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Abstract Accelerated failure time (AFT) models have intensive applications in many research areas, including but not
limited to behavioral, chronic (e.g., cancer), and infectious diseases (e.g., HIV) research. In this paper, we investigate the
performance of the AFT models when Progressive Type-II censoring schemes are performed. We demonstrate the usefulness
of using these schemes. We discuss their testing procedure power, Bias, and MSE of the hazard ratio estimates compared
to the same sample size of the uncensored data. Theoretically, we derive the models, the MLE scores, and the Fisher
information matrix. A comparison between these estimators is provided by using extensive simulation. A real-life data
example is provided to illustrate our proposed estimators.
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1. Introduction

Clinical researchers often encounter time-to-events (survival time), including but not limited to time-to-death,
time-to-first diagnostics of disease, etc. Survival data are often analyzed using the proportional hazard model (PH).
The PH model is used in multivariate survival analysis to analyze p-covariates and/or risk factors’ consequences
on survival time. However, the semi-parametric PH model requires a constant hazard ratio over time. This
assumption’s violation may reduce the corresponding tests’ power and misconception of parameters estimation
results (Schemper, 1992).

Lee and Wang (2003) modified the PH model to make it a parametric model by assuming that the baseline
hazard function follows some statistical distributions. However, this revised model is available for a few regression
models: exponential, Gompertz, and Weibull. In addition, the new PH model can only be used with a proportional
hazard assumption. On the other hand, the accelerated failure time (AFT), which is a parametric survival model,
can be used as an alternative to the PH model, mainly to outdo the statistical problem due to the violation of the
PH assumption (Wei,1992). The AFT model also accounts for covariates’ effects through the log of survival times
instead of the PH model’s hazard rate. Also, the interpretation of the AFT results is more accessible than the results
of the PH model.

The regression parameters are more intuitively interpreted concerning the change in the survival time median.
Since we used the log-linear formulation to formulate the AFT models, they provided independent parameter
estimates of the regression coefficients and the random frailty effects (Keiding et al., 1997). Therefore, the
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misspecification of the family for the frailty distribution may not affect the analysis severely. Lambert et al. (2004)
confirmed the robustness of regression parameter estimates despite any misspecification of the frailty distribution.
Applications of PH and AFT models traditionally depend on the assumption that the responses are independent of
the units subject to failure.

Several researchers used AFT models to analyze survival data. For example, Chapman et al. (1992) studied
the prognostic effects of breast cancer survival factors using four models: exponential, Weibull, Log-Logistic, and
Log-Normal, and concluded that the Log-Normal model would provide the most acceptable fit to the data. Royston
(2001) showed the Log-Normal AFT model’s practical value in analyzing breast and ovarian cancer patients’
survival times. Komarek et al. (2005) used the AFT model to analyze AIDS onset in the Women’s Interagency HIV
Study. Additionally, Lambert et al. (2004) implemented the AFT models with shared frailty to locate the prognostic
factors for a kidney graft’s survival time in patients from 31 transplant centers in the UK. Samawi et al. (2019) used
Double Extreme Ranked Set Sampling to improve the AFT models’ performance.

In survival analysis, a sample of size n objects is exposed to a life test to observe their failure times. The recorded
data, is then used to model a time-to-failure distribution. This strategy may be unreasonable, expensive, and may
take longer to observe all failure times. Due to some restrictions, the researcher may need to stop the study before
recording all the subjects’ failure times under consideration. Additionally, some test subjects may be removed
from the experiment to be used in another study, which happens in cases of costly test subjects, such as clinical
equipment. Moreover, in some cases, the failure is deliberate and expected; however, it does not happen due to
operator flaws, equipment malfunction, test irregularity, etc. Samples that result from such situations are called
censored samples.

The two most well-known censoring schemes are Type-I and Type-II. With Type-I, we stop the experiment
after a predetermined time. While, with a Type-II, the experiment is terminated after a predetermined number of
failures. However, these two censoring schemes do not allow intermediate elimination of active units throughout
the experiment other than at the final termination point. Therefore, the focus has been on progressive censoring in
the last few years.

