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Abstract In this paper we review the improper and proper conditional autoregressive (CAR) models. A set
of spatially correlated Gaussian random effects are assumed. The CAR model which contains components from
both the uncorrelated heterogeneity (UH) and correlated heterogeneity (CH) models, have been applied to the
South African acute pericarditis 2014 data set, where a Poisson model is used. Acute pericarditis is caused by an
inflammation of the pericardium in the heart. The data set has been used to examine whether there is a significant
difference between the proper conditional autoregressive prior and the intrinsic conditional autoregressive prior
for the correlated heterogeneity component in a convolution model. Both the hyperpriors of the precision for
the uncorrelated heterogeneity components were modelled by using the Jeffreys’ prior. The sensitivity of the
hyperprior has also been investigated. The deaths from this disease in 2014 in South Africa have been considered,
where disease maps and the relative risk of acquiring and dying from acute pericarditis have been investigated, as
well as the standardised mortality ratio (SMR). The convergence and burn-in period of the models were assessed
by the Brook-Gelman-Rubin (BGR) diagnostic. The deviance information criterion (DIC) was used to assess the
models.
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1. Introduction

Disease mapping is a useful tool in the analysis and detection of patterns in diseases and involves mapping
characteristics of a disease onto a region where the disease occurs. More recently, disease mapping has
increased in popularity as the computational power of computers has improved along with the software
used to produce disease maps. The method is popular as it is a good way to visualise the characteristics
of a disease. There are many different applications of disease mapping. The application which will be
considered in this paper is the analysis of the relative risk of contracting and dying from a disease. In
this paper, the disease which will be considered is acute pericarditis in South Africa in 2014. A Bayesian
approach will be used in this paper. The Bayesian approach requires a prior distribution to be used along
with the likelihood function to derive the posterior distribution, a conjugate prior and Jeffreys’ prior will
be used as the prior distributions and will be combined with the Poisson likelihood to derive the posterior
distributions.

Lawson et al. [15] mention that the earliest application of disease mapping was done by Snow in
1854, where a map of addresses was put together for cholera victims relating to the proximity of the
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water supply. Recently, disease mapping has experienced substantial growth as it is a vital tool for
disease prevention. Present-day disease mapping can incorporate geographic information systems as well
as many statistical applications and procedures together. In disease mapping, confounders arise because
of the nature of populations. Confounders are defined by Lesaffre & Lawson [16] as known explanatory
variables which account for the influence of variables affecting the study population. The confounders
are considered in a disease mapping sense via the introduction of random effects into the model. Other
variables to be considered are deviation indices. These are variables which are related to a range of
“poverty-related explanatory variables.” Disease mapping has also spread across many topics including
ecological, geographical, health and spatial studies.

Lawson et al. [15] separate the main activities of disease mapping and list them as disease mapping,
disease clustering and ecological analysis. For the disease mapping activity, which is mainly used in the
health sector, an estimate of the “true relative risk” is found over a region or map. This application is
mainly used for disease prevention and resource allocation. Disease clustering is used to determine where
diseases are clustered most in a region. Lawson et al. [15] state that this application is mainly used in
environmental assessments. An ecological analysis is primarily used in epidemiological research to provide
a “geographical distribution of a disease in relation to explanatory covariates, usually at an aggregated
spatial level.”

There are two situations which are most used in the geographic spread of a disease, Lawson et al. [15]:

• a study has a fixed period for which it takes place
• the location of the observations of interest are recorded. This type of study is called a case-event

analysis. Often the locations are street addresses or postal codes, and the privacy of information is
a limiting factor in these types of studies because of the sensitive nature of the information which is
collected. To address the limitations of the case-event analysis study, the tract count analysis study
may be used. The tract count analysis study mentioned is based on the premise that the counts of
the observations of interest within a small region are often recorded instead of using the locations
of street addresses. The regions are arbitrary and may be used for census information.

For this paper, we downloaded the map shape files which are freely available from a number of
websites including the Global Administrative Areas available at http://gadm.org/country. The shape
files were then imported into Quantum Geographic Information System (QGIS)®[2016] available at
http://www.qgis.org/en/site/ and imported into WinBUGS® developed by Lunn et al. [17]. These maps
are then used as the disease maps for the study and provide a graphical representation which simplifies
the analysis of the diseases which are analysed. The disease maps used in this paper are used to analyse
the posterior expected exceedance probability (PP) and relative risk (RR).

Diggle et al. [8] considered an application to the mapping of environmental count data. Jahan et al. [11]
proposed a hierarchical Bayesian meta-analysis model which analysed the point and interval estimates
from an online atlas, where they modelled the published cancer incidence estimates available as part of
the online Australian Cancer Atlas. Wakefield et al. [24] looked into an application to the mapping of
cancer risk in the United Kingdom. Pascutto et al. [20] discussed a number of issues dealing with the
analysis of disease mapping, where they considered the mapping of larynx cancer across electoral wards
in the North West Thames region of the United Kingdom, making use of Bayesian methods.

A comprehensive review of the main classes of hierarchical models that have been used for Bayesian
disease mapping has been considered in Best et al. [4], where they considered extensions to model the
joint spatial distribution of health indicators. Anderson et al. [1] proposed a two-stage solution to the
problem of identifying the spatial extent of high-risk clusters, where the first stage is a spatially adjusted
hierarchical agglomerative clustering algorithm and the second stage fits a separate Poisson log-linear
model to the study data for each cluster structure. Coly et al. [6] modelled rare infectious diseases where
they proposed some specific and generic variations of the current methodology. They used a specific
spatio-temporal link in order to better model the stronger spatial and temporal dependencies due to the
transmission of the disease. They have used Bayesian hierarchical models on bovine tuberculosis data.

Stat., Optim. Inf. Comput. Vol. 10, June 2022

http://gadm.org/country
http://www.qgis.org/en/site/


R.R. SOUTHEY, L. RAUBENHEIMER AND S.E. RADLOFF 831

The model will be discussed in Section 2, followed by the data analysis and a sensitivity analysis in
Section 3. The discussion and conclusion will be given in Section 4.

2. The Model

Suppose that there exists a set of spatially correlated Gaussian random effects, denoted by S1, S2, . . . , SN ,
for the N regions in the area under the study and suppose that the joint distribution of the random effects
are

S ∼ MVN
(
µ, ωΣ

)
,

where S is a vector containing Si, i = 1, 2, . . . , N and is distributed as a multivariate normally distributed
random variable of N -dimension, µ is a mean vector of 1×N dimension, ω is a strictly non-negative
value which governs the variability of Si and Σ is a N ×N positive definite matrix as in Spiegelhalter
et al. [22]. The “between-region” covariance matrix ωΣ is expressed in Osei [19] as

ωΣ = ω
(
I − ρW

)−1
M, (1)

where I is an identity matrix of N ×N dimension, M is a diagonal matrix of N ×N dimension containing
values, denoted by mii, which are proportional to a conditional covariance Si|Sj and W is a weight matrix
of N ×N dimension with values, denoted by wij . Where wij is representing the spatial correlation between
region i and j and ρ is a representation of the amount of spatial dependence.

The joint multivariate Gaussian model is expressed in Spiegelhalter et al. [22] as

Si | S−i ∼ N

(
µi+

N∑
j=1

ρwij

(
Sj − µj

)
, ωmii

)
, (2)

where S−i denotes the whole vector S excluding the value of Si. When there are no explanatory variables
then µi = x′

iβ = 0 and (2) can be written as

Si | S−i ∼ N

(
N∑
j=1

ρwijSj , ωmii

)
. (3)

Theorem 1. When there are no explanatory variables then the joint distribution of the random effects are

S ∼MVN(0, ωΣ),

where ωΣ is given in (1).

