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Abstract This paper handles non-parametric estimation of a conditional cumulative distribution function (CCDF). Using
a recursive approach, we set forward a multivariate recursive estimator defined by stochastic approximation algorithm. Our
basic objective is to investigate the statistical inference of our estimator and compare it with that of non-recursive Nadaraya-
Watson’s estimator. From this perspective, we first derive the asymptotic properties of the proposed estimator which highly
depend on the choice of two parameters, the stepsize (γn) as well as the bandwidth (hn). The second generation plug-
in method, a method of bandwidth selection minimizing the Mean Weighted Integrated Squared Error (MWISE) of the
estimator in reference, entails the optimal choice of the bandwidth and therefore maintains an appropriate choice of the
stepsize parameter. Basically, we demonstrate that, under some conditions, the Mean Squared Error (MSE) of the proposed
estimator can be smaller than the one of Nadaraya Watson’s estimator. We corroborate our theoretical results through
simulation studies and two real dataset applications, namely the Insurance Company Benchmark (COIL 2000) dataset as
well as the French Hospital Data of COVID-19 epidemic.
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1. Introduction

Assume that we observe independent identically distributed vectors (X1, Y1), ..., (Xn, Yn) of a bivariate random
variable (X,Y ) with common cumulative distribution function π(x, y) where one is interested in modeling the
functional dependence of the observation Y on the covariable X by the conditional cumulative distribution function
(CCDF) of Y given X = x, denoted by for all real y and x

π(y|x) := P [Y ⩽ y|X = x] .

We shall also assume that the bivariate random variable (X,Y ) (resp. the random variable X) has a density function
f(X,Y ) (resp. fX ) with respect to the Lebesgue measure. Recall that for all real y and x such that fX (x) 6= 0, the
CCDF of Y given X = x is expressed by

π(y|x) =
∫
R 1{u⩽y}f(X,Y )(x, u)du

fX(x)
.
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In a variety of non-parametric statistical problems, the estimation of a CCDF is a key aspect of inference.
Remember that the CCDF has the merit of characterizing the conditional law of the considered bivariate random
variables. Notably, the CCDF is often useful in reliability or survival analysis.
More specifically, the conditional survival function S (y|x) defined by, for all real y and x, S (y|x) := 1− π(y|x)
is of extreme interest, either by itself, or by its independence with the conditional hazard function h (y|x) indicated

by, for all real y and x, h (y|x) := f (y|x)
S (y|x)

where f (y|x) denotes the conditional density of Y given X = x.

Furthermore, conditional quantiles can also be deduced from the CCDF π by (pseudo)-inversion given x of the
function y → π(y|x) and the same procedure may be applied to the estimator of CCDF to find conditional quantile
estimators.
Several non-parametric estimators have been elaborated to estimate the CCDF. Many of them rely initially on
estimating the

∫
R 1{u⩽y}f(X,Y )(x,u)du. The conditional cumulative distribution function was first extensively

explored by [41] using a nearest-neighbor-type conditional empirical process. Subsequently, [17] motivated by
the problem of setting prediction intervals in time series analysis, developed a new non-parametric method for
CCDF estimation resting on an adjusted form of NadarayaWatson estimator. Afterwards, [28] established uniform
asymptotic certainty bands for the CCDF using the same strategy.
For a general non-parametric regression model, [22] set up two estimators using a kernel approch, where the
distribution of the error given the covariate is modeled by a CCDF provided by P (ϵ ≤ y|X = x).
On a given compact set, [9] constructed a minimax estimator of the CCDF. Thereafter, [43] built up a new estimator
of CCDF investing a method of pre-adjusting the original observations non-parametrically. Recently, [8] introduced
a new method to settle CCDF estimation problem based on local polynomial technique.
Many functional estimations are grounded on estimating the CCDF see e.g [23], [24] and [2]. The CCDF is involved
in a wide range of applications, for instance, in medicine see [16], econometrics see [25] or machine learning
domain see the recent work of [11].
In a broader context, extensive state of art works including various non-parametric approaches tackled the
conditional estimation. We can state for example [14], [45], [5, 6], [18, 19] and [31]. For recent references
see [4], [12], [1], [10] and [40].

Over the past decade, data streams have become an increasingly important area of research. Some of the most
common data streams include Internet packet data, Twitter activity, Facebook newsfeed, credit card transactions
and more recently COVID-19 epidemic data. In these situations, the data arrives regularly so that it is impossible to
store it in a traditional database. In such a context, it is very interesting to build a recursive multivariate conditional
cumulative distribution estimator that does not need to store all the data in memory and that can be easily updated to
handle the online data. The basic target of this paper is to provide a non-parametric strategy to recursively estimate
the CCDF.

The paper is organized as follows. In section 2 we introduce our method for the estimation procedure of CCDF.
The main results of our recursive estimator are displayed in section 3. Section 4 exhibits the asymptotic properties
of non-recursive Nadaraya-Watson’s estimator. A second generation plug-in scheme for constructing data-driven
bandwidth selection procedures is elaborated in section 5. Section 6 highlights the performances of our estimator
on simulated data as well as a real dataset. Finally, the conclusion is drawn in section 7.

2. Preliminaries

Let (X,Y ) ∈ Rd ×Rq and (X1, Y1), ..., (Xn, Yn) be independent random vectors identically distributed as (X,Y )
with joint density function f(X,Y ) and let fX denote the probability density of X .
In this paper, our central focus is upon the problem of estimating the CCDF of Y given X = x provided by

π : Rq ×Rd −→ R

(y|x) 7−→ P[Y ⩽ y|X = x] =

∫
Rq 1{u⩽y}f(X,Y )(x, u)du

fX(x)
.
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Here, we introduce our recursive estimator πn specified by

πn(y|x) =


an(x, y)

fn(x)
if fn(x) 6= 0

0 otherwise
, (1)

with

an(x, y) = Πn

n∑
k=1

Π−1
k γk χk(y)h

−d
k K

(
x−Xk

hk

)
and fn(x) = Πn

n∑
k=1

Π−1
k γk h

−d
k K

(
x−Xk

hk

)
, where

• K is a multivariate kernel satisfying
∫
Rd

K(t)dt = 1.

• χ is a multivariate indicator function identified by χk : Rq −→ R, y 7−→ 1{Yk⩽y}.

• (hn) is the bandwidth: a sequence of positive real numbers that tends to zero.

• (γn) is the stepsize: a positive sequence of real numbers decreasing towards zero and Πn =
n∏

j=1

(1− γj).

Our main purpose is to examine the asymptotic properties of the proposed multivariate estimator of the CCDF
and to corroborate its performances. We shall compare our estimator to the generalized kernel CCDF estimator of
Nadaraya-Watson [29, 44] π̃n expressed by

π̃n(y|x) =


ãn(x, y)

f̃n(x)
if f̃n(x) 6= 0

0 otherwise

, (2)

with

ãn(x, y) =
1

nhd
n

n∑
k=1

χk(y)K

(
x−Xk

hn

)
and f̃n(x) =

1

nhd
n

n∑
k=1

K

(
x−Xk

hn

)
.