A Progressive Type-II censoring is a generalization of Type-II censoring (P-II). It allows researchers to remove
subjects before the final termination point due to specific situations, such as the loss of contact with individuals
studied. Under this type of censoring, we replace n independent units simultaneously on a life testing experiment
to observe their failure times; however, we only observe m(< n) failure times. The censored times occurred
progressively in m stages: After the first failure is observed, randomly remove R1 units immediately from the
(n− 1) survivors, leaving (n− 1−R1) survival items. Then, after the failure of the second unit, remove another
R2 units randomly from the remaining survival items. This process continues until m failures are observed, and all
the remaining (n−m−R1 −R2 . . . , Rm−1 = Rm) survived units are removed from the experiment. It is assumed
that these n units’ lifetimes are independent and identically distributed with a common distribution function F .
Moreover, n,m, and the censoring scheme R = {R1, R2, . . . , Rm} are all pre-specified. Note that if R1 = R2 =
. . . = Rm−1 = 0, then Rm = n−m, which corresponds to Type-II censoring. If R1 = R2 = . . . = Rm = 0, then
(m = n), which represents the complete data set. Readers may refer to Balakrishnan and Cramer (2014) for a
comprehensive literature review on progressive censoring.

There has been considerable attention paid to Progressive Type-II censoring due to its potential applications
in reducing sample sizes required for lifetime experiments and time-to-event trials. Moreover, the availability of
high-speed computing resources enhances the focus on progressive censoring.

Numerous authors have discussed inferences under progressive censoring by using different lifetime
distributions. Some of these include Viveros and Balakrishnan (1994), Alvarez-Andrade et al. (2007), Saracoglu
(2012), Musleh and Helu (2014), Helu and Samawi (2017) & (2019), Helu et al. (2020), Helu and Samawi (2021)
and Pushkarna et al. (2020). An overview of progressive censorship can be found in Balakrishnan and Cramer
(2014).

To our knowledge, no one had studied how the AFT model would operate when the data are Progressively Type-
II censoring. The main goal of this study is to develop a general framework for simulating progressive Type-II
censored survival times with predefined censoring schemes and censoring rates.
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2. Preliminaries

Assuming the random variable of failure time of an event denoted by T . The distribution of T is usually identified
using three functions: the survival function S (t), the hazard rate function or risk function, indicated by h (t) and
the probability density (or probability mass) function, represented by f (t). The concept of censoring data is a
unique feature of survival data. Censoring issues arise when the exact time to event for a subject is unknown. In
this article, our focus will be on Progressive Type-II censoring.

Given, t1, t2, ..., tn, K = n(n−R1 − 1)(n−R1 −R2)...(Rm−1 −m+ 1), with censoring scheme
R = {R1, R2, ..., Rm}, the likelihood function is given by

l(β) = K

m∏
i=1

f(ti)S(ti)
Ri , (1)

where, β is the set of parameters.

2.1. AFT model

Similar to Liu (2012) and Samawi et al. (2019), the log-linear form of the AFT model, logTi concerning, is given
by

logTi = β0 + xi1β1 + ...+ xipβp + σεi, i = 1, 2, ...,m. (2)

Note that σ is a scale parameter, and εi, the random error term, which is assumed to have a specific distribution.
Adopting the same notation as in Samawi et al. (2019), the survival function at the time ti is as follows:

Si (t) = P (logTi ≥ logti)

= P

(
εi ≥

logti − β0 −w′iβ

σ

)
= S0

(
logti − β0 −w′iβ

σ

)
, 0 < ti <∞ (3)

where, wi = (xi1, . . . , xip)
′, i = 1, 2, . . . ,m, assumed to be observed, and β = (β1, β1, . . . , βp)

′ are the
coefficients of the predictors. Furthermore, the hazard function for Ti at t is

hi(t|wi,β) =
1

tiσ
h0

(
logti − β0 −w′iβ

σ

)
, i = 1, 2, ...,m,

where, h0 (t) is the baseline hazard function at survival time t. As in Samawi et al. (2019), the covariates
{X1, X2, ..., Xp} are assumed to have a multiplicative effect on the hazard function. Therefore, the predicted value
of the hazard function, given {xi1, ..., xip}, which is denoted by ĥ(ti|xi1, ..., xip), can take values in the range
(0,∞).