Proof
The Brook expansion developed by Brook [5] can be written as:

π(z)

π(x)
=

N∏
i=1

π
(
zi | z1, z2, . . . , zi−1, xi+1, . . . , xN

)
π
(
xi | z1, z2, . . . , zi−1, xi+1, . . . , xN

) ,
Stat., Optim. Inf. Comput. Vol. 10, June 2022
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thus

π(S)

π(0)
=

N∏
i=1

π
(
Si | S1, S2, . . . , Si−1, 0i+1, . . . , 0N

)
π
(
0i | S1, S2, . . . , Si−1, 0i+1, . . . , 0N

)

=

N∏
i=1

exp
{
− 1

2ωmii

(
Si − ρ

∑
j<i

wijSj − ρ
∑
j>i

0j

)2
}

exp
{
− 1

2ωmii

(
0i − ρ

∑
j<i

wijSj − ρ
∑
j>i

0j

)2
}

=

N∏
i=1

exp
{
− 1

2ωmii

[(
Si − ρ

∑
j<i

wijSj

)2

−
(
ρ
∑
j<i

wijSj

)2
]}

=

N∏
i=1

exp
{
− 1

2ωmii

[
S2
i − 2Siρ

∑
j<i

wijSj+

(
ρ
∑
j<i

wijSj

)2

−
(
ρ
∑
j<i

wijSj

)2
]}

=

N∏
i=1

exp
{
− 1

2ωmii

[
S2
i − 2ρSi

∑
j<i

wijSj

]}

= exp

− 1

2ω
N∑

i=1

mii

[
N∑
i=1

S2
i − 2ρ

N∑
i=1

∑
j<i

SiwijSj

] .

Since W is symmetric then 2ρ
N∑
i=1

∑
j<i

SiwijSj = ρ
N∑
i=1

N∑
j=1

SiwijSj and thus:

exp

− 1

2ω
N∑

i=1

mii

[
N∑
i=1

S2
i − 2ρ

N∑
i=1

∑
j<i

SiwijSj

] = exp

− 1

2ω
N∑

i=1

mii

[
N∑
i=1

S2
i − ρ

N∑
i=1

N∑
j=1

SiwijSj

]
= exp

{
− 1

2ω

[
N∑
i=1

S2
i − ρ

N∑
i=1

N∑
j=1

SiwijSj

]
N∑
i=1

m−1
ii

}

= exp
{
− 1

2

[
S

′
(
I − ρW

)(
ωM

)−1

S

]}
∴ S ∼ MVN

(
0, ω

(
I − ρW

)−1
M
)

∴ S ∼ MVN
(
0, ωΣ

)
.

The use of the covariance matrix Σ requires the matrices W and M , and the parameter ρ to be specified.
The CAR model requires Σ to be symmetric positive definite such that the following conditions are met,
as outlined in Spiegelhalter et al. [22]:

1. The matrix Σ must be symmetric such that wijmjj = wjimii.
2. When ρ = 0 there is no spatial dependence.
3. The value of ρ must be in-between ρmin and ρmax such that ρ−1

min and ρ−1
max are lowest and highest

eigenvalues of M− 1
2WM

1
2 .

4. V ar
(
Sj |Si

)
= ωmii > 0 such that mii > 0.

5. Since spatial dependence is mostly positive, ρ is constrained to be between 0 and ρmax.
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2.1. Improper CAR (ICAR) Model
This model’s foundation dates back to 1987 when Künsch [12] developed lattice models for intrinsic
autoregressions. These autoregressions were based on a two-dimensional lattice and could be applied to
intrinsic models for which stationarity is only assumed when parameters change value. These models were
built based on spatial distributions and permit the use of a “singular normal joint distribution”, Lawson
[14].

Besag et al. [3] show that the ICAR model is a CAR model where the covariance matrix Σ is semi-
definite, whereas the CAR model has a positive definite covariance matrix. The ICAR model creates
weights given by

wij =

{
1

nei
if regions i and j are adjacent,

0 otherwise,

where wii is also 0 and let mii =
1

nei
where nei is the number of neighbours of region i. The ICAR model

also requires
ρ = 1 = ρmax.

Since ρ = 1, mii =
1

nei
and wij =

1
nei

and since there are no explanatory variables in both data sets
then (3) will change to the following equation for the ICAR model

Si | S−i ∼ N

(
N∑

j∈nei

Sj

nei
,
ω

nei

)
.

WinBUGS® requires unnormalised weights and sets Zij = 1 for i and j adjacent regions and 0 otherwise

and let wij =
Zij

Zik
where Zik =

N∑
j=1

wij .

A constraint which requires the random effects in the model sum to 0 is proposed by Besag & Kooperberg
[2] and includes an additional intercept term with a U(−∞,∞) prior which is location invariant and
gives the same result as an unconstrained parameterisation without an additional intercept term, this is
modelled as β0 in the (4). The prior distribution for the parameter ω must be included in the model and
be modelled in terms of precision as τ = 1

ω . This prior is very sensitive because the posterior variance in
the random effect will be affected by the prior variance, Spiegelhalter et al. [22]. The prior distribution
is usually modelled by a gamma distribution where the parameters have to be selected sensibly as a
large prior variance places most of the prior focus away from 0. Various suggestions are available for the
parameters of the gamma distribution. The one proposed by Besag & Kooperberg [2] has parameters of
α = 0.5 and β = 0.005.

The model that is applied to both data sets is the CAR model which contains components from both
the UH and CH models and is implemented in WinBUGS®. The model has the following parameters

yi | µi ∽ Pois
(
µi

)
where i = 1, 2, . . . , N and µi = eiθi

L (µi | yi) =

N∏
i=1

µyi

i exp
(
−µi

)
yi!

E (yi | µi) = eiθi = µi

log
(
µi

)
= log

(
ei
)
+ β0 + vi + Si, (4)

where θi is the relative risk in the ith region, ei is the expected number of events taking place in the
ith region, vi ∼ N(µ = 0, ϕ) is the uncorrelated heterogeneity, Si is the ICAR model prior and β0 is the
intercept term due to the requirement that the random effects in the model must sum to 0. The model
focuses on making inference on the relative risk of each region. The following link is assumed

log
(
µi

)
= ηi,
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then
µi = eηi

i ,

which results in the Bayesian linear model given by

ηi = x′
iβ + β0 + vi + Si.

The relative risk is modelled by
θi = exp

[
β0 + vi + Si

]
,

where x′
iβ is not modelled as there are no explanatory variables in the data.

The prior distribution for the vector S is written by Lawson [14] as

π(S | ω) ∝ 1

ω
N
2

exp
{
− 1

2ω

∑
i

∑
j∈nei

(
Si − Sj

)2}
,

which is an application of a “Markov random field”. There are various methods for weighting schemes for
regions.

The zero-mean Gaussian prior distribution was assigned by Besag et al. [3] to the uncorrelated
heterogeneity vi in each region. This prior is written as

π(v) ∝ ϕ−N
2 exp

{
− 1

2ϕ

N∑
i=1

v2i

}
,

where ω and ϕ have the following priors

ω ∼ Gam
(
α1, β1

)
ϕ ∼ Gam

(
α2, β2

)
.

The posterior distribution has the following form

π
(
S,v, ω, ϕ | yi

)
∝

N∏
i=1

 exp

(
−eiθi

)(
eiθi

)yi

yi!

 × 1

ω
N
2

exp

{
− 1

2ω

∑
i

∑
j∈nei

(
Si − Sj

)2}

×ϕ−N
2 exp

{
− 1

2ϕ

N∑
i=1

v2i

}
×Gam

(
α1, β1

)
×Gam

(
α2, β2

)
.

