.989 1.037 3 0.792 339.977 340.089
β̂=0.629 0.073

dWEX λ̂=0.547 0.052 -179.195 23.634 3 0.000 362.391 362.502
α̂=106.397 1.101

9. Conclusion

In this research, a discrete two-parameter analogue of Ekhosuehi et al.’s continuous new generalized two-parameter
Lindley distribution is proposed. According to theory, the shapes of the hazard rate of the dNG2PL distribution are
increasing, decreasing, constant, and BT. In addition; the mean residual life function of the dNG2PL distribution is
decreasing or increasing. Several characteristics of the dNG2PL distribution are investigated, such as the mixture
representation of the PMF of dNG2PL distribution, the moments of dNG2PL distribution especially the mean and
variance, measures of skewness and kurtosis, moment generating function, probability generating function and the
order statistics. The unknown parameters are estimated using the maximum likelihood method. To evaluate the
estimators’ efficiency, a simulation study is carried out. The efficiency of the estimators is investigated using the
average bias, the standard error and the mean square error. We found that, asymptotic unbiasedness and consistency
properties are satisfied. Furthermore, two discrete real data sets and one count data set are examined in order to
demonstrate the model’s utility. Based on the studied criteria, the results show that the dNG2PL distribution gives
a better fit than numerous current distributions.

Appendix (A): Compared Distributions

Compared distributions are
(a) dL distribution (Gómez-Déniz and Calderı́n-Ojeda (2011)) which is a special case of dNG2PL distribution
when α = 2.

(b) EDLi distribution (El-Morshedy et al. (2019)) which has the following PMF,

PX (x) =
1

(1− log a)b
[Λ (x+ 1; a, b)− Λ (x; a, b)] , x = 0, 1, 2, ...; 0 < a < 1, b > 0.

where a is a scale parameter, b is a shape parameter and Λ(x; a, b) = {1− ax + [(1 + x) ax − 1] log (a) }b.
(c) dPL distribution (Oliveira et al. (2018)) with the following PMF,

PX (x) =

(
1 +

β xα

β + 1

)
γx

α

−
(
1 +

β (x+ 1)
α

β + 1

)
γ(x+1)α , x = 0, 1, 2, . . . ; α, β > 0, γ = e−β .
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(d) dB distribution (Krishna and Pundir (2009)) which has the following PMF,

PX (x) = θlog(1+xα) − θlog(1+(1+x)α), x = 0, 1, 2, . . . .; α > 0, 0 < θ < 1.

(e) dWE distribution (Nakagawa and Osaki (1975)) which has the following PMF,

PX (x) = qx
β

− q(x+1)β , x = 0, 1, 2, ...; β > 0 and 0 < q < 1.

(f) dWEX distribution (Khongthip et al. (2018))

which has the following PMF,

PX (x) =
1− e(α+1)λ + (α+ 1) ( eλ − 1) e(x+1)α λ

α e(α+1) (x+1)λ
, x = 0, 1, 2, ...; (α, λ) > 0.

(g) dG distribution (Chakraborty and Chakravarty (2012)) which is given as

PX (x) =
1

Γ(k)
Γ(k,

x

θ
,
x+ 1

θ
), x = 0, 1, 2, ...; (k, θ) > 0,

where Γ(k, x
θ ,

x+1
θ ) =

∫ x+1

x
1
θk uk−1 e−u/θ du.

Appendix B

Glaser (1980) established the following theorem
Theorem 1 (Glaser (1980)): Let Y be a non-negative continuous random variable with twice differentiable
probability density function f(y) and HR function hY (y). Let η(y) = −∂ ln fY (y)

∂ y .
a) If η(y) is increasing, then hY (y) is increasing.

b) If η(y) is decreasing, then hY (y) is decreasing.

c) If η(y) is BT and if there exists a value t0 such that h′Y (t0) = 0 then hY (y) is BT, otherwise hY (y) is
increasing .

d) If η(y)is upside-down bathtub and if there exists a value t0 such that h′Y (t0) = 0 then hY (y) is upside-down
bathtub, otherwise hY (y) is decreasing.

Since determining t0 in cases c and d may be difficult, Glaser (1980) provided the following lemma which
simplifies the problem.

Lemma (Glaser (1980))
Let ε = limy→0 fY (y) and δ = limy→0 g(y) η(y)
where g (y) = 1

hY (y) , then

1. Suppose that η(y) is BT, then
a) If either ε = 0 or δ < 1, hY (y) is increasing.
b) If either ε = ∞ or δ > 1, hY (y) is BT.

2. Suppose that η(y) is upside down bathtub, then
a) If either ε = 0 or 0 < δ < 1, then hY (y) is upside down bathtub.
b) If either ε = ∞ or δ > 1, then hY (y) is decreasing.
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Proposition (Noughabi et al. (2013)): Let RY (.) be the reliability function of a continuous lifetime model, and
yi, i = 0, 1, 2, . . . be real values and let hY (.) be the HR of the continuous model and hX(.) be the HR of its
discrete analogue.

a) If hY (.) is increasing (decreasing) on (a, b), then hX (xi) , i = m, m+ 1, . . . , n is an increasing (decreasing)
sequence, where a ≤ xm ≤ xn ≤ b.

b) Let hY (.) be BT (upside-down bathtub) shaped with the change point, in (xi, xi+1), then hX (.) is BT
(UBT) shaped. Moreover, if hX (x i)− hX (x i+1 ) > 0 then the change point is xi+1. Otherwise, its change point
is xi.

This proposition shows that when the hazard rate of the continuous model is BT-shaped, the discrete model has an
increasing or BT shaped hazard rate function. In other words, when hY (.) exhibits a BT (upside-down bathtub)
shaped, the discrete skeleton hX (.) is also BT-shaped (UBT-shaped), but when the change point of hY (.) is
between x0 and x1 and hX (x0) ≤ (≥)hX (x1), the sequence hX (xi) , i = 0, 1, 2, . . . is increasing (decreasing).
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