The recursive estimator was constructed based on dint of stochastic approximation method. Indeed, incorporating
stochastic approximation algorithms in the context of non-parametric statistics dates back to the papers of [33]
and [21]. Their research works have been extended in several directions. We refer the reader to [7], [29], [35]
and [13].
Subsequently, in the paper [26], the multidimensional case was investigated in order to estimate a multivariate
probability density using the estimation by confidence intervals. More recently, [39] developed a new recursive
kernel estimator for regression function estimation. Additionally, [38] reused stochastic approximation methods to
enhance the qualities of the univariate distribution function estimator and lately [36] elaborated the multivariate one.
Following the same recursive approach, we intend to establish a multivariate conditional cumulative distribution
function estimator.
To build up a stochastic algorithm, which approaches the function

a : (x, y) 7−→
∫
Rq

1{u⩽y}f(X,Y )(x, u)du

at a given couple of vectors (x, y), we define an algorithm of search of the zero function ϕ : z 7−→ a(x, y)− z and
we set:

(i) a0(x, y) ∈ R (ii) for all n ≥ 1, an(x, y) = an−1(x, y) + γnUn(x, y),

where Un(x, y) corresponds to an observation of the function ϕ at the point an−1(x, y).
Note that to define Un(x, y), we adopt the approach of [32] and [42].
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By considering Un(x, y) = χn(y)h
−d
n K

(
x−Xn

hn

)
− an−1(x, y), the stochastic approximation algorithm that is

devoted to estimate recursively the function a at a couple of vectors (x, y) can be stated as follows :

an(x, y) = (1− γn)an−1(x, y) + γn χn(y)h
−d
n K

(
x−Xn

hn

)
. (3)

Throughout this paper, we consider that a0(x, y) = 0. Therefore, by recurrence, we get

an(x, y) = Πn

n∑
k=1

Π−1
k γk χk(y)h

−d
k K

(
x−Xk

hk

)
. (4)

Within this framework, we use the recursive multivariate probability density estimator of the density function fX
noted fn and defined in [26]. It was constructed with the same tools of stochastic approximation algorithm and
under the condition that f0(x) = 0, we have:

fn(x) = Πn

n∑
k=1

Π−1
k γk h

−d
k K

(
x−Xk

hk

)
. (5)

The following notations are highly useful as they are invested throughout the whole paper.

∗ ∀ i, j ∈ {1, . . . , d},

a
(1)
i (., y) :=

∂a

∂xi
(., y), π

(1)
i (y|.) := ∂π

∂xi
(y|.), f

(1)
Xi

(.) :=
∂fX
∂xi

(.),

a
(2)
ij (., y) :=

∂2a

∂xi∂xj
(., y), π

(2)
ij (y|.) := ∂2π

∂xi∂xj
(y|.), f

(2)
Xij

(.) :=
∂2fX
∂xi∂xj

(.),

µi(K) :=

∫
Rd

z2i K(z)dz.

∗ ξ := lim
n→+∞

(nγn)
−1.

∗ R(K) :=

∫
Rd

K2 (z) dz.

∗ I1 :=

∫
Rd+q

(
d∑

j=1

µj(K)
[
π
(2)
jj (y|x)fX(x) + 2π

(1)
j (y|x)f (1)

Xj
(x)
])2

fX,Y (x, y)dxdy.

∗ I2 :=

∫
Rd+q

π(y|x) (1− π(y|x)) fX(x)fX,Y (x, y)dxdy.

∗ ∀x ∈ Rd, y ∈ Rq,

Zn(x, y) := h−d
n χn(y)K

(
x−Xn

hn

)
and Wn(x) := h−d

n K

(
x−Xn

hn

)
.

In the sequel, let us present the following definition of class of regularly varying sequences introduced by Galambos
and Seneta in [15].

Definition 1
Let (vn) be a nonrandom positive sequence and γ ∈ R. We say that

(vn) ∈ GS(γ) if lim
n→+∞

n

[
1− vn−1

vn

]
= γ.
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In what follows, we introduce a lemma that will be widely invested throughout the study of our estimator πn. It is
worth noting that the proof of this lemma was recorded in [26].

Lemma 1
Let (vn) ∈ GS(v∗), (γn) ∈ GS(−α) and let m > 0 such that m− v∗ξ > 0. Then,

lim
n→+∞

vnΠ
m
n

n∑
k=1

Π−m
k

γk
vk

=
1

m− v∗ξ
.

Moreover, for any positive sequence (αn) such that lim
n→+∞

αn = 0 and all C ∈ R,

lim
n→+∞

vnΠ
m
n

[
n∑

k=1

Π−m
k

γk
vk

αk + C

]
= 0.

In order to introduce our theoretical main results, we need the following technical assumptions.

Assumptions:

(A1) K : Rd −→ R is a continuous bounded function satisfying:∫
Rd

K(u)du = 1 , ∀j ∈ {1, . . . , d},
∫
R
uj K(u)duj = 0 and

∫
Rd

u2
j |K(u)|du < ∞.

(A2) (i) (γn) ∈ GS(−α), with α ∈
(
1
2 , 1
]
.

(ii) (hn) ∈ GS(−a), with a ∈ (0, 1].

(iii) lim
n→+∞

(nγn) ∈
(
min{2a, α−ad

2 },∞
]
.

(A3) (i) fX is bounded, twice differentiable and for all i, j ∈ {1, . . . , d}, f (2)
Xij

is bounded.

(ii) a is bounded, twice differentiable with respect to x and for all i, j ∈ {1, . . . , d}, a(2)ij is bounded.

(iii) f(X,Y ) is bounded and twice continuously differentiable with respect to x.

Discussion of the assumptions:
All these assumptions are standard and are generally assumed within the context of non-parametric estimation.
Classical assumption (A1) provides regularity conditions on the kernel density estimator introduced by [34]
and [30]. It is widely used in the non-parametric framework for the functional estimation. Assumption (A2) on
the stepsize and the bandwidth was used in the recursive framework for the estimation of the density function
in [26], [37] and for the distribution function estimation in [38]. Furthermore, assumption (A2)(iii) on the limit
of (nγn) as n goes to infinity is frequent in the framework of stochastic approximation algorithms. It implies, in
particular, that the limit of (nγn)−1 is finite. Moreover, assumptions in (A3) are technical conditions imposed in
order to ensure the reliability of proofs. Those conditions on the density of the couple (X,Y ) were applied in the
non-recursive framework for the estimation of the regression function [29,44] and in the recursive framework [27],
[39].
In this section, we need to recall the following proposition which introduces the bias and the variance of fn. The
proof of this result was depicted in [26].
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Bias and variance of fn:

Proposition 1
Under assumptions (A1)− (A3), and assuming that, for all i, j ∈ {1, . . . , d}, f (2)

Xij
is continuous at x, we obtain

1. If a ∈
(
0, α

d+4

]
, then

E[fn(x)]− fX(x) =
1

2(1− 2aξ)

(
d∑

j=1

µj(K)fX
(2)
jj (x)

)
h2
n + o

(
h2
n

)
. (6)

If a ∈
(

α
d+4 , 1

)
, then

E[fn(x)]− fX(x) = o

(√
γnh

−d
n

)
. (7)

2. If a ∈
(
0, α

d+4

)
, then

V ar[fn(x)] = o
(
h4
n

)
. (8)

If a ∈
[

α
d+4 , 1

)
, then

V ar[fn(x)] =
1

2− (α− ad)ξ
fX(x)R(K)

γn
hd
n

+ o
(
γnh

−d
n

)
. (9)

3. Main results

In order to explore the asymptotic properties of our estimator πn, we need first to introduce the following
proposition which provides the bias and the variance of an.

