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Abstract In this paper, a new two-parameter discrete logistic exponential distribution is proposed based on the survival
discretization approach. Some statistical properties are derived, and it is found that the proposed model can be used to discuss
several kinds of failure rates including unimodal, bathtub, and increasing-shaped. Moreover, it can be utilized effectively to
model under- and over-dispersed data. The distribution parameters are estimated using the maximum likelihood technique.
The behavior of maximum likelihood estimators is assessed utilizing a comprehensive simulation study. In the end, two real
data are analyzed to show the usefulness of the new discrete distribution.
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1. Introduction

Discrete probability distribution plays an important role in data analysis, inference, and forecasting processes. The
occurrence times, frequencies, and effects of many events in nature are analyzed by statistical modeling techniques.
The majority of natural or scientific phenomena have distinct characteristics. The discrete probability distributions
are used to model earthquakes, traffic accidents, landslide counts, and the number of people dying from the disease.
To reduce estimation errors in the modeling of large data sets, researchers have proposed more flexible distributions.
To introduce a new discrete distribution, there are two common techniques. The commonly used methods for
discretization are mixed-Poisson discrete distributions, infinite series, and survival discretization. A widespread
method to obtain discrete analogs of continuous random variables is that one based on the survival function of
the original distribution. The method of discretization by survival function was proposed by Nakagawa and Osaki
(1975). The standard approach of discretizing a continuous variable can be utilized to derive a distribution by
incorporating a grouping on the time axis. If the continuous random variable X has the survival function (sf),
S (x) = P (X ≥ x) and the times are clustered into unit intervals, then the discrete random variable of X will have
the probability mass function (pmf) indicated by dX = ⌊X⌋; which is the greatest integer less than or equal to x,
will have the pmf

P (x) = S (x)− S (x+ 1) ; x = 0, 1, 2, . . . . (1)
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Several continuous distributions have been discretized based on the survival discretization method for modeling
lifetime data some of them are summarized as follows; discrete Weibull distribution (Nakagawa & Osaki, 1975),
discrete Rayleigh distribution (Roy, 2004), discrete Pareto distribution (Krishna & Pundir, 2009), discrete Lindley
distribution (Gómez-Déniz & Calderı́n-Ojeda, 2011), discrete Burr type XII distribution (Para, 2014), discrete
inverse Weibull distribution (Para & Jan, 2017), discrete generalized Rayleigh distribution (Alamatsaz, Dey, Dey,
& Harandi, 2016), discrete Burr III distribution (AL-Huniti & AL-Dayian, 2012), discrete log-logistic distribution
(Para, 2016), discrete Gompertz distribution (Al-dayian, 2019), discrete alpha power inverse Lomax distribution
(Almetwally & Gamal, 2020), exponentiated discrete Lindley distribution (El-Morshedy, Eliwa & Nagy, 2020),
discrete Lindley with three parameters (Eliwa, Altun, Dawoody & El-Morshedy, 2020), discrete Burr-Hatke
distribution (El-Morshedy, Eliwa & Altun, 2020), discrete mixture distribution (Eliwa & El-Morshedy, 2021),
discrete inverted Topp-Leone distribution (Eldeeb, Ahsan-ul-Haq, & Babar, 2021), discrete Ramous-Louzada
distribution (Eldeeb, Ahsan-ul-Haq, & Eliwa, 2021) discrete type-II half-logistic exponential distribution (Ahsan-
ul-Haq, Babar, Hashmi, Alghamdi, & Afify, 2021) and discrete power-Ailamujia distribution (Alghamdi et al.,
2022). The primary goal of this paper is to apply the method of survival function to derive the discrete analog for
the logistic exponential (LE) model, which is a two-parameter lifetime distribution introduced by (Lan & Leemis,
2008) and logistic exponential is generalized logistic exponential was suggested by (Gleaton & Lynch, 2006). A
continuous random variable X is said to have LE distribution if its sf can be written as

S (x) =
1

1 + (eβx − 1)
α ; x > 0, α, β > 0. (2)

The only drawback of this distribution is that it does not yield a closed-form expression for the moments, which can
be computed numerically using software like Mathematica, R, or MATLAB. Recently, (Ali, Dey, Tahir & Mansoor,
2020) estimate the parameters considering ten frequent estimation methods namely, maximum likelihood, least
square, weighted least square, percentiles, maximum and minimum spacing distance, and a variant of the method
of the minimum distances for the LE parameters.