The advantage of using such a model is shown in Lawson [14] as conditional moments

E
(
Si | S−i

)
= S̄i

var
(
Si | S−i

)
=

ω

nei[
Si | S−i

]
∼ N

(
S̄i,

ω

nei

)
,

where S̄i =
∑

j∈nei

Sj

nei
, the average calculated over the districts of the ith region.

An advantage of using this model is that the conditional moments are easy to calculate and are functions
of the regions in the study. The justification for using both uncorrelated heterogeneity (UH) and correlated
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heterogeneity (CH) components in the model is provided in Lawson [14]. The CH and UH components
must be used in the model since unobserved effects within the region under study can arise in different
forms. The UH effect is included in the model to model uncorrelated additional variation. In the absence
of prior information, there is little justification not to include both effects, and it is straightforward to
include both effects in the form of an additive random effect in the model. These effects may not be
identified, but focus may be on the “total effect of the unobserved confounding”, then the sum of these
effects can be identified and forms part of the model.

The intraclass correlation coefficient (ICC) may be calculated from the variance components of the UH
and CH components as follows.

Let ϕν and ϕS denote the variance of the UH and CH components respectively, then the “relative
variance contribution/ intraclass correlation” is given by ϕν

ϕν+ϕS
, as in Lawson [14]. This “relative variance

contribution” is only useful when the components may be identified.
The WinBUGS® function for the ICAR model is the car.normal function. The following parameters are

required for the ICAR model as in Spiegelhalter et al. [22]

S[1 : N ] ∼ car.normal(adj[],weights[],num[], omega),

where:
• adj[] is a vector containing the identification numbers of the neighbours of each region and is

generated using the adjacency matrix in the mapping tool menu in GeoBUGS®[2003].
• weights[] is a vector containing the unnormalised weights for each pair of regions and having the

same length as the adj[] vector. This is generated as a vector of 1’s by assigning mij = 1 (wij =
1

nei
)

if regions i and j are adjacent and 0 otherwise. This is the standard CAR model proposed by Besag
et al. [3].

• num[] is a vector the same length as the number of regions in the study and contains the number of
neighbours (nei) for each region. This vector is created using the adjacency matrix in the mapping
tool menu in GeoBUGS®.

• omega is a value which is the precision of the CAR prior or the inverse scale parameter when using
the Laplace prior. This may be assigned a gamma prior distribution in the model.

• The intercept term β0 is assigned a flat prior distribution and must be used in a CAR model that
has random effects.

2.2. Proper CAR (PCAR) Model
Another form of the Gaussian Markov random field (GMRF) model is the PCAR model. Suppose ρ is as
defined earlier and to ensure definiteness of Σ, the covariance matrix, ρ must lie in the interval ρmin and
ρmax such that ρ−1

min and ρ−1
max are the lowest and highest eigenvalues of M− 1

2WM
1
2 . Thus, the range of

ρ is a function of the eigenvalues of the matrix M− 1
2WM

1
2 . This is different to the ICAR model where

ρ is fixed, as explained in Spiegelhalter et al. [22]. The distribution which arises is thus proper assuming
that the properties of M and W are met. A straight forward uniform distribution, U

(
ρmin, ρmax

)
, may

be given as a hyperprior for ρ, as mentioned by Besag & Kooperberg [2]. The biggest advantage of using
this type of model is that the results will be similar to those produced by the fully specified Gaussian
covariance model, because the model does not have to perform a matrix inversion during sampling. The
model may also be used as a data likelihood as it is proper and the variance and correlation parameters
are specified, and this is in contrast to the ICAR model which is improper and therefore cannot be used
as a data likelihood. There are two types of specifications which will be considered in this paper. The
specifications are for the elements of the matrices M and W and the parameter ρ. The first specification
is made by Besag et al. [3] and is used in the ICAR model, this specification is

wij =

{
1

nei
if regions i and j are adjacent,

0 otherwise,
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and
mii =

1

nei
,

ρ = 1 = ρmax.

The second specification, which is used in the PCAR model, is proposed by Cressie & Chan [7] and
Stern & Cressie [23]

wij =


(

ei
ej

) 1
2

if regions i and j are adjacent,

0 otherwise,
(5)

and
mii =

1

ei
, (6)

ρ ∈
(
ρmin, ρmax

)
,

where ei is the expected number of events at the ith region.
The model with no trend is then written as:

Si | S−i ∼ N

(
ρ

N∑
j∈nei

(
ei
ej

) 1
2

Sj ,
ω

ei

)
.

The WinBUGS® function for the PCAR model is the car.proper function. The following parameters
are required for the PCAR model, as is copied from Spiegelhalter et al. [22]

S[1 : N ] ∼ car.proper(mu[],W [],adj[],num[],M [], omega, ρ),

where:

• mu[] is a vector containing the means for each region, this may be given a prior distribution, defined
in the data or calculated within the model.

• adj[], omega and num[] are the same as in the ICAR model.
• W [] is a vector of normalised weights of each pair of regions. The ICAR model used unnormalised

weights.
• M [] is a vector containing the diagonal values of M denoted by mii and has length N.
• ρ is a value which specifies the strength of the spatial dependence and is constrained by the highest

and lowest eigenvalues of M− 1
2WM

1
2 .

The bounds are created by using the parameters of the PCAR model as

min(W [],adj[],num[],M []) and max(W [],adj[],num[],M []).

2.3. Residuals
A common technique used in model goodness-of-fit is the analysis of the residuals of the model. The
residuals represent the difference between the observed value and the expected value, this difference is
known as the deviance, as defined by Lunn et al. [18]. Residuals may be used to analyse various short falls
in the model, some of which are given in Lunn et al. [18] as: autocorrelation, the shape of the distribution
and the fit of the model. The general case of a residual is defined as

rRi = yi − ŷi, (7)
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where ŷi is the fitted value of the model.
The standardised form of the Pearson residual is well-known and defined as

rpi =
yi − E

(
yi|θ
)

√
var
(
yi|θ
) ,

where yi is the ith observed value, E (yi | θ) is the expected value of the ith observed value given the
parameter θ and var (yi | θ) is the variance of the ith observed value given the parameter θ. The Pearson
residual, rp, has a mean of 0 and a variance of 1 and thus the residuals are assumed to occur between -2
and 2, as explained by Lunn et al. [18].

The Bayesian residual is defined by Lawson [14] as

rBi = yi −
1

G

G∑
g=1

E
(
yi|θ(g)

i

)
,

where θ
(g)
i is a vector of values resulting from the sampling of the posterior distribution and E

(
yi | θ(g)

i

)
is the expected value resulting from the posterior distribution.

In the case of a model with a Poisson likelihood with mean parameter eiθi, the Bayesian residual can
be approximated by

rBi = yi −
1

G

G∑
g=1

eiθi,

when a constant region rate is applied to the model. Another parameterisation is to use the posterior
expected value, eiθ̂i, as the fitted value and then the Bayesian residual is calculated in Lawson [14] as

rBi = yi − eiθ̂i,

which follows from (7).
The deviance residual is defined by Lunn et al. [18] as

rdi = signi

√
Di, (8)

where signi is the ith sign of the result of yi − ŷi and Di is the ith standardised deviance defined as

D(θ) =

N∑
i=1

Di(θ) = −2log
[
π (y | θ)

]
+ 2log

[
π
(
y | θ̂i (y)

)]
, (9)

where θ̂i (y) is the “saturated estimate” as in Lunn et al. [18].

Theorem 2. The standardised deviance for the Poisson distribution when yi ∼ Poi(θi) is

D(θ) = 2

N∑
i=1

[
yi log

(
yi

θ̂i

)
−
(
yi − θ̂i

)]
. (10)

Proof
Let θ̂i denote the ith maximum likelihood estimate of the fitted model and let θ̃i = yi under the saturated
model. The likelihood of the fitted model is then

L

(
θ̂i | yi

)
=

N∏
i=1

exp
(
−θ̂i

)
θ̂yi

i

yi!
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and the likelihood of the saturated model is

L

(
θ̃i | yi

)
=

N∏
i=1

exp
(
−θ̃i

)
θ̃i

yi

yi!
.