3.1. Bias and variance of an:

Proposition 2
Under assumptions (A1)− (A3), and assuming that, for all i, j ∈ {1, . . . , d}, a(2)ij is continuous at x, we obtain

1. If a ∈
(
0, α

d+4

]
, then

E[an(x, y)]− a(x, y) =
1

2(1− 2aξ)

(
d∑

j=1

µj(K)a
(2)
jj (x, y)

)
h2
n + o

(
h2
n

)
. (10)

If a ∈
(

α
d+4 , 1

)
, then

E[an(x, y)]− a(x, y) = o

(√
γnh

−d
n

)
. (11)

2. If a ∈
(
0, α

d+4

)
, then

V ar[an(x, y)] = o
(
h4
n

)
. (12)

If a ∈
[

α
d+4 , 1

)
, then

V ar[an(x, y)] =
1

2− (α− ad)ξ
a(x, y)R(K)

γn
hd
n

+ o
(
γnh

−d
n

)
. (13)
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Proof
We have

E[an(x, y)]− a(x, y) = Πn

n∑
k=1

Π−1
k γk(E[Zk(x, y)]− a(x, y)) + Πn[a0(x, y)− a(x, y)].

Relying upon the assumption (A1), we have
∫
Rd

K(z)dz = 1. Hence, it follows that

E[Zk(x, y)]− a(x, y) =

∫
Rd

h−d
k K

(
x− t

hk

)
E[χk(y)|X = t]fX(t)dt−

∫
Rd

K (t) a(x, y)dt

=

∫
Rd

h−d
k K

(
x− t

hk

)
a(t, y)dt−

∫
Rd

K (t) a(x, y)dt

=

∫
Rd

K (z) [a(x− zhk, y)− a(x, y)] dz.

Moreover, Taylor’s expansion with integral remainder ensures that

E[Zk(x, y)]− a(x, y) =

∫
Rd

K(z)

[
d∑

i=1

∂a

∂xi
(x, y)zihk +

∫ 1

0

(1− t)

d∑
i,j=1

∂2a

∂xi∂xj
(x− tzhk, y)zizjh

2
kdt

]
dz

=
h2
k

2

d∑
j=1

µj(K)a
(2)
jj (x, y) + h2

kηk(x).

where, ηk(x) :=
d∑

i,j=1

∫
Rd

∫ 1

0

(1− t)
[
a
(2)
ij (x− tzhk, y)− a

(2)
ij (x, y)

]
zizj K(z)dtdz.

Hence,

E[an(x, y)]− a(x, y) =
1

2

d∑
j=1

µj(K)a
(2)
jj (x, y)Πn

n∑
k=1

Π−1
k γkh

2
k +Πn

n∑
k=1

Π−1
k γkh

2
kηk(x)

+ Πn[a0(x, y)− a(x, y)].

Since a
(2)
ij is bounded and continuous at x for all i, j ∈ {1, . . . , d}, we obtain lim

k→+∞
ηk(x) = 0.

− For the case a ⩽ α/(d+ 4), we have lim
n→+∞

(nγn) > 2a and then 1− 2aξ > 0. The application of lemma 1

enables us to write

E[an(x, y)]− a(x, y) =
1

2(1− 2aξ)

(
d∑

j=1

µj(K)a
(2)
jj (x, y)

)
h2
n + o

(
h2
n

)
.

− For the case a > α/(d+ 4), we have lim
n→+∞

(nγn) >
α−a
2 which yields that h2

n = o
(√

γnh
−d
n

)
. Then, the use

of lemma 1 leads to

E[an(x, y)]− a(x, y) = o

(√
γnh

−d
n

)
.

Therefore, the claimed result (11) is established.
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For the variance, and owing to the independence of Xi, for i = 1, . . . , n, it’s obvious that

V ar[an(x, y)] = Π2
n

n∑
k=1

Π−2
k γ2

kV ar[Zk(x, y)]

= Π2
n

n∑
k=1

Π−2
k γ2

k

(
E[Z2

k(x, y)]− E[Zk(x, y)]
2
)

= Π2
n

n∑
k=1

Π−2
k γ2

k

(∫
Rd

h−d
k K2 (z) a(x− zhk, y)dz −

(∫
Rd

K (z) a(x− zhk, y)dz

)2
)
.

As matter of fact, the Taylor’s expansions theorem ensures that

V ar[an(x, y)] = Π2
n

n∑
k=1

Π−2
k γ2

kh
−d
k

[
a(x, y)

∫
Rd

K2 (z) dz + νk(x)− hd
kηk(x)

]
,

where,

νk(x) =

∫
Rd

K2 (z) [a(x− zhk, y)− a(x, y)]dz and ηk(x) =

(∫
Rd

K (z) a(x− zhk, y)dz

)2

.

− For the case a ⩾ α/(d+ 4), we have lim
n→+∞

(nγn) >
α−ad

2 and then 1− 2aξ > 0. Since a is bounded and

continuous at x, we have lim
k→+∞

νk(x) = 0 and lim
k→+∞

hkηk(x) = 0. Therefore, the application of lemma 1 ensures

that

V ar[an(x, y)] = Π2
n

n∑
k=1

Π−2
k γ2

kh
−d
k

[
a(x, y)R(K) + νk(x)− hd

kηk(x)
]

=
1

2− (α− ad)ξ

γn
hd
n

[a(x, y)R(K) + o (1)].

Thus, this leads to the result displayed in (13).
− For the case a < α/(d+ 4), we have lim

n→+∞
(nγn) > 2a which provides that γnh−d

n = o
(
h4
n

)
. By applying

lemma 1, we infer that

V ar[an(x, y)] = Π2
n

n∑
k=1

Π−2
k γko

(
h4
k

)
= o

(
h4
n

)
.

In the following theorem, we introduce our main result which provides the bias and the variance of our CCDF
multivariate estimator πn.

3.2. Bias and variance of πn:

Theorem 1
Let assumptions (A1)− (A3) hold and assume that, for all i, j ∈ {1, . . . , d}, a(2)ij and f

(2)
Xij

are continuous at x, we
obtain
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1. If a ∈
(
0, α

d+4

]
, then

E[πn(y|x)]− π(y|x) = 1

2(1− 2aξ)

1

fX(x)

d∑
j=1

µj(K)
[
π
(2)
jj (y|x)fX(x) (14)

+ 2π
(1)
j (y|x)f (1)

Xj
(x)
]
h2
n + o

(
h2
n

)
.

If a ∈
(

α
d+4 , 1

)
, then

E[πn(y|x)]− π(y|x) = o

(√
γnh

−d
n

)
. (15)

2. If a ∈
(
0, α

d+4

)
, then

V ar[πn(y|x)] = o
(
h4
n

)
. (16)

If a ∈
[

α
d+4 , 1

)
, then

V ar[πn(y|x)] =
R(K)

2− (α− ad)ξ

π(y|x)(1− π(y|x))
fX(x)

γn
hd
n

+ o

(
γn
hd
n

)
. (17)

It is noteworthy that the bias and the variance of the estimator πn defined by the stochastic approximation algorithm
(1) mainly depend on the choice of the stepsize (γn).

Proof
Our proof rests upon the following decomposition, for fn 6= 0

πn(y|x)− π(y|x) = An(x, y)
fX(x)

fn(x)
, (18)

with

An(x, y) =
1

fX(x)
(an(x, y)− a(x, y))− π(y|x)

fX(x)
(fn(x)− fX(x)) .

It follows from (18) that the asymptotic behavior of πn(y|x)− π(y|x) can be deduced from the one of An(x, y).
For the bias of πn, we can state

E[An(x, y)] =
1

fX(x)
(E[an(x, y)]− a(x, y))− π(y|x)

fX(x)
(E[fn(x)]− fX(x)) .