2. Discrete LE distribution

The discrete LE (DLE) distribution with two parameters is derived using the survival discretization approach based
on LE model by (Lan & Leemis, 2008). Thus, the pmf of the DLE model can be expressed as

P (x) =

(
eβ(x+1) − 1

)α −
(
eβx − 1

)α{
1 + (eβx − 1)

α} {
1 +

(
eβ(x+1) − 1

)α} ; x = 0, 1, 2, . . . , (3)

where α, β > 0. Figure 1 shows the behavior of the pmf of the DLE model using selected values for α and β.
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Figure 1. The pmf plots of DLE distribution.
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It is noted that the pmf can be used to model positively skewed data. Moreover, it has unimodal-shaped. The
corresponding cdf to equation (3) is given by

F (x) =

(
eβ(x+1) − 1

)α
1 +

(
eβ(x+1) − 1

)α ; x = 0, 1, 2, . . . (4)

Equation (4) can be formulated as

F (x) =

∞∑
k=0

k∑
j=0

Ck(−1)
j

(
k
j

)
e−βj(x+1),

where

Ck =
1

b0

[
ak − 1

b0

k∑
r=1

brCk−r

]
; k ≥ 1, C0 =

a0
b0

,

bk = ak + (−1)
k

(
α
k

)
and

ak =

∞∑
i=k

(−1)
i+k

(
α
i

)(
i
k

)
.

Note that for α = 1, we obtain geometric distributions. The hazard rate function (hrf) can be formulated as

h (x) =

(
eβ(x+1) − 1

)α −
(
eβx − 1

)α
1 + (eβx − 1)

α ; x = 0, 1, 2, . . . (5)

Figure 2 shows the behavior of the hrf of the DLE model using selected values for α and β.
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Figure 2. The hrf plots of DLE distribution.

It is noted that the new discrete distribution can be used to model several kinds of failure rates including
unimodal, bathtub, and increasing-shaped. The reversed hazard function is as follows

r∗ (x) =
P (x)

F (x)
=

(
eβ(x+1) − 1

)α −
(
eβx − 1

)α{
1 + (eβx − 1)

α} (
eβ(x+1) − 1

)α . (6)
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The second rate of failure can be defined as log (1− F (x)/1− F (x+ 1)) . Then, the second rate of failure of DLE
model is as follows

r∗∗ (x) = log

[
1 +

(
eβ(x+2) − 1

)α
1 +

(
eβ(x+1) − 1

)α
]
. (7)

The recurrence relation for generating the probabilities of DLE distribution is given by

P (x+ 1) =

{
1 +

(
eβx − 1

)α}{(
eβ(x+2) − 1

)α −
(
eβ(x+1) − 1

)α}{
1 +

(
eβ(x+2) − 1

)α}{(
eβ(x+1) − 1

)α − (eβx − 1)
α} P (x) . (8)

3. Probability generating function, moments, and related measures

The probability generating function (pgf) of the DLE distribution is given as follows

Gx (Z) =

∞∑
x=0

ZxP (X = x). (9)

Using equation (9), the pgf of the DLE distribution is obtained as

Gx (Z) = 1 + (Z − 1)

∞∑
x=1

Zx−1
[
1 +

(
eβx − 1

)α]−1

. (10)

The mean of the DLE model can be obtained by taking the first derivative of equation (10) and setting Z = 1,
yielding

µ = G
′
x (1) =

∞∑
x=1

[
1 +

(
eβx − 1

)α]−1

. (11)

Further derivatives (higher) of the generating function of the DLE model yield the corresponding raw moment
around the origin of the distribution. The variance of the DLE distribution is expressed as

δ =

∞∑
x=1

(2x− 1)
[
1 +

(
eβx − 1

)α]−1

−

( ∞∑
x=1

[
1 +

(
eβx − 1

)α]−1
)2

. (12)

Hence, the dispersion index (DI), coefficient of skewness (CS), and coefficient of kurtosis (CK) of the DLE model
can be derived from well-known relations. Table 1 lists the nature of the mean, variance, CS, CK, and DI of the
DLE distribution for varying values of the parameters.

Table 1: Some computational statistics of the DLE model based on β = 0.5.
Measure α = 0.5 α = 1 α = 1.5 α = 2 α = 2.5

Mean 2.75690 1.54149 1.20413 1.06911 0.96476
Variance 16.7986 3.91769 1.72052 0.99116 0.35678

DI 6.09330 2.54149 1.42884 0.92708 0.36981
Skewness 2.21527 2.06282 1.74427 1.38948 0.54109
Kurtosis 9.52595 9.25525 8.08973 6.83204 5.22843

According to Table 1, it is found that the proposed model can be used to model over and under dispersion data.
Furthermore, it can be utilized to describe asymmetric “positively skewed” data with leptokurtic-shaped.