The log likelihood of the fitted model is then

l

(
θ̂i | yi

)
=

N∑
i=1

[
yilog

(
θ̂i

)
− θ̂i − log

(
yi!
)]

and the log likelihood of the saturated model is

l

(
θ̃i | yi

)
=

N∑
i=1

[
yilog

(
θ̃i

)
− θ̃i − log

(
yi!
)]

.

Substituting the log likelihoods into (9) results in

D(θ) = −2

N∑
i=1

[
yilog

(
θ̂i

)
− θ̂i − log

(
yi!
)]

+ 2

N∑
i=1

[
yilog

(
θ̃i

)
− θ̃i − log

(
yi!
)]

= 2

N∑
i=1

[
log
(
yi!
)
− yilog

(
θ̂i

)
+ θ̂i + yilog

(
θ̃i

)
− θ̃i − log

(
yi!
)]

= 2

N∑
i=1

[
θ̂i + yilog

(
θ̃i

θ̂i

)
− θ̃i

]
.

Since θ̃i = yi under the saturated model, then the deviance is

D(θ) = 2

N∑
i=1

[
θ̂i + yilog

(
yi

θ̂i

)
− yi

]

= 2

N∑
i=1

[
yilog

(
yi

θ̂i

)
−
(
yi − θ̂i

)]
.

3. Data Analysis

The data was collected via the civil registration system which is part of the Department of Home
Affairs. Data collection is important to analyse the current health system within the country. These
death notifications are collected by the Department of Home Affairs and are processed fortnightly by
Statistics South Africa which produces statistical releases based on the data collected.

The South African data for acute pericarditis (Classification number: I30) is given in Table 1 along
with the expected values, which are calculated based upon the province-wide incidence rate. The disease
map for the observed values is given in Figure 1. Imazio et al. [10] state that pericarditis is caused by an
inflammation of the pericardium in the heart. The pericardium is a sac which surrounds the heart and
contains many blood vessels and is made up of visceral and parietal layers, Lange & Hillis [13]. These
layers are distanced by the pericardial cavity and contain between 15 to 50 ml of fluid. Pericarditis may
cause no pain at all and may be lethargic which is common in patients who have tuberculosis, Lange &
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Hillis [13]. In other cases, pain may be severe and occur suddenly without warning. Pain often resonates
behind the breast bone and changes depending on the position of the patient. Patients may experience
relief from pain by shifting location or sitting upward. Pain may often spread to different parts of the
body including the arms, neck and shoulders.

Diagnosis of acute pericarditis is challenging and is thought to be a process of exclusion, Imazio et al.
[10]. Lange & Hillis [13] state that in 90% of cases, the cause of acute pericarditis is unknown or thought
to be a viral disease. In the other 10% of cases, the cause of acute pericarditis is believed to be “transmural
myocardial infarction” along with other infections and associated with a “dissecting aortic aneurysm”.

Table 1. The observed number of deaths and expected values of acute pericarditis (Classification number: I30) in
South Africa by province in 2014.

Province
Number of Number of
Observed Expected
Deaths Deaths

Eastern Cape 3 2.0108547
Free State 1 0.8256759
Gauteng 2 3.8264741
KwaZulu-Natal 1 3.1686066
Limpopo 2 1.6682253
Mpumalanga 0 1.2530874
North-West 3 1.0892270
Northern Cape 1 0.3456705
Western Cape 3 1.8121786
Total 16 16

Figure 1. The acute pericarditis deaths in South Africa by province in 2014.
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3.1. Results for ICAR model
The ICAR model is run for the South African data given in Table 1. The uncorrelated heterogeneity
(UH) component is modelled with a zero mean Gaussian distribution with a hyperprior distribution for
the precision as a gamma distribution with parameters α = 0.5 and β = 0.0005, respectively, which is
the Jeffreys’ prior. The precision of the ICAR prior distribution is modelled using a gamma hyperprior
distribution with parameters α = 0.5 and β = 0.0005, respectively. These parameters, α = 0.5 and β =
0.0005, are proposed by ? ] and are the parameters of the Jeffreys’ prior. The model is run for nT = 50000
iterations and a further nA = 20000 for the calculation of the DIC. The convergence and burn-in period
of the model are assessed by the Brook-Gelman-Rubin (BGR) diagnostic and trace plots. The BGR is a
tool to check for convergence and used to get an idea of the burn-in period.

There are four chains run for the deviance and relative risk in all provinces. These chains are run for
nT = 50000 iterations using different initial values. The convergence of the model is assessed by trace
plots, and kernel densities of the relative risks and deviance. The model fit is assessed by a Q-Q plot of
the deviance residuals. The deviance in both of the South African models is the saturated deviance which
is calculated as the sum of the deviance of each province.

Table 2. The statistics from the BGR for the ICAR model.

Iteration Unnormalised Normalised as plotted BGRof pooled mean within of pooled mean within
Range chains chain chains chain ratio

251–500 5.217 5.316 0.9814 1.0000 0.9814
501–1000 3.977 3.967 0.7480 0.7461 1.0030
751–1500 3.881 3.846 0.7300 0.7233 1.0090

1001–2000 3.713 3.743 0.6985 0.7040 0.9921
1251–2500 3.976 4.000 0.7478 0.7524 0.9939
1501–3000 4.277 4.309 0.8046 0.8105 0.9927
1751–3500 4.097 4.158 0.7706 0.7821 0.9853
2001–4000 4.118 4.150 0.7745 0.7807 0.9921
2251–4500 4.090 4.076 0.7693 0.7667 1.0030
2501–5000 4.050 4.050 0.7617 0.7618 0.9999
2751–5500 3.838 3.834 0.7220 0.7212 1.0010
3001–6000 3.792 3.791 0.7132 0.7130 1.0000
3251–6500 3.888 3.885 0.7313 0.7308 1.0010
3501–7000 3.908 3.903 0.7351 0.7342 1.0010
3751–7500 3.864 3.860 0.7267 0.7261 1.0010
4001–8000 3.902 3.920 0.7340 0.7374 0.9953
4251–8500 3.918 3.904 0.7369 0.7342 1.0040
4501–9000 3.844 3.832 0.7230 0.7209 1.0030
4751–9500 3.852 3.826 0.7244 0.7197 1.0070

5001–10000 3.833 3.814 0.7210 0.7174 1.0050
5251–10500 3.862 3.843 0.7265 0.7229 1.0050
5501–11000 3.916 3.905 0.7366 0.7346 1.0030
5751–11500 4.000 3.996 0.7524 0.7517 1.0010
6001–12000 4.012 4.012 0.7547 0.7546 1.0000

Table 2 shows the results of the BGR convergence diagnostic applied to the deviance and relative risks
of the model. From the BGR ratio, it can be seen that the model reaches convergence between 501-1000
iterations as this is the first time that the BGR ratio reaches 1. Gelman & Hill [9] proposed that a BGR
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ratio of 1.1 is an “acceptable limit” for convergence. The burn-in period may also be determined from
Table 2. Although interpretation may be slightly subjective, the burn-in period is between iterations
5751-11500 as the statistics in the table become more stable around these iterations. The burn-in period
is therefore set at NB = 12000 as this is above 11500 and ensures stability in the statistics.

Table 3. An analysis of the burn-in period for the ICAR model.