Now, using the first bias part of proposition 1 and proposition 2 and considering the fact that a(x, y) =
π(y|x)fX(x), then by combining the assertions (6), (7), (10) and (11); we obtain the relations (14) and (15).
In order to confirm the variance of πn statement, we have

V ar[An(x, y)] =
1

(fX(x))2
V ar[an(x, y)] +

(π(y|x))2

(fX(x))2
V ar[fn(x)]

− 2
π(y|x)

(fX(x))2
Cov(an(x, y), fn(x)). (19)

Given that the Xk’s are independent, then for all i = 1, . . . , n, k = 1, . . . , n and i 6= k, we have
Cov(Zk(x, y),Wi(x)) = 0. Using Taylor’s expansion with integral remainder and lemma 1, classical computations
entail

Cov(an(x, y), fn(x)) =
R(K)

2− (α− ad)ξ
π(y|x)fX(x)

γn
hd
n

+ o

(
γn
hd
n

)
. (20)
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Consequently, relations (16) and (17) follow from the combination of assertions (8), (9), (12), (13) and (20).
For the case a ≥ α/(d+ 4), we deduce with (19) that

V ar[πn(y|x)] =
R(K)

2− (α− ad)ξ

π(y|x)(1− π(y|x))
fX(x)

γn
hd
n

+ o

(
γn
hd
n

)
.

Proceeding with the same reasoning applied for the case a < α/(d+ 4), we obtain the desired result (16).

In the sequel, let us present the following theorem which identifies the asymptotic normality of our recursive
estimator πn. Throughout this paper, we shall denote convergence in probability, convergence in distribution and
the Gaussian distribution by P−→

n→+∞
, D−→
n→+∞

and N , respectively.

3.3. Weak pointwise convergence rate of πn

Theorem 2
Let assumptions (A1)− (A3) hold.

1. If there exists a non-negative real c such that γ−1
n hd+4

n −→
n→+∞

c, then

√
γ−1
n hd

n (πn(y|x)− π(y|x)) D−→
n→+∞

N
(√

c m(x, y) , σ2(x, y)

)
. (21)

with

m(x, y) =
1

2(1− 2aξ)

1

fX(x)

d∑
j=1

µj(K)
[
π
(2)
jj (y|x)fX(x) + 2π

(1)
j (y|x)f (1)

Xj
(x)
]

and
σ2(x, y) =

R(K)

2− (α− ad)ξ

π(y|x)(1− π(y|x))
fX(x)

.

2. If γ−1
n hd+4

n −→
n→+∞

∞, then
1

h2
n

(πn(y|x)− π(y|x)) P−→
n→+∞

m(x, y).

Proof
We can write, for all n ≥ 0, x ∈ Rd, y ∈ Rq,

An(x, y)− E[An(x, y)] =
1

fX(x)
[an(x, y)− E[an(x, y)]]−

π(y|x)
fX(x)

[fn(x)− E[fn(x)]]

=
1

fX(x)
Πn

n∑
k=1

Sk(x, y), (22)

where
Sk(x, y) := Π−1

k γk (Tk(x, y)− E[Tk(x, y)]) and Tk(x, y) = Zk(x, y)− π(y|x)Wk(x).

This proof falls naturally into the application of Lyapunov’s theorem for Sk(x, y).
On the one hand, we can write

u2
n :=

n∑
k=1

V ar[Sk(x, y)] =

n∑
k=1

Π−2
k γ2

kV ar [Zk(x, y)− π(y|x)Wk(x)]

− 2π(y|x)Cov (Zk(x, y),Wk(x))
)
.
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Therefore, by applying lemma 1, it can be deduced that

u2
n =

n∑
k=1

Π−2
k γ2

kh
−d
k

(
R(K)fX(x)π(y|x) (1− π(y|x)) + o(1)

)
=

fX(x)2

Π2
n

γn
hd
n

[σ2(x, y) + o (1)]. (23)

On the other hand, we can write

E[|Tk(x, y)|2+p] = O

(
1

h
d(1+p)
k

)
, ∀p > 0.

This yields,

n∑
k=1

E[|Sk(x, y)|2+p] = O

(
n∑

k=1

Π
−(2+p)
k γ2+p

k E
[
|Tk(x, y)|2+p

])

= O

(
n∑

k=1

Π
−(2+p)
k γ2+p

k

1

h
d(1+p)
k

)
.

For the application of lemma 1, let us assume that there exists a positive real p such that

lim
n→+∞

(nγn) >
1 + p

2 + p
(α− ad).

Then, we obtain
n∑

k=1

E[|Sk(x, y)|2+p] = O

(
γ1+p
n

Π2+p
n h

d(1+p)
n

)
.

It follows that
1

u2+p
n

n∑
k=1

E[|Sk(x, y)|2+p] = O

(
γ1+p
n

u2+p
n Π2+p

n h
d(1+p)
n

)
.

As a sequel, with the assertion (23), we can write

1

u2+p
n

n∑
k=1

E[|Sk(x, y)|2+p] = O

((
γn
hd
n

)p/2
)

= o (1) .

Moreover, since we have

lim
n→+∞

1

u2+p
n

n∑
k=1

E
[
|Sk(x, y)− E[Sk(x, y)]|2+p

]
= lim

n→+∞

1

u2+p
n

n∑
k=1

E[|Sk(x, y)|2+p] = 0,

then, by applying the Lyapunov theorem, we get

1

un

n∑
k=1

(Sk(x, y)− E[Sk(x, y)])
D−→

n→+∞
N (0 , 1) .

This implies
1

un

n∑
k=1

Sk(x, y)
D−→

n→+∞
N (0 , 1) .
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Additionally, the relations (18) and (22) ensure that

1

unΠn
fX(x) (πn(y|x)− E[πn(y|x)])

D−→
n→+∞

N (0 , 1) . (24)

Given that

u2
n =

fX(x)2

Π2
n

γn
hd
n

[σ2(x, y) + o (1)],

and by replacing un with its value in relation (24), we deduce that√
γ−1
n hd

n (πn(y|x)− E[πn(y|x)])
D−→

n→+∞
N
(
0 , σ2(x, y)

)
. (25)

Since we have
√

γ−1
n hd+4

n −→
n→+∞

√
c, then the convergence (21) follows from the combination of relations (14),

(15) and convergence (25).

In order to assess the asymptotic quality of the CCDF recursive estimator πn, we set up the Mean Weighted
Integrated Squared Error (MWISE).

3.4. Asymptotic expressions of MWISE[πn]

We first introduce the MWISE expression:

MWISE[πn] =

∫
Rd+q

[
(E[πn(y|x)]− π(y|x))2 + V ar[πn(y|x)]

]
fX

2(x)fX,Y (x, y)dxdy. (26)

Proposition 3
The MWISE of the estimator πn is maintained as follows.
If a ∈

(
0, α

d+4

)
, then

MWISE[πn] =
1

4

I1

(1− 2aξ)
2h

4
n + o(h4

n).

If a = α
d+4 , then

MWISE[πn] =
I2

2− (α− ad)ξ
R(K)γnh

−d
n +

1

4

I1

(1− 2aξ)
2h

4
n + o(h4

n).

If a ∈
(

α
d+4 , 1

)
, then

MWISE[πn] =
I2

2− (α− ad)ξ
R(K)γnh

−d
n + o

(
γnh

−d
n

)
.

Proof
Based on the relation (26) and by distinguishing the different possible cases according to the expressions of the
Bias ((14) and (15)) as well as the Variance ((16) and (17)), one can prove this proposition and find the required
result.