Stat., Optim. Inf. Comput. Vol. 11, June 2023



AFRAH AL-BOSSLY ET. AL. 633

4. Maximum likelihood estimation (MLE)

Suppose x = (x1, x2, . . . , xn) be a random sample of size n from the DLE model. The log-likelihood function is
given by

logL =

n∑
i=1

logW (xi;α, β)−
n∑

i=1

log
{
1 +

(
eβxi − 1

)α}−
n∑

i=1

log
{
1 +

(
eβ(xi+1) − 1

)α}
, (13)

where W (xi;α, β) =
(
eβ(xi+1) − 1

)α −
(
eβxi − 1

)α
. Now, partially differentiate with respect to α and β, we get

∂logL

∂α
=

n∑
i=1

(
eβ(xi+1) − 1

)α
log
(
eβ(xi+1) − 1

)
−
(
eβxi − 1

)α
log
(
eβxi − 1

)(
eβ(xi+1) − 1

)α − (eβxi − 1)
α

−
n∑

i=1

(
eβxi − 1

)α
log
(
eβxi − 1

)
1 + (eβxi − 1)

α −
n∑

i=1

(
eβ(xi+1) − 1

)α
log
(
eβ(xi+1) − 1

)
1 +

(
eβ(xi+1) − 1

)α ,

and

∂logL

∂β
=

n∑
i=1

α (xi + 1)
(
eβ(xi+1) − 1

)α−1
eβ(xi+1) − αxi

(
eβxi − 1

)α−1
eβxi(

eβ(xi+1) − 1
)α − (eβxi − 1)

α

−
n∑

i=1

αxi

(
eβxi − 1

)α−1
eβxi

1 + (eβxi − 1)
α −

n∑
i=1

α (xi + 1)
(
eβ(xi+1) − 1

)α−1
eβ(xi+1)

1 +
(
eβ(xi+1) − 1

)α .

The exact solution of these non-linear equations is not possible, so we will solve these using optimization
approaches like Newton-Raphson.

5. Simulation

The current section is based on the simulation study to evaluate the behavior of MLEs. The estimates
were calculated using different parameter combinations (β = 0.5, α = 0.5), (β = 0.5, α = 1.5), (β =
0.5, α = 3.0), (β = 1.0, α = 0.5), (β = 1.0, α = 1.5) and (β = 1.0, α = 3.0) for various sample sizes
(10, 30, 60, 100, 200, 300). Then, N = 10, 000 samples from the DLE model using MLE derived in the previous
subsection. The indices such as to estimate values, mean square errors (MSEs), and 95% convergence probabilities
(CP) were generated. All numerical computations are performed using R software. The simulation results are
presented in Table 2 and Table 3.
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Table 2: MLEs, MSEs and CP for DLE model.
n Estimates MSE CP95%

β α β α β α

Case 1: β = 0.5 and α = 0.5

10 1.5829 0.6088 8.0982 0.3234 0.8681 0.8624
30 0.9234 0.5118 2.5686 0.0472 0.9012 0.9212
60 0.6696 0.4988 0.7694 0.0236 0.9197 0.9537
100 0.5788 0.4968 0.2527 0.0138 0.9323 0.9616
200 0.5226 0.4987 0.0183 0.0065 0.9450 0.9553
300 0.5142 0.4985 0.0067 0.0041 0.9501 0.9537

Case 2: β = 0.5 and α = 1.5

10 0.6167 1.8573 0.7300 2.2595 0.9782 0.9783
30 0.5135 1.5746 0.0183 0.1301 0.9403 0.9596
60 0.5062 1.5350 0.0035 0.0575 0.9484 0.9513
100 0.5038 1.5218 0.0019 0.0339 0.9497 0.9474
200 0.5023 1.5103 0.0010 0.0164 0.9470 0.9481
300 0.5014 1.5063 0.0006 0.0104 0.9515 0.9533

Case 3: β = 0.5 and α = 3.0

10 0.5104 4.6922 0.0079 2.3587 0.8740 0.9753
30 0.5025 3.2048 0.0020 0.8533 0.9284 0.9612
60 0.5015 3.0848 0.0010 0.1824 0.9424 0.9581
100 0.5010 3.0500 0.0006 0.1014 0.9461 0.9534
200 0.5007 3.0253 0.0003 0.0485 0.9471 0.9533
300 0.5005 3.0145 0.0002 0.0316 0.9502 0.9520