Province Percentage

Eastern Cape 0.7517
Free State 0.5317
Gauteng 0.7660
KwaZulu-Natal 1.0253
Limpopo 0.5530
Mpumalanga 0.9240
North-West 1.2775
Northern Cape 1.0941
Western Cape 1.2102

The proportion of the MC error to the standard deviation of the relative risks of the ICAR model
are used to assess whether the burn-in period of NB = 12000 is sufficient. This proportion, expressed
as a percentage in Table 3, has been calculated for all the relative risks of the provinces and all of the
percentages are below 5% which indicates that the burn-in period of NB = 12000 is sufficient.

Figure 2. The density kernel for the relative risks of the South African data for the ICAR model from top left:
Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga North-West, Northern Cape and
Western Cape.

The density kernels for the relative risks are shown in Figure 2. The density kernel plot gives an estimate
of the shape of the marginal posterior distribution for each relative risk. The densities have a heavy tail.
All of the densities seem to have a maximum around 1.

The MAPE and MSPE of the ICAR model are relatively low values and are similar to those calculated
for the PCAR model.

The quantile ratio (QR) is calculated for the relative risks and is used to assess the between-province
variation in the relative risks. The QR shows the extent of the spread of the “empirical distribution”
of the relative risks as in Lunn et al. [18]. The 60% QR, denoted by QR60, is calculated for the model
by using the ranked() function in WinBUGS®, which will rank the relative risks of the provinces and
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Table 4. The model diagnostics of the South African data for the ICAR model.

Statistic Mean
Standard MC 95% Credible
Deviation Error Interval

2.5% 97.5%
MAPE 1.461 0.3972 0.002155 0.7778 2.333
MSPE 3.774 2.343 0.01192 1.111 9.889
pV 0.9569 0.09267 0.001765 0.6207 0.9993
pE 0.02647 0.07265 0.001765 2.416E-4 0.2711
QR60 1.321 0.7269 0.0145 1.031 3.063
pS 0.01667 0.06089 0.001737 6.883E-5 0.2245
Saturated Deviance 10.44 1.928 0.02203 6.451 14.95
DIC 32.074
pD 1.45
D̂ 29.174
D 30.624

then the calculation involves estimating the “exponentiated difference” between the relative risks at
the provinces with 80% and 20% quantiles which are then ranked. The code to calculate QR60 is:
QR60 < −ranked(rr[], 8)/ranked(rr[], 2).

The QR is calculated as 1.321 which indicates that there is a relatively low heterogeneity in the relative
risks of the middle 60% of the provinces in the model.

The amount of spatial to unstructured variation in the model is assessed. The variation contributed
by the unobserved spatial factors is 1.667% of the total variation in the model, this is denoted by pS in
Table 4. The variation contributed by the unobserved non-spatial factors, denoted by pV , is 2.647% of
the total variation, with the other 95.69%, pE , of the total variation is due to the expected values of the
provinces.

The DIC is 32.074, resulting from the model being run for an additional nA = 20000 iterations. The
posterior mean of the deviance, D, is 29.174.

Figure 3. The density kernels for the standardised Bayesian residuals of the South African data ICAR model from
top left: Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, North-West, Northern Cape
and Western Cape.

Lawson [14] proposed two features of residuals in a model when the model fits the data well. The first
feature is that the residuals should be symmetric and centred around 0. Although the centring around 0 is
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Figure 4. Q-Q plot of the deviance residuals of the ICAR model.

an approximation due to the nature of the simulation in the model. The second feature is that the residuals
must show a random pattern and show no particular structure. Figure 3 shows the density kernels for
the residuals in each province in the South African ICAR model. Based on the Figure, Eastern Cape,
Free State and Limpopo appear to be approximately centred around 0. KwaZulu-Natal, Mpumalanga
and North-West have centres which are further away from 0. An approximate symmetry of the kernel
densities is shown in Eastern Cape, Free State, North-West and Western Cape which may indicate a good
model fit for these provinces. The symmetry of the other provinces appears to be skewed.

Table 5. The statistics from the Bayesian residuals of the South African data for the ICAR model.

Province
Bayesian Residual 95% Credible
Mean Standard MC error Interval

Deviation 2.5% 97.5%
Eastern Cape 0.9258 0.6194 0.004785 -0.4678 1.8980
Free State 0.1650 0.2568 0.001421 -0.3893 0.5735
Gauteng -1.7100 1.0520 0.007847 -3.9750 0.1699
KwaZulu-Natal -2.0370 0.8872 0.008782 -3.9250 -0.4344
Limpopo 0.3113 0.5091 0.002780 -0.8099 1.1320
Mpumalanga -1.2150 0.3600 0.003093 -1.9900 -0.5715
North-West 1.8380 0.4216 0.005140 0.9020 2.3880
Northern Cape 0.6370 0.1316 0.001392 0.3584 0.8140
Western Cape 1.0820 0.6464 0.008066 -0.4070 2.0000

The Q-Q plot of the deviance residuals for the ICAR model shows a reasonable fit for most of the
provinces. Most of the provinces show adequate model fit although some provinces are further away from
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the straight line than other provinces are. Based on the two features proposed by Lawson [14], the model
fits the data adequately.

Table 6. The deviance residuals of the ICAR model.

Province
Deviance Residual 95% Credible
Mean Standard MC error Interval

Deviation 2.5% 97.5%
Eastern Cape 0.6448 0.4425 0.002901 -0.2644 1.477
Free State 0.2039 0.2787 0.001473 -0.3455 0.740
Gauteng -0.9309 0.5047 0.004340 -1.8940 0.096
KwaZulu-Natal -1.3240 0.4469 0.004640 -2.1610 -0.397
Limpopo 0.2725 0.3928 0.002003 -0.5093 1.033
Mpumalanga -1.5430 0.2334 0.002103 -2.0010 -1.074
North-West 1.4730 0.4009 0.003986 0.6212 2.184
Northern Cape 0.8958 0.2338 0.001869 0.4195 1.315
Western Cape 0.7723 0.4586 0.004218 -0.2000 1.606

KwaZulu-Natal and Mpumalanga have the lowest SMR values out of all the provinces. There are 1 and 0
observed deaths with expected number of deaths of 3.1686 and 1.253 for KwaZulu-Natal and Mpumalanga,
respectively. A low number of observed deaths and relatively high expected values contribute to the low
values for SMR. The high expected value for KwaZulu-Natal results from the large population of the
province at 10694434, which is the second highest population of a province in South Africa after Gauteng.
The combination of a large population size and a small number of observed deaths result in a small SMR
value. Mpumalanga has the sixth largest population size of all the provinces in South Africa but since
the observed number of deaths is 0, the SMR is also approximately 0. The highest SMR values are at the
North-West and Northern Cape with 3 and 1 observed deaths and expected number of deaths of 1.0892
and 0.3457 respectively. The low expected number of deaths with respect to the number of observed deaths
result in a high SMR value. The low expected number of deaths is a result of a small population size
in these provinces. The Northern Cape and North-West have population sizes of 1166680 and 3676274,
respectively, which are the smallest and third smallest populations, respectively. Therefore the relative
risk is a better estimate of the risk of a disease than the SMR, as the relative risk is not a function of the
expected values whereas SMR is calculated based on the expected values, and thus is influenced by the
population size of the province.

Table 7. The SMR of the South African data for the ICAR model.

Province
SMR 95% Credible
Mean Standard MC Error Interval

Deviation 2.5% 97.5%
Eastern Cape 1.4920 0.007775 0.00004145 1.477 1.508
Free State 1.2110 0.008173 0.00004347 1.196 1.228
Gauteng 0.5226 0.003961 0.00002114 0.515 0.530
KwaZulu-Natal 0.3155 0.006860 0.00003661 0.302 0.329
Limpopo 1.1990 0.003791 0.00002021 1.192 1.207
Mpumalanga 0.0008 0.025410 0.0001354 -0.052 0.047
North-West 2.7560 0.051330 0.0002733 2.660 2.861
Northern Cape 2.910 0.180500 0.0009529 2.606 3.309
Western Cape 1.6560 0.011500 0.00006131 1.634 1.679
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Table 7 shows the results from the MCMC simulation with nT = 50000 iterations. The SMR for
Mpumalanga is 0.0008 which is expected as the observed number of deaths is 0. The SMR would usually
be 0 in this province as the observed value is 0 but because the SMR has a prior distribution, this is not
the case although the approximation is very close. The Northern Cape, which has the lowest expected
number of deaths in the model, has the highest SMR value which is attributed to the low expected number
of deaths.