The following corollary ensures that the bandwidth which minimizes the MWISE of πn depends on the choice of
the stepsize (γn). As a matter of fact, the corresponding MWISE depends also on (γn).
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Corollary 1
Let assumptions (A1)− (A3) hold. To minimize the MWISE of πn, the bandwidth (hn) must be equal to( d (1− 2aξ)

2

2− (α− ad)ξ

I2
I1

R(K)

) 1
d+4

γ
1

d+4
n

 .

Hence, the corresponding MWISE is determined by

MWISE[πn] =
d+ 4

4d
d

d+4

(
I1

(1− 2aξ)
2

) d
d+4
(

I2
2− (α− ad)ξ

) 4
d+4

R(K)
4

d+4 γ
4

d+4
n + o

(
γ

4
d+4
n

)
.

The following corollary holds in the special case where (γn) is chosen as (γn) = (γ0n
−1) in order to minimize the

MWISE[πn].

Corollary 2
Let assumptions (A1)− (A3) hold. To minimize the MWISE of πn, we need to opt for the stepsize (γn) in
GS(−1) such that lim

n→∞
(nγn) = γ0. Then the bandwidth (hn) must be equal to((

d (γ0(d+ 4)− 2)

2(d+ 4)

I2
I1

R(K)

) 1
d+4

n− 1
d+4

)
.

Consequently, the corresponding MWISE is identified by

MWISE[πn] =
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4

γ2
0 (γ0(d+ 4)− 2)

− (2d+4)
d+4 I

d
d+4

1 I
4

d+4

2 R(K)
4

d+4n− 4
d+4 + o

(
n− 4

d+4

)
.

In order to get the optimal choice of (γn), we deduce that the minimum of MWISE[πn] is achieved at γ0 = 1.
Hence, we introduce the following corollary.

Corollary 3
Let assumptions (A1)− (A3) hold. To minimize the MWISE of πn, we must select the stepsize (γn) in GS(−1)
such that lim

n→∞
(nγn) = 1. Therefore, the optimal bandwidth (hn) must equal((

d(d+ 2)

2(d+ 4)

I2
I1

R(K)

) 1
d+4

n− 1
d+4

)
. (27)

As a result, the corresponding MWISE is expressed by

MWISE[πn] =
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4 (d+ 2)

2d+4
d+4

I
d

d+4

1 I
4

d+4

2 R(K)
4

d+4n− 4
d+4 + o

(
n− 4

d+4

)
.

Remark 1
Note that, for the particular case where the stepsize (γn) is in GS(−1) such that lim

n→∞
(nγn) = 1 and the bandwidth

(hn) is chosen such that lim
n→∞

nhd+4
n = 0 (which corresponds to undersmoothing), the asymptotic normality of our

proposed estimator is indicated as follows√
nhd

n (πn(y|x)− π(y|x)) D−→
n→+∞

N
(
0 ,

d+ 4

2(d+ 2)
R(K)

π(y|x)(1− π(y|x))
fX(x)

)
. (28)

The statistical inference of the CCDF multivariate non-recursive estimator π̃n is addressed in our next section.
The following results can be handled in nearly the same way as πn. The unique difference lies in the fact that it
pertains to a non-recursive case. (See [17] for more details of the univariate case.)
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4. Asymptotic properties of π̃n

In order to tackle the asymptotic properties of our estimator πn, we need first to introduce the following proposition
which provides the bias and the variance of π̃n.

4.1. Bias and variance of π̃n

Proposition 4
Let assumptions (A1) and (A3) hold. Then the bias and variance of Nadaraya-Watson’s estimator are displayed as
follows.

1. The bias of π̃n:

E[π̃n(y|x)]− π(y|x) = 1

2fX(x)

(
d∑

j=1

µj(K)
[
π
(2)
jj (y|x)fX(x) + 2π

(1)
j (y|x)fX (1)

j (x)
])

h2
n + o

(
h2
n

)
.

2. The variance of π̃n:

V ar[π̃n(x)] = R(K)
π(y|x)(1− π(y|x))

fX(x)

1

nhd
n

+ o

(
1

nhd
n

)
.

The following proposition yields the distribution convergence rate of the non-recursive estimator.

4.2. Asymptotic normality of π̃n

Theorem 3
Let assumptions (A1)− (A3) hold and suppose that nhd+4

n −→
n→+∞

0. Then,

√
nhd

n (π̃n(y|x)− π(y|x)) D−→
n→+∞

N
(
0 , R(K)

π(y|x)(1− π(y|x))
fX(x)

)
. (29)

Remark 2
It is obvious to infer from the expressions (28) and (29) that our CCDF proposed estimator is better than non-
recursive one in terms of variance.

In the next subsection, we exhibit the expression of the Mean Weighted Integrated Squared Error of Nadaraya-
Watson’s estimator.

4.3. Asymptotic expression of MWISE[π̃n]

Corollary 4
The MWISE expression of the non-recursive CCDF estimator is given by

MWISE[π̃n] =
1

4
I1h

4
n + I2R(K)

1

nhd
n

+ o

(
h4
n +

1

nhd
n

)
.

Proposition 5
Let assumptions (A1) and (A3) hold. To minimize the MWISE of π̃n, the bandwidth (hn) must be equal to((

d
I2
I1

R(K)

) 1
d+4

n− 1
d+4

)
. (30)

Hence, the corresponding MWISE is determined by

MWISE[π̃n] =
d+ 4

4d
d

d+4

I
4

d+4

2 I
d

d+4

1 R(K)
4

d+4n− 4
d+4 + o

(
n− 4

d+4

)
.
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5. Bandwidth selection

Although theoretical asymptotic study yields the optimal bandwidth, the fact that we do not know the density
function makes it hard to interpret it in practice. Hence, kernel smoothing in non-parametric statistics requires
the choice of a bandwidth parameter. This choice is crucial to obtain a good rate of consistency of the kernel
estimators. It has a significant influence on the size of the bias. One has to find an appropriate bandwidth that
produces an estimator which has a good balance between the bias and the variance of the estimator of the function
a(·, ·) as well as f(·). It is worth noticing that the bandwidth selection methods reported in the literature can be
divided into three broad classes: the cross-validation techniques, the plug-in ideas and the bootstrap procedure.
In this investigation, we are basically interested in the plug-in method. Altman and Leger developed an efficient
method of bandwidth selection in [3], which minimizes an estimate of the mean weighted integrated squared error,
using the density function as a weight function. For this reason, we followed the work of [37].

5.1. Plug-in bandwidth selection

As a result to the plug-in procedure, based on the expression of the MWISE, we estimate the unknown quantities
I1 and I2 by elaborating asymptotic unbiased estimators. This process is known as a plug-in estimate. Basically,

we introduce (bn) ∈ GS(−δ), δ ∈ (0, 1) . In practice, [3] set bn = n−δ min

{
ŝ,

Q3 −Q1

1.349

}
, with ŝ being the

sample standard deviation and Q1, Q3 being the first and third quartiles.
In the following and for the sake of simplicity, the kernel K we shall use is considered as a product of univariate

kernels K satisfying
∫
R
K(x)dx = 1.

In addition, we note:

I1 = µ2(K) (J1 − 2J2 + J3) ,

where

J1 =

∫
Rd+q

(
d∑

j=1

a
(2)
jj (x, y)

)2

fX,Y (x, y)dxdy, J3 =

∫
Rd+q

(
d∑

j=1

fX
(2)
jj (x)

)2

π2(y|x)fX,Y (x, y)dxdy,

J2 =

∫
Rd+q

(
d∑

j=1

a
(2)
jj (x, y)

)(
d∑

j=1

fX
(2)
jj (x)

)
π(y|x)fX,Y (x, y)dxdy, µ(K) =

∫
R
z2K(z)dz.