Table 3: MLEs, MSEs and CP for DLE model.
n Estimates MSE CP95%

β α β α β α

Case 4: β = 1.0 and α = 0.5

10 2.5070 0.8765 13.462 2.3637 0.7463 0.8413
30 1.9730 0.5516 7.4242 0.0904 0.8474 0.8511
60 1.6086 0.5185 4.0927 0.0500 0.8723 0.8844
100 1.4237 0.5014 2.4798 0.0331 0.8941 0.9102
200 1.1876 0.4942 0.7693 0.0179 0.9134 0.9440
300 1.1074 0.4938 0.3254 0.0116 0.9293 0.9617

Case 5: β = 1.0 and α = 1.5

10 1.8790 6.5630 8.9570 57.964 0.7211 0.8784
30 1.2680 2.6400 2.1190 11.980 0.8140 0.9767
60 1.1150 1.7960 0.5860 2.5330 0.8912 0.9863
100 1.0472 1.5885 0.1561 0.3025 0.9073 0.9814
200 1.0168 1.5357 0.0168 0.0848 0.9284 0.9604
300 1.0091 1.5239 0.0089 0.0513 0.9403 0.9591

Case 6: β = 1.0 and α = 3.0

10 0.9397 11.118 1.3118 70.971 0.9283 0.9793
30 1.2120 9.2410 2.6540 57.466 0.7784 0.9524
60 1.1310 7.9390 1.4050 45.001 0.5861 0.9530
100 1.0443 6.5806 0.3943 34.547 0.5752 0.9542
200 1.0134 4.7041 0.0488 17.616 0.7563 0.9584
300 1.0022 4.2149 0.0208 12.256 0.8544 0.9433
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As we see from the simulation results, the MSE tends to zero when sample size grows. Thus, the maximum
likelihood approach can be used effectively in estimating the model parameters.

6. Applications

In this section, DLE model is fitted on real data sets and compared with discrete Ryleigh (DR), discrete Burr
II (DBu-II), discrete Lindley (DLi), discrete Log-Logistic (DLogL), discrete Bilal (DBl), geometric (Geo), and
Poisson (Poi) distributions.
The model parameters are estimated using the maximum likelihood method. For model comparison, we have
considered the log-likelihood and the likelihood-based statistics measures, Akaike information criterion (AIC),
corrected AIC (CAIC), and the Bayesian information criterion (BIC). We also consider the Kolmogorov-Smirnov
(KS) and Anderson-Darling (AD) test for the selection of best-fitted probability distribution. A distribution with the
maximum log-likelihood and lowest AIC, and BIC is said to be a better fit for the data. The fitdistrplus R package
is used for all computations. Further, the fits of these distributions are presented in the form of a comparative
density plot and plot of the distribution functions.
Data Set I: The first dataset represents the counts of cysts of kidneys using steroids. This data set originated from
a study by Chan et al. (2009). Some nonparametric plots including relative frequencies, box, violin, Q-Q, strip and
scatter | scores plots for this data are presented in Figure 3. The MLEs along with model comparison measures of
all fitted distributions are listed in Table 4. We also plot the estimated pmfs on the observed dataset in Figure 4.
Data Set II: The second dataset represents the number of European corn borer larvae Pyrusta in the field
(Bodhisuwan & Sangpoom, 2017). It was an experiment conducted randomly on eight hills in 15 replications,
and the experimenter counted the number of borers per hill of corn. The nonparametric plots for this data are
reported in Figure 5. The MLEs along with model comparison measures of all fitted distributions are reported in
Table 5. We also plot the estimated pmfs on the observed dataset in Figure 6.
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Figure 3. Some nonparametric plots for dataset I.
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Table 4: The MLEs and goodness-of-fit measures for dataset I.
X Observed DLE Geo DR DBu-II DLi DLogL DBl Poi
0 65 62.84 45.98 11.00 64.74 40.25 63.18 32.08 27.42
1 14 13.13 26.76 26.83 19.18 29.83 20.09 37.10 38.08
2 10 9.49 15.57 29.55 8.48 18.36 8.64 21.66 26.47
3 6 7.18 9.06 22.23 4.63 10.35 4.66 10.63 12.26
4 4 5.32 5.28 12.49 2.86 5.53 2.87 4.84 4.26
5 2 3.82 3.07 5.42 1.92 2.86 1.92 2.12 1.18
6 2 2.67 1.79 1.85 1.36 1.44 1.37 0.91 0.27
7 2 1.83 1.04 0.52 1.01 0.71 1.02 0.38 0.05
8 1 1.24 0.61 0.11 0.78 0.35 0.79 0.16 0.01
9 1 0.83 0.35 0.02 0.61 0.17 0.62 0.07 0
10 1 0.55 0.21 0 0.49 0.08 0.50 0.03 0
11 2 1.1 0.28 0 3.94 0.07 4.34 0.02 0