Table 8. The relative risk of the South African data for the ICAR model.

Province
Relative Risk 95% Credible
Mean Standard MC Error Interval

Deviation 2.5% 97.5%
Eastern Cape 1.0320 0.3113 0.002340 0.5526 1.7410
Free State 1.0110 0.3138 0.001669 0.5164 1.6990
Gauteng 0.9677 0.2756 0.002111 0.4833 1.5650
KwaZulu-Natal 0.9547 0.2808 0.002879 0.4382 1.5590
Limpopo 1.0110 0.3065 0.001695 0.5183 1.7010
Mpumalanga 0.9666 0.2894 0.002674 0.4478 1.5810
North-West 1.0710 0.3997 0.005106 0.5587 1.9510
Northern Cape 1.0520 0.3901 0.004268 0.5375 1.8940
Western Cape 1.0590 0.3582 0.004335 0.5547 1.8780

KwaZulu-Natal, Mpumalanga and Gauteng have the lowest relative risk of all the provinces and are all
below 0.97. This result is different from the SMR values as Mpumalanga had the lowest SMR value but
does not have the lowest relative risk value which is now KwaZulu-Natal. Although KwaZulu-Natal had
the second smallest SMR value. Western Cape, Northern Cape and North-West have high relative risk
values with the highest associated with North-West at 1.071. The SMR was the highest at the Northern
Cape which is now the third highest for the relative risk. All of the relative risks are not far away from
1 which is regarded as the “null risk value” and resulted in a low PP. It can thus be said that the risk of
contracting and dying from acute pericarditis in South Africa is low when using the ICAR model.

Table 9. The posterior exceedance probability of the South African data for the ICAR model.

Posterior Expected Exceedance Probability

Province Mean Standard MC
Deviation Error

Eastern Cape 0.4925 0.4999 0.002652
Free State 0.4690 0.4990 0.002522
Gauteng 0.4235 0.4941 0.003162
KwaZulu-Natal 0.4098 0.4918 0.003744
Limpopo 0.4701 0.4991 0.002553
Mpumalanga 0.4235 0.4941 0.003305
North-West 0.5131 0.4998 0.003337
Northern Cape 0.5025 0.5000 0.003108
Western Cape 0.5084 0.4999 0.003646

The PP is the posterior expected exceedance probability calculated as the proportion of relative risk
values which surpass the threshold of 1. It can be seen that the mean PP is below 0.52 for all provinces.
The highest values of the PP occur at Western Cape, Northern Cape and North-West. This is expected
as these 3 provinces have the highest SMR and relative risk values.
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Figure 5. The BGR plots of the PCAR model from top left: Deviance, Eastern Cape, Free State, Gauteng, KwaZulu-
Natal, Limpopo, Mpumalanga, North-West, Northern Cape and Western Cape.

3.2. Results for PCAR model
The PCAR model is given in Section 2.2 and is also based on the data in Table 1. The precision for the
PCAR prior distribution is assigned a gamma hyperprior distribution with parameters of α = 0.5 and
β = 0.0005, respectively, which are the parameters of the Jeffreys’ prior. The UH component is assigned a
zero mean Gaussian distribution with the hyperprior of the precision modelled using a gamma distribution
with parameters of α = 0.5 and β = 0.0005, respectively, which are again the parameters of the Jeffreys’
prior. These are the same parameters as the ICAR model in Section 3.1. Model assessment is performed
in the same way as the ICAR model in Section 3.1. The BGR plots for the deviance and the relative risk
in all provinces for the PCAR model are given in Figure 5. The model is run for nT = 50000 iterations
and four chains are used with four different sets of initial values, as with the ICAR model in Section 3.1.

The implementation of the PCAR model is based on the method by Spiegelhalter et al. [22]. The PCAR
model is implemented in WinBUGS® by firstly calculating mii which are the elements proportional to a
conditional covariance Si | Sj and are contained in the vector M . The elements mii are calculated using
(6) which is written in WinBUGS® as: M [i] < −1/e[i]. The next step is to calculate the cumulative sum of
the neighbours vector. The first element of the cumulative sum is 0 which is implemented as: csum[1] < −0
and the rest of the cumulative sum is calculated by starting at the second element using a loop as

for (i in 2 : (N + 1)) {
csum[i] < − sum(num[1 : (i− 1)])},

where num is the vector of the number of neighbours for each province. The next step is to determine
an index matrix, denoted by pick[], which will contain the index of the elements of the weight vector W
and will have N columns and number of rows equal to the number of elements in W . The pick[] matrix
is calculated such that the ith column contains a value of 1 in all of the J rows such that, csum[i] < J ≤
csum[i+ 1] and 0 otherwise. This is done such that, W at the elements of W [(csum[i] + 1) : csum[i+ 1]],
are the set of weights wij corresponding to the spatial correlation between provinces i and j. The code
for the pick[] matrix is

for(k in 1 : sumNumNeigh) {
for(i in 1 : N) {

pick[k, i] < − step(k − csum[i]− epsilon) ∗ step(csum[i+ 1]− k),
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where epsilon is equal to 0.0001.
The vector W can now be calculated using the inprod() function in WinBUGS®. The inprod() function

is used to calculate the inner product of two vectors. The inprod() function is used to determine which
province is associated with which element in W . This is done using the inner product of the kth row of
the pick[] matrix and the expected value, which is the denominator in Equation 5, given as

wij =


(

ei
ej

) 1
2

if regions i and j are adjacent

0 otherwise.

Thus the inprod() function results in 0 and 1 elements which will determine which provinces are
adjacent. The last part of the calculation of the vector W is to take the square root of the proportion of
the expected values of the adjacent provinces. The element k of the vector W is thus calculated as:

W [k] < −sqrt(e[adj[k]]/inprod(e[], pick[k, ])).

The PCAR prior can now be implemented using

S[1 : N ] ∼ car.proper(mu[],W [], adj[], num[],M [], omega, ρ),

where mu[] is assigned a prior distribution as: alpha ∼ dnorm(0, 0.0001) and omega is assigned a Jeffreys’
prior and ρ has a uniform distribution which is bounded in WinBUGS® as

rho.min < − min.bound(W [], adj[], num[],M [])

rho.max < − max.bound(W [], adj[], num[],M []).

Table 10. The statistics from the BGR of the PCAR model.