5.2. Recursive estimator πn:

To estimate the optimal bandwidth (27), we need to estimate I1 and I2. Here we can write

an(x, y) = Πn

n∑
k=1

Π−1
k γk h

−d
k χk(y)K

(
x−Xk

hk

)
= Πn

n∑
k=1

Π−1
k γkh

−d
k

d∏
i=1

K

(
x−Xki

hk

)
χki

(y)

and

fn(x) = Πn

n∑
k=1

Π−1
k γk h

−d
k K

(
x−Xk

hk

)
= Πn

n∑
k=1

Π−1
k γkh

−d
k

d∏
i=1

K

(
xi −Xki

hk

)
.
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Estimation of I1:

Ĵ1 =
Π2

n

n

n∑
i,j,k=1
i ̸=j ̸=k

Π−1
j Π−1

k γjγkb
′−(d+2)
j b′

−(d+2)
k

 d∑
v=1

K
(2)
b′

(
Xiv −Xjv

b
′
j

)
d∏

l=1
l ̸=v

Kb

(
Xil −Xjl

bj

)

×

 d∑
v=1

K
(2)
b′

(
Xiv −Xkv

b
′
k

) d∏
l=1
l ̸=v

Kb

(
Xil −Xkl

bk

) q∏
s=1

χ(j+1)s
(Yis)χ(k+1)s

(Yis),

Ĵ2 =
Π2

n

n

n∑
i,j,k=1
i ̸=j ̸=k

Π−1
j Π−1

k γjγkb
′−(d+2)
j b′

−(d+2)
k

 d∑
v=1

K
(2)
b′

(
Xiv −Xjv

b
′
j

)
d∏

l=1
l ̸=v

Kb

(
Xil −Xjl

bj

)

×

 d∑
v=1

K
(2)
b′

(
Xiv −Xkv

b
′
k

) d∏
l=1
l ̸=v

Kb

(
Xil −Xkl

bk

) q∏
s=1

χ(i+1)s
(Yis)χ(j+1)s

(Yis),

Ĵ3 =
Π2

n

n

n∑
i,j,k,m=1
i ̸=j ̸=k ̸=m

Π−1
j Π−1

k γjγkb
′−(d+2)
j b′

−(d+2)
k

 d∑
v=1

K
(2)
b′

(
Xiv −Xjv

b
′
j

)
d∏

l=1
l ̸=v

Kb

(
Xil −Xjl

bj

)

×

 d∑
v=1

K
(2)
b′

(
Xiv −Xkv

b
′
k

) d∏
l=1
l ̸=v

Kb

(
Xil −Xkl

bk

) q∏
s=1

χ(i+1)s
(Yis)χ(m+1)s

(Yis),

where Kb stands for a kernel with bandwidth bn such that δ = − 2
5 and K

(2)
b′ corresponds to the second derivative

of a kernel Kb′ with the associated bandwidth b
′

n such that δ = − 3
14 . Note that our choice of the parameter δ is

based on the work of [37].
At this stage, we obtain

Î1 = µ2(K)
(
Ĵ1 − 2Ĵ2 + Ĵ3

)
.

Estimation of I2:

Î2 =
Πn

n

n∑
i,k=1
i ̸=k

Π−1
k γkb

−1
k

d∏
l=1

Kb

(
Xil −Xkl

bk

) q∏
s=1

χ(i+1)s
(Yis)

(
1− χ(k+1)s

(Yis)
)
,

where Kb is a kernel with bandwidth bn such that δ = −2

5
.

As a result, the plug-in estimator of (27) is determined by

(hn) =

(d(d+ 2)

2(d+ 4)

) 1
d+4

(
Î2

Î1

) 1
d+4

R(K)
1

d+4n− 1
d+4

 , (31)

Eventually, an estimator of MWISE[πn] is specified by

̂MWISE[πn] =
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4 (d+ 2)

d+6
d+4

(
Î1

) d
d+4
(
Î2

) 4
d+4

R(K)
1

d+4n− 4
d+4 + o

(
n− 4

d+4

)
.
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5.3. Non-Recursive estimator π̃n:

To estimate the optimal bandwidth (30), we need to estimate I1 and I2.Therefore, we can state

ãn(x, y) =
1

nhd
n

n∑
k=1

χk(y)K

(
x−Xk

hn

)
=

1

nhd
n

n∑
k=1

d∏
i=1

K

(
x−Xki

hn

)
χki(y)

and

f̃n(x) =
1

nhd
n

n∑
k=1

K

(
x−Xk

hn

)
=

1

nhd
n

n∑
k=1

d∏
i=1

K

(
xi −Xki

hn

)
.

Estimation of I1:

J̃1 =
1

n3b6n

n∑
i,j,k=1
i ̸=j ̸=k

 d∑
v=1

K
(2)
b′

(
Xiv −Xjv

b′n

) d∏
l=1
l ̸=v

Kb

(
Xil −Xjl

bn

)

×

 d∑
v=1

K
(2)
b′

(
Xiv −Xkv

b′n

) d∏
l=1
l ̸=v

Kb

(
Xil −Xkl

bn

) q∏
s=1

χ(j+1)s
(Yis)χ(k+1)s

(Yis),

J̃2 =
1

n3b6n

n∑
i,j,k=1
i ̸=j ̸=k

 d∑
v=1

K
(2)
b′

(
Xiv −Xjv

b′n

) d∏
l=1
l ̸=v

Kb

(
Xil −Xjl

bn

)

×

 d∑
v=1

K
(2)
b′

(
Xiv −Xkv

b′n

) d∏
l=1
l ̸=v

Kb

(
Xil −Xkl

bn

) q∏
s=1

χ(i+1)s
(Yis)χ(j+1)s

(Yis),

J̃3 =
1

n4b6n

n∑
i,j,k,m=1
i ̸=j ̸=k ̸=m

 d∑
v=1

K
(2)
b′

(
Xiv −Xjv

b′n

) d∏
l=1
l ̸=v

Kb

(
Xil −Xjl

bn

)

×

 d∑
v=1

K
(2)
b′

(
Xiv −Xkv

b′n

) d∏
l=1
l ̸=v

Kb

(
Xil −Xkl

bn

) q∏
s=1

χ(i+1)s
(Yis)χ(m+1)s

(Yis),

where Kb is a kernel with bandwidth bn such that δ = −2

5
and K

(2)
b′ is the second derivative of a kernel Kb′ with

the associated bandwidth b
′

n such that δ = − 3

14
.

Then, we obtain
Ĩ1 = µ2(K)

(
J̃1 − 2J̃2 + J̃3

)
.

Estimation of I2:

Ĩ2 =
1

n2bn

n∑
i,k=1
i ̸=k

d∏
l=1

Kb

(
Xil −Xkl

bn

) q∏
s=1

χ(i+1)s
(Yis)

(
1− χ(k+1)s

(Yis)
)
,
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where Kb is a kernel with bandwidth bn such that δ = −2

5
.

As a result, the plug-in estimator of (30) is denoted by

(hn) =

( Ĩ2

Ĩ1

) 1
d+4

R(K)
1

d+4n− 1
d+4

 , (32)

Finally, a non-recursive estimator of MWISE[πn] is provided by

˜MWISE[π̃n] =
5

4

(
Ĩ2

) 4
d+4
(
Ĩ1

) 1
d+4

R(K)
1

d+4n− 4
d+4 + o

(
n− 4

d+4

)
.