Total 110 110 110 110 110 110 110 110 110

α
MLE
MSE

0.358
0.162

0.582
0.162

0.900
0.009

0.278
0.045

0.436
0.026

0.780
0.136

0.643
0.020

1.390
0.112

β
MLE
MSE

1.172
0.551

−
−

−
−

1.053
0.167

−
−

1.208
0.159

−
−

−
−

-L 167.546 178.821 277.821 171.139 189.101 171.717 207.436 246.211
AIC 339.092 359.512 557.652 346.278 380.223 347.434 416.871 494.432

CAIC 339.204 359.601 557.601 346.391 380.301 347.546 416.908 494.501
BIC 344.493 362.203 560.301 351.679 382.924 352.835 419.572 497.124

HQIC 341.282 360.613 558.711 348.469 381.304 349.625 417.967 495.521
χ2 0.771 22.840 321.112 2.592 43.481 2.941 61.366 294.1

D.F 3 4 4 2 4 2 3 4
P.Value 0.856 < 0.001 < 0.001 0.274 < 0.001 0.229 < 0.001 < 0.001
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Figure 4. The fitted pmfs of tested distributions for data set I.
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Figure 5. Some nonparametric plots for dataset II.

Table 5: The MLEs and goodness-of-fit measures for dataset II.
X Observed DLE Geo DR DBu-II DLi DLogL DBl Poi
0 43 43.53 48.32 15.92 41.03 41.91 43.83 32.74 27.23
1 35 32.46 28.86 36.17 32.07 32.07 39.61 39.59 40.38
2 17 19.19 17.24 34.58 17.78 20.39 15.62 24.28 29.95
3 11 10.84 10.29 21.03 8.43 11.87 7.21 12.50 14.81
4 5 6.07 6.15 8.89 4.48 6.56 3.91 5.97 5.49
5 4 3.41 3.67 2.70 2.63 3.50 2.38 2.74 1.63
6 1 1.93 2.19 0.60 1.66 1.82 1.56 1.23 0.40
7 2 1.09 1.31 0.09 1.12 0.93 1.09 0.54 0.09
8 2 1.48 1.97 0.02 3.93 0.95 4.79 0.41 0.02

Total 120 120 120 120 120 120 120 120 120

α
MLE
MSE

1.155
0.132

0.597
0.028

0.867
0.012

1.401
0.121

0.451
0.025

0.519
0.051

0.657
0.019

1.483
0.025

β
MLE
MSE

0.479
0.047

−
−

−
−

1.943
0.188

−
−

2.358
0.366

−
−

−
−

-L 200.167 200.882 235.232 202.630 200.641 204.293 204.675 219.192
AIC 404.335 403.751 472.451 409.261 403.290 412.587 411.351 440.384

CAIC 404.437 403.793 472.490 409.363 403.323 412.689 411.384 440.413
BIC 409.909 406.540 475.243 414.836 406.071 418.162 414.138 443.177

HQIC 406.599 404.891 473.597 411.525 404.421 414.851 412.483 441.512
χ2 0.796 2.162 70.688 2.246 1.744 4.649 6.998 38.478

D.F 3 4 4 3 4 3 3 4
P.Value 0.850 0.706 < 0.001 0.523 0.783 0.199 0.072 < 0.001

According to Tables 3 and 4, we can say that the DLE model is the best distribution among all tested models for
analyzing data sets I and II. Figures 4 and 6 support our empirical results which have been mentioned in Tables 3
and 4.
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Figure 6. The fitted pmfs of tested distributions for data set II.

7. Conclusion

In this study, a discrete analogue of the continuous logistic exponential distribution is proposed. The resultant
probability distribution is called discrete logistic exponential (DLE) distribution. Some statistical properties have
been derived. The parameters of DLE model have been estimated using the maximum likelihood approach, and the
behavior of these estimates has been assessed via a Monte-Carlo simulation study. Two datasets were considered
to show the efficiency of the proposed distribution. The proposed distribution provides the best fit as compared to
competitive distributions. We hope the DLE model will be an interesting alternative probability to analyze count
observations.
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