Iteration Unnormalised Normalised as plotted BGRof pooled mean within of pooled mean within
Range chains chain chains chain ratio

748–995 3.944 4.007 0.9579 0.9732 0.9842
996–1490 3.679 3.728 0.8935 0.9055 0.9868

1243–1985 4.028 4.046 0.9783 0.9827 0.9956
1491–2480 3.934 3.992 0.9554 0.9696 0.9854
1738–2975 3.814 3.826 0.9262 0.9292 0.9968
1986–3470 3.840 3.817 0.9326 0.9270 1.0060
2233–3965 3.794 3.768 0.9213 0.9150 1.0070
2481–4460 3.928 3.899 0.9538 0.9469 1.0070
2728–4955 3.928 3.918 0.9540 0.9515 1.0030
2976–5450 4.083 4.048 0.9915 0.9830 1.0090
3223–5945 4.063 4.028 0.9867 0.9782 1.0090
3471–6440 3.998 3.976 0.9708 0.9657 1.0050
3718–6935 4.048 4.046 0.9830 0.9825 1.0010
3966–7430 4.070 4.050 0.9883 0.9836 1.0050
4213–7925 4.033 4.038 0.9795 0.9806 0.9989
4461–8420 4.020 4.033 0.9762 0.9795 0.9966
4708–8915 4.012 4.035 0.9743 0.9799 0.9943
4956–9410 4.057 4.072 0.9852 0.9889 0.9963
5203–9905 4.063 4.069 0.9867 0.9882 0.9985

5451–10400 3.998 3.999 0.9709 0.9711 0.9998
5698–10895 4.001 3.996 0.9718 0.9703 1.0010
5946–11390 4.054 4.041 0.9844 0.9815 1.0030
6193–11885 4.063 4.060 0.9868 0.9859 1.0010
6441–12380 4.062 4.055 0.9866 0.9848 1.0020
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The PCAR model seems to show convergence slower than the ICAR model. The blue line is also closer
to the red line in the PCAR model and seems more stable than in the ICAR model.

Convergence for the PCAR model is only reached at iterations 1986-3470, which is slower than the ICAR
model which reached convergence at iterations 501-1000. From Table 10, it can be seen that stability is
reached at iterations 5946-11390 and thus the burn-in period is again set to NB = 12000. This is the same
burn-in period as the ICAR model in which stability was reached at iterations 5751-11500.

Table 11. An analysis of the burn-in period of the PCAR model.

Province Percentage

Eastern Cape 0.7048
Free State 0.6042
Gauteng 0.7695
KwaZulu-Natal 0.8801
Limpopo 0.5417
Mpumalanga 0.7727
North-West 1.2028
Northern Cape 1.0193
Western Cape 0.7466

As with the ICAR model, and keeping with the rule of thumb proposed by Woodward [25], the
proportion of the MC error to the standard deviation of the relative risk is calculated. All of these
proportions are well below 5% and thus, it can be concluded that the burn-in period of NB = 12000 is
sufficient, which is the same conclusion as in the ICAR model.

The PCAR model was run with a single chain of nT = 50000 iterations with a burn-in period of
NB = 12000. Trace plots show the model converged for the relative risks in all of the provinces.

Figure 6. The density kernels for the relative risk of the South African data for the PCAR model from top left:
Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, North-West, Northern Cape and
Western Cape.

The density kernels show a maximum of approximately 1 for the relative risks in all the provinces. All
of the provinces show a heavy tail towards the right.
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Table 12. The model diagnostics of the South African data for the PCAR model.

Statistic Mean
Standard MC 95% Credible
Deviation Error Interval

2.5% 97.5%
MAPE 1.461 0.399 0.002174 0.7778 2.333
MSPE 3.766 2.345 0.01171 1.111 9.889
pE 0.9449 0.1033 0.002736 0.6222 0.9989
pV 0.02744 0.07497 0.001854 2.37E-4 0.2663
QR60 1.379 0.7671 0.01596 1.039 2.967
pS 0.02768 0.07518 0.001969 2.174E-4 0.25
Saturated Deviance 10.51 1.868 0.01758 6.885 14.99
DIC 32.139
pD 1.441
D̂ 29.257
D 30.698

The MAPE is the same for both models, while the MSPE is higher in the ICAR model with a difference
of 0.008. The quantile ratio, QR60, is 1.379 for the PCAR model and indicates that there is relatively low
heterogeneity in the risk across the middle 60% of the provinces. The QR is higher in the PCAR model
than in the ICAR model with a difference of 0.058.

The amount of variation attributed to the unobserved spatial factors, pS , is 2.768% of the total variation
in the model. This compares to 1.667% in the ICAR model. The variation attributed to the unobserved
non-spatial factors, pV , is 2.744% of the total variation in the model which is higher than the 2.647% in
the ICAR model. The other 94.49% of the variation in the model is due to the expected values of the
provinces.

The DIC is calculated based on an additional nA = 20000 iterations, as in the ICAR model, and resulted
in a DIC value of 32.139. This is slightly higher than the ICAR model, which has a DIC value of 32.074.
The difference in the saturated deviance between the two models is 0.07 over nT = 50000 iterations, which
is not a significant difference.

Figure 7. The density kernels of the standardised Bayesian residuals of the South African data for the PCAR
model from top left: Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, North-West,
Northern Cape and Western Cape.
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Based on Figure 7, Eastern Cape, Free State and Limpopo appear to have centres closer to 0. KwaZulu-
Natal, Mpumalanga, North-West and Western Cape have centres which are further away from 0. An
approximate symmetry of the kernel densities is shown in Eastern Cape, Free State, North-West and
Western Cape which may indicate a good model fit for these provinces. The symmetry of the other
provinces appears to be skewed, with heavy tails occurring at Free State, KwaZulu-Natal, Limpopo and
Mpumalanga.

Table 13. The statistics from the Bayesian residuals of the South African data for the PCAR model.

Province
Bayesian Residual 95% Credible
Mean Standard MC error Interval

Deviation 2.5% 97.5%
Eastern Cape 0.9285 0.6277 0.004333 -0.5052 1.911
Free State 0.1575 0.2869 0.002026 -0.4725 0.5889
Gauteng -1.707 1.032 0.007437 -3.943 0.0962
KwaZulu-Natal -2.049 0.8697 0.007079 -3.925 -0.5027
Limpopo 0.3108 0.5125 0.003164 -0.8222 1.133
Mpumalanga -1.224 0.3787 0.002789 -2.05 -0.5658
North-West 1.819 0.4437 0.005242 0.776 2.396
Northern Cape 0.6269 0.1843 0.001834 0.254 0.8335
Western Cape 1.128 0.5761 0.004475 -0.1782 2.011

Table 14. The deviance residuals of the PCAR model.

Province
Deviance Residual 95% Credible
Mean Standard MC error Interval

Deviation 2.5% 97.5%
Eastern Cape 0.654 0.4386 0.002821 -0.2408 1.485
Free State 0.2029 0.2972 0.001971 -0.4014 0.773
Gauteng -0.9363 0.4918 0.003991 -1.886 0.04419
KwaZulu-Natal -1.336 0.431 0.003684 -2.158 -0.4744
Limpopo 0.2737 0.3891 0.002281 -0.4986 1.017
Mpumalanga -1.547 0.2388 0.001986 -2.017 -1.081
North-West 1.463 0.4145 0.004286 0.5604 2.195
Northern Cape 0.8957 0.2719 0.002036 0.3275 1.371
Western Cape 0.8055 0.4293 0.00291 -0.07843 1.616

There are small differences between the Bayesian residuals in the PCAR and ICAR models. The
biggest difference between the Bayesian residuals of the two models occurs at the Western Cape with
the Bayesian residuals having values of 1.082 and 1.128 for the ICAR and PCAR models, respectively.
This is a difference of 0.046, which is not a significant difference. The other provinces all have very small
differences between the two models.

As with the Bayesian residuals, the deviance residuals for both models are also very similar.
The model seems to fit the data adequately as the normal Q-Q plot shows that most of the points are

close to the straight line. There is a province at -1.5 which is the furthest away from the straight line
than all the other provinces and indicates the model does not fit well to this province. This is different
to the Q-Q plot of the ICAR model.
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Figure 8. Q-Q plot of the deviance residuals of the PCAR model.

Figure 9. The SMR of the South African data for the PCAR model.

The PCAR model produces the same figure as the ICAR model for the SMR. As in the ICAR model,
KwaZulu-Natal and Mpumalanga have the lowest SMR values. The highest values of the SMR are again
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North-West and the Northern Cape. The same conclusions can be drawn from the PCAR model that
were drawn from the ICAR model.

Table 15. The SMR of the South African data for the PCAR model.