The major aim of our next section lies in comparing the performance of our recursive estimator (1) with that of
non-recursive Nadaraya-Watson one (2).

6. Numerical applications

Let’s start our numerical studies with some simulations with different dimensions Models.

6.1. Simulation studies

In order to compare the proposed recursive estimator with the Nadaraya-Watson non-recursive one, we consider
three sample sizes: n = 100, 200 and 500, a fixed number of simulations: N = 500 and four distribution models:

◦ Model 1: (X,Y ) ∈ R×R:
Y = 2 sin(πX) + ϵ, where X follows the binomial distribution B (2, 1/3) and ϵ follows the normal
distribution N (0, 1) .

◦ Model 2: (X,Y ) ∈ R2 ×R:
Y = exp(−X/2) + ϵ, where X follows the exponential distribution P (1/2) and ϵ follows the normal
distribution N (0, 1/2) .

◦ Model 3: (X,Y ) ∈ R3 ×R2:
Y = AX + ϵ with A =

(
1 1 1
1 −2 1

)
, X = 0× 1Z<=0.5 + 1Z>0.5 where Z follows the uniform distribution

U
((

0
0
0

)
,

(
1
1
1

))
and ϵ follows the normal distribution N (0, 1/2) .

◦ Model 4: (X,Y ) ∈ R10 ×R10 :
Y = exp(X) + ϵ, with X = bZc where Z follows the 10-dimensional normal distribution N (010, I10) and ϵ
follows the normal distribution N (0, 1) .

We denote by π∗
i the reference CCDF and by πi the test CCDF. Then, we calculate the following two measures:

· Mean squared error: MSE =
1

n

n∑
i=1

(πi − π∗
i )

2.

· The linear correlation: Cor =
Cov(πi, π

∗
i )

σ(πi)σ(π∗
i )

.

In what follows, we portray the different steps of the simulation algorithm in the multivariate case.
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6.2. Simulation Algorithm

Algorithm 1 K is the Gaussian kernel, d the dimension size, n the simple size, Np the number of observations and
N the number of iterations.
Input: K, d, n, Np and N .

1: A random initialization of Π̂(0) (resp. Π̃(0).)
2: for l = 1, . . . , N do
3: A random sample vectors X1, . . . , Xd and Y of length n.
4: A choice value for the recursive bandwidth vectors h1, . . . , hn. (resp. the non-recursive bandwidth values

hn) using the plug-in approach given in (31) (resp. (32)).
5: The choice of the stepsize (γn) =

(
n−1

)
.

6: We fix x1, . . . , xd and consider an arbitrary sampling vector T of y of length Np.

7: π̂l(y|x) =

n∑
k=1

kγk 1{Yk⩽y}h
−d
k

d∏
i=1

K

(
xi −Xki

hk

)
n∑

k=1

kγkh
−d
k

d∏
i=1

K

(
xi −Xki

hk

) for the multivariate recursive CCDF estimator. (resp.

π̃l(y|x) =

n∑
k=1

1{Yk⩽y}
d∏

i=1

K

(
xi −Xki

hk

)
n∑

k=1

d∏
i=1

K

(
xi −Xki

hk

) for the multivariate non-recursive CCDF estimator).

Π̂(l) = π̂l(T |x). (resp. Π̃(l) = π̃l(T |x).)
8: end for
9: π̂ = N−1

N∑
l=1

Π̂(l) (resp. π̃ = N−1
N∑
l=1

Π̃(l).)

output: The vectors π̂ and π̃.

x = 0 x = 2
Model MSE/Cor n Nadaraya’s estimator Recursive estimator Nadaraya’s estimator Recursive estimator

MSE 100 3.671766e-07 1.333452e-07 1.342202e-05 8.228683e-06
200 3.377698e-07 1.185438e-07 3.434738e-06 2.050298e-06
500 1.748553e-07 4.915888e-08 1.407363e-06 6.641233e-07

Model 1 Cor 100 9.999992e-01 9.999997e-01 9.999773e-01 9.999849e-01
200 9.999992e-01 9.999997e-01 9.999914e-01 9.999947e-01
500 9.999997e-01 9.999999e-01 9.999962e-01 9.999981e-01

Table 1. Quantitative comparison between the recursive estimator and the non-recursive one with stepsize (γn) = (n−1)
through a plug-in method for Model 1.

x = (0, 0) x = (1, 1)
Model MSE/Cor n Nadaraya’s estimator Recursive estimator Nadaraya’s estimator Recursive estimator

MSE 100 0.005299303 0.002345599 0.011464770 0.005503603
200 0.004444445 0.001976603 0.009766589 0.004850061
500 0.003609582 0.001795659 0.006988903 0.004007790

Model 2 Cor 100 0.993278442 0.997042336 0.985998000 0.993297472
200 0.993932848 0.997313718 0.987516900 0.993740343
500 0.994773451 0.997402840 0.990016792 0.994209320

Table 2. Quantitative comparison between the recursive estimator and the non-recursive one with stepsize (γn) = (n−1)
through a plug-in method for Model 2.
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x = (0, 0, 0) x = (1, 1, 1)
Model MSE/Cor n Nadaraya’s estimator Recursive estimator Nadaraya’s estimator Recursive estimator

MSE 100 0.005170397 0.003118756 0.007481887 0.002756530
200 0.004968340 0.002747727 0.007215537 0.002449973
500 0.004639918 0.002444590 0.007200206 0.002260629

Model 3 Cor 100 0.989849852 0.993964835 0.989210840 0.996122260
200 0.990247670 0.994651835 0.989322443 0.996398260
500 0.990928518 0.995271000 0.989458730 0.996602105

Table 3. Quantitative comparison between the recursive estimator and the non-recursive one with stepsize (γn) = (n−1)
through a plug-in method for Model 3.

x = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Model MSE/Cor n Nadaraya’s estimator Recursive estimator
MSE 100 0.012132600 0.008651937

200 0.012042460 0.007971624
500 0.009422018 0.006973041

Model 4 Cor 100 0.982886350 0.987784007
200 0.984891065 0.987888565
500 0.985115900 0.989107240

Table 4. Quantitative comparison between the recursive estimator and the non-recursive one with stepsize (γn) = (n−1)
through a plug-in method for Model 4.

Departing from Tables 1, 2, 3 and 4, we conclude that:

1. The MSE of the proposed recursive estimator with stepsize (γn) = (n−1) through a plug-in method is smaller
than that of Nadaraya-Watson’s non-recursive estimator.

2. The estimators get closer to the true CCDF function as sample size increases, i.e., the MSE decreases as the
simple size increases and therefore the Cor increases as the sample size increases.

Figure 1. The reference CCDF for
Model 1 for one simple simulation with
n = 200.

Figure 2. The recursive CCDF estima-
tor for Model 1 for one simple simula-
tion with n = 200.

Figure 3. The non-recursive CCDF
estimator for Model 1 for one simple
simulation with n = 200.
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Figure 4. Qualitative comparison between the recursive
estimator and the non-recursive one for Model 1 with
n = 200, N = 500 and x = 0.

Figure 5. Qualitative comparison between the recursive
estimator and the non-recursive one for Model 1 with
n = 500, N = 500 and x = 0.

Figure 6. Qualitative comparison between the recursive
estimator and the non-recursive one for Model 2 with
n = 100, N = 500 and x = (0, 0).

Figure 7. Qualitative comparison between the recursive
estimator and the non-recursive one for Model 2 with
n = 500, N = 500 and x = (0, 0).

Figure 8. The reference CCDF for
Model 3 for one simple simulation
with n = 500 and x = (1, 1, 1).

Figure 9. The recursive CCDF estima-
tor for Model 3 for one simple simula-
tion with n = 500 and x = (1, 1, 1).

Figure 10. The non-recursive CCDF esti-
mator for Model 3 for one simple simula-
tion with n = 500 and x = (1, 1, 1).
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6.3. Real Datasets:

In this section, our focal point is to examine two real datasets Models, namely the Insurance Company Benchmark
(COIL 2000) dataset as well as the French Hospital Data of COVID-19.

6.3.1. Application 1: The Insurance Company Benchmark (COIL 2000) dataset The (COIL 2000) dataset is found
in data.world website
https://data.world/uci/insurance-company-benchmark-coil-2000).
Information about customers consists of 86 variables and includes product usage data and sociodemographic data
derived from zip area codes. The data are supplied by the Dutch data mining company Sentient Machine Research
and rest on a real world business problem. The training set involves over 5000 descriptions of customers, including
the information of whether or not they have a caravan insurance policy. A test set includes 4000 customers whom
only the organizers know if they have a caravan insurance policy. This corresponds to a Dataset to train and
validate prediction models and build up a description (5822 customer records). Each record consists of 86 attributes,
incorporating sociodemographic data (attribute 1-43) and product ownership (attributes 44-86).
The sociodemographic data are derived from zip codes. All customers living in areas with the same zip code have
the same sociodemographic attributes.
As far as our application is concerned, we shall consider the following two models:

• Model 1: X corresponds to the sociodemographic data attribute number 16 and Y stands for the whole 5822
observations of customer records.

• Model 2: X corresponds to the sociodemographic 5-dimensional data attributes number 6,8,11,12 and 13
and Y stands for the whole 5822 observations of customer records.

x=0 x=1
Nadaraya’s estimator Recursive estimator Nadaraya’s estimator Recursive estimator

Model 1 MSE 0.006979541 0.004748803 0.001999743 0.001390595
Cor 0.987112335 0.990653245 0.995770041 0.996574025

x=(0,0,0,0,0) x=(1,1,1,2,2)
Nadaraya’s estimator Recursive estimator Nadaraya’s estimator Recursive estimator

Model 2 MSE 0.000708417 0.0005969373 0.00414241 0.003705582
Cor 0.996664739 0.9979940979 0.97540614 0.976614363

Table 5. Quantitative comparison between Nadaraya-Watson estimator and the proposed estimator with stepsizes (γn) =

(n−1) through a plug-in method for the Insurance Company Benchmark (COIL 2000) dataset case.

6.3.2. Application 2: French Hospital Data of COVID19
The French Hospital data of the COVID-19 epidemic are extracted from
https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/.
The Santé publique France’s mission is to improve and protect the health of populations. During the health crisis
linked to the COVID-19 epidemic, Santé publique France has taken in charge monitoring and understanding the
dynamics of the epidemic, anticipating the different scenarios and implementing actions to prevent and limit the
transmission of this virus on the national territory.

Description of the dataset
This dataset provides information on the hospital situation regarding the COVID-19 epidemic. We have opted for
the first proposed file:
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Figure 11. Qualitative comparison between the recur-
sive estimator and Nadara Watson’s non-recursive one
for the dataset Model 1 with x = 1.

Figure 12. Qualitative comparison between the recur-
sive estimator and the non-recursive one for the dataset
Model 2 with x = (0, 0, 0, 0, 0).

Hospital data related to the COVID-19 epidemic by department (dep), sex of the patient (sex), number of
hospitalized patients (hosp), number of persons currently in intensive care or resuscitation (rea), number of persons
currently in follow-up and rehabilitation care (SSR) or long-term care units (USLD), number of persons currently
in conventional hospitalization (HospConv), number of persons currently hospitalized in another type of service
(autres), cumulative number of persons returning home (rad) or cumulative number of dead persons (dc).
The data have been daily updated. For the current application, we considered the data of 28/07/2021, with a total
of 150894 observations. For simplicity reason, we have chosen to just study the department of ’Vienne’ database.
Therefore, for our application, we served of a dataframe of 1494 observations and 6 variables. Hence, we shall
consider the following three models:

• Model 1: X = dc and Y = hosp.

• Model 2: X1 = sex, X2 = rea, X3 = dc and Y = hosp.

• Model 3: X1 = sex, X2 = rea, X3 = dc, Y 1 = hosp and Y 2 = rad.

x=119 x=17
Nadaraya’s estimator Recursive estimator Nadaraya’s estimator Recursive estimator

Model 1 MSE 0.02538461 0.01900265 0.008079359 0.007509241
Cor 0.86514927 0.88894736 0.781752320 0.789593904

x = (2, 0, 17) x = (1, 0, 0)
Nadaraya’s estimator Recursive estimator Nadaraya’s estimator Recursive estimator

Model 2 MSE 0.02176777 0.01416798 0.01026319 0.005681196
Cor 0.55644221 0.63197054 0.74621610 0.819493783

Model 3 MSE 0.02107916 0.009991914 0.04130757 0.03504694
Cor 0.85362436 0.920385555 0.61896604 0.64659332

Table 6. Quantitative comparison between Nadaraya-Watson estimator and the proposed estimator with stepsizes (γn) =

(n−1) through a plug-in method for the COVID-19 epidemic dataset case.
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Figure 13. Qualitative comparison between the recur-
sive estimator and the non-recursive one for the COVID-
19 epidemic dataset Model 1 with x = 17.

Figure 14. Qualitative comparison between the recur-
sive estimator and the non-recursive one for the COVID-
19 dataset Model 2 with x = (2, 0, 17).

Data interpretation:
Referring to Tables 5, 6 and Figures 11, 12, 13 and 14 , we conclude that:

1. For all considered Models, the proposed recursive estimator with stepsize (γn) = (n−1) through a plug-in
method outperformed the non-recursive one in terms of estimation error MSE and Cor.

2. The proposed recursive estimator is closer to the true CCDF function, compared with Nadaraya-Watson’s
non-recursive estimator.

Concerning the COVID-19 epidemic Model 1, we can infer that, for a fixed number of deaths x = 17, the proportion
of hospitalized cases less then 20 is 50% and the proportion of hospitalized cases less then 50 is 85%. Moreover,
99% of the population have a number of hospitalized cases less than 100.
Likewise, the COVID-19 epidemic Model 2 yielded the same results as model 1. Indeed, we recorded for the
women gender a fixed value of sex x1 = 2, a fixed number of REA persons x2 = 0 and deaths x3 = 17.

7. Conclusion

In this work, we elaborated a multivariate recursive CCDF estimator. We tackled the asymptotic properties of
the proposed estimator by providing the bias as well as the variance in order to demonstrate that our estimator
asymptotically follows a normal distribution. Subsequently, we revealed that the use of our recursive estimator with
an appropriate choice of the bandwidth and the stepsize enables us to get closer to the true conditional cumulative
distribution function rather than non-recursive one. The basic merit of recursive estimators resides in the fact that
one can update the estimation with each additional new observation. Therefore, instead of re-running the data each
time, it is possible to rewrite our considered estimator as a combination of two (or more) estimators, where each
estimator is based on separate datasets, which can be very interesting to keep the computational cost reasonably
low. It is noteworthy that all computation and simulation have been done using the R statistical software.
A future research direction would be to extend our findings to the setting of serially dependent observations, α-
mixing framework like in [20]. Another outstanding direction lies in recursively estimating the modal regression,
which requires non trivial mathematics. This would go well beyond the scope of the present paper.
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