Province
SMR 95% Credible
Mean Standard MC Error Interval

Deviation 2.5% 97.5%
Eastern Cape 1.4920 0.007741 0.00004084 1.4770 1.5080
Free State 1.2110 0.008138 0.00004283 1.1970 1.2280
Gauteng 0.5226 0.003944 0.00002082 0.5148 0.5302
KwaZulu-Natal 0.3155 0.006830 0.00003606 0.3019 0.3286
Limpopo 1.1990 0.003775 0.00001991 1.1920 1.2070
Mpumalanga 0.0007 0.025300 0.00013340 -0.0522 0.0467
North-West 2.7560 0.051110 0.00026930 2.6610 2.8600
Northern Cape 2.9100 0.179800 0.00094090 2.6070 3.3080
Western Cape 1.6560 0.011450 0.00006040 1.6340 1.6790

The SMR values in Table 15 give almost the same means as the ICAR model, with the only difference
in the SMR value of Mpumalanga. In the ICAR model, the mean SMR value at Mpumalanga is 0.0007581
whereas in the PCAR model the value is 0.0007134. The mean SMR value at Mpumalanga is slightly
higher than the PCAR model with a difference of only 0.0000447. Other slight differences do occur in
the standard deviations and MC errors between the two models. The standard deviations are slightly
different for the two models, with the PCAR model having a slightly lower standard deviation for all the
provinces. The MC error, as with the standard deviation, is slightly lower for the PCAR model than for
the ICAR model.

Figure 10. The relative risk of the South African data for the PCAR model.
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Table 16. The relative risk of the South African data for the PCAR model.

Province
Relative Risk 95% Credible
Mean Standard MC Error Interval

Deviation 2.5% 97.5%
Eastern Cape 1.0300 0.3130 0.002206 0.5434 1.712
Free State 1.0240 0.3522 0.002128 0.4984 1.805
Gauteng 0.9696 0.2720 0.002093 0.4994 1.560
KwaZulu-Natal 0.9632 0.2786 0.002452 0.4759 1.547
Limpopo 1.0130 0.3085 0.001671 0.5267 1.692
Mpumalanga 0.9757 0.3032 0.002342 0.4595 1.628
North-West 1.0830 0.4018 0.004833 0.5536 2.017
Northern Cape 1.0750 0.5235 0.005336 0.4881 2.136
Western Cape 1.0360 0.3204 0.002392 0.5457 1.760

The relative risk is slightly higher for the ICAR model than the PCAR model in provinces Gauteng
and the Western Cape. All the other provinces have a slightly lower relative risk in the ICAR model. The
highest difference is 0.023. The same can be concluded for the PCAR model as was concluded for the
ICAR model, in that the relative risk of contracting and dying from acute pericarditis in South Africa in
2014 has a relatively low risk.

The PP for the PCAR model shows that there is a slight difference in the PCAR model compared
to the ICAR model. The biggest difference occurs at the Western Cape where the ICAR model has a
slightly higher value than the PCAR model with the difference being 0.0141. There are three provinces
where the PP for the ICAR model is lower than the PP for the PCAR model, these occur at Gauteng,
KwaZulu-Natal and Mpumalanga. The standard deviation for the PP in the ICAR model is lower or equal
to the standard deviation for the PP in the PCAR model in 7 provinces. There are slight differences in
the standard deviations and MC errors in the two models.

The PP shows that there is no usual or unexpected clustering of the disease in the PCAR model when
the exceedance probability, P̂, of interest is set at 0.9.

The credible intervals for the PP are not given in Table 17 as all of the credible intervals have a lower
bound of 0 and an upper bound of 1.0.
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Figure 11. The posterior exceedance probability of the South African data for the PCAR model.

Table 17. The posterior exceedance probability of the South African data for the PCAR model.

Posterior Expected Exceedance Probability

Province Mean Standard MC ErrorDeviation
Eastern Cape 0.4887 0.4999 0.002814
Free State 0.4750 0.4994 0.002656
Gauteng 0.4257 0.4944 0.003089
KwaZulu-Natal 0.4146 0.4927 0.003332
Limpopo 0.4693 0.4991 0.002616
Mpumalanga 0.4332 0.4955 0.003117
North-West 0.5265 0.4993 0.003634
Northern Cape 0.4914 0.4999 0.002407
Western Cape 0.4943 0.5000 0.002807

3.3. Sensitivity analysis
In this Section an investigation will be done to see how sensitive the ICAR and PCAR models are, to
the various specifications for the hyperparameters. Vague priors and a conjugate subjective prior will
be used. A summary of the various priors are given in Table 18. The choice of which prior distribution
will give the best results is controversial and is often subjective. Four priors will be considered in this
section. The parameters of the conjugate prior distribution for the South African data are estimated from
previous studies dating back from 2010 until 2013 for which, the mean and variance are calculated for
each province and summed to yield the total mean and variance for 2010-2013. The parameters of the
prior are then estimated by using the mean and variance of a gamma distribution and solving for the two
parameters, α and β.
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Table 18. Summary of various priors.

ICAR PCAR
Prior 1† Gamma (0.5, 0.0005) Gamma (0.5, 0.0005)

Prior 2 Gamma (13.787, 0.766) Gamma (13.787, 0.766)

Prior 3 Gamma (0.5, 0.0001) Gamma (0.5, 0.0001)

Prior 4 Gamma (0.1, 0.00001) Gamma (0.1, 0.00001)

The DIC and pD of the various models are given in Table 19, the DIC has been used to assess the
sensitivity of the model to the choice of prior. From Table 19 it can be seen that the DIC values are very
similar for the various priors, the DIC for the subjective prior is slightly less than for the three vague
priors.

Table 19. DIC and pD of the various models.

ICAR PCAR
DIC pD DIC pD

Prior 1 32.074 1.45 32.139 1.441
Prior 2 31.913 1.835 31.919 1.846
Prior 3 32.070 1.318 32.117 1.275
Prior 4 32.221 1.694 32.287 1.749

4. Conclusion

The results from the ICAR and PCAR models showed that it was possible to use either model and still
obtain very similar results for the PCAR and ICAR models for acute pericarditis in South Africa in 2014.
Both the ICAR and PCAR models also showed that there was a low risk of contracting and dying from
acute pericarditis in all provinces in 2014. The ICAR model seems to be the more popular model among
researchers. It is thus recommended that the ICAR model is used. The work done in this paper illustrated
to the user how WinBUGS could be applied in Bayesian disease mapping.

We found the disadvantages of the PCAR as:

• The implementation of the PCAR model was more complex than the ICAR model.
• The WinBUGS® code for the PCAR model was clumsy.
• The PCAR model had a longer computation time than the ICAR model. This became evident when

the number of parameters and number of regions in the model increased. Some of the computations
may be done in RStudio® and the result of these computations may be inserted into WinBUGS® as
data as a temporary fix for the longer computation time.

• The PCAR model only worked for models with a small number of regions and a small number of
parameters.

• The choice of initial values in the PCAR model may lead to a trap error in WinBUGS®, thus the
specification of initial values in the PCAR model was more difficult than in the ICAR model.

• An incorrect specification of the bounds of the parameter ρ, the amount of spatial dependence, in
the PCAR model resulted in incorrect results.

The complexity of diseases made it difficult to model a contagious disease as the independence of the
data would be broken. The likelihood is based on the foundation that the data is independent thus
an investigation into the methods and techniques required to perform such an analysis would be very

†Prior used in the model in the data analysis
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interesting. Another issue, requiring further investigation, would be the analysis of a disease which results
in a higher number of deaths. The Poisson distribution is used when there are a small number of deaths
as a large number of deaths create a lot of overdispersion. It would be interesting to investigate which
distribution would fit the data well in that case. Defining a model which can handle multiple diseases at
once and a mapping technique to map the output of such a model.
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