In this paper, we discuss the performance of the AFT model using Progressive Type-II censoring. The article
unfolds as follows: The AFT regression model and its properties using Progressive Type-II censoring are discussed
in Section 3. The simulation study in Section 4 compares the performance of Progressive Type-II censoring with
complete uncensored data under the AFT model. In Section 5, all methods are demonstrated using real-life data
from the University of Chicago’s Billings hospital study, which took place between 1958 and 1970. Finally, we
conclude with closing remarks in Section 6.
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3. AFT models based on Progressively Type-II Censoring

3.1. AFT- Exponential regression model

For the exponential AFT model, the hazard function is constant over time. Therefore, the hazard function can be
written as

hi(t|wi,β) = λ exp (−w′iβ) , i = 1, 2, ...,m. (4)

If we view logλ as a coefficient and place it into the regression coefficients vector β, then (4) can be simplified to

hi(t|wi,β) = exp (−w′iβ) , i = 1, 2, ...,m. (5)

Thus, the survival function given the exponential distribution of the event time T is given by

Si(t) = exp [−exp (logti −w′iβ)] ,−∞ < logti <∞. (6)

The probability density (pdf) and the log-likelihood functions are given by (7) and (8), respectively

f(ti) = exp [(logti −w′iβ)− exp (logti −w′iβ)] ,−∞ < logti <∞. (7)

L(β) = log[l(β)] ∝
m∑
i=1

[(logti −w′iβ)− (Ri + 1)exp (logti −w′iβ)] (8)

For the jth covariate, the MLE of βj is the solution to the following equation

∂L(β)

∂βj
=

m∑
i=1

[
−xij

{
1− (Ri + 1)exp

(
logti −w′iβ̂

)}]
= 0.

On the other hand, the second partial derivative of the log-likelihood function is used to obtain the Fisher
information matrix, and it is given by

−
[(

∂2L(β)

∂βj∂βj′

)]
(p+1)×(p+1)

=

m∑
i=1

[xijxij′(Ri + 1)ti exp (−w′iβ)] . (9)

3.2. AFT-Weibull regression model

The Weibull distribution function (W (λ, δ)) is usually formulated as an extreme value distribution since log(T )
can be expressed as a function of the Weibull parameters and follows extreme value distribution. Assume T is
distributed as W (λ, δ), where λ is the scale parameter and δ is the shape parameter. Then the hazard function is
given by

hi(t|wi,β) = (δ∗)−1e

(
logti−w′iβ

δ∗

)
, i = 1, 2, ...,m. (10)

where, δ∗ = 1
δ and β is the regression coefficient vector. Therefore, the survival function of T is

Si(t) = exp

[
−e

(
logti−w′iβ

δ∗

)]
,−∞ < logti <∞, (11)

with pdf

f(ti) = (δ∗)−1exp

[
logti −w′iβ

δ∗
− e

(
logti−w′iβ

δ∗

)]
,−∞ < logti <∞. (12)
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Using the likelihood function equation in (1), the log-likelihood function based on P-II can be written as

L(β) = log[l(β)] ∝
m∑
i=1

[
(−logδ∗) +

(
logti −w′iβ

δ∗

)
− (Ri + 1)e

(
logti−w′iβ

δ∗

)]
(13)

The MLE approach for the jth covariate parameter is obtained by solving

∂L(β)

∂βj
=

m∑
j=1

[
−xij
δ∗

{
1− (Ri + 1)e

(
− logti−w′iβ̂

δ∗

)}]
= 0. (14)

In a similar manner to the exponential AFT model, the Fisher information matrix can also be derived using the
second partial derivative,

− E[(
∂2L(β)

∂βj∂βj′
)](p+1)×(p+1) = E

(
m∑
i=1

[
xijxij′

δ∗
(Ri + 1)e

(
logTi−w′iβ

δ∗

)])
. (15)

3.3. AFT Log-Logistic regression model

The hazard function for the Log-Logistic AFT model is given by

hi(t|wi,β) =
e

(
logti−w′iβ

λ

)

λ
(
1 +

logti−w′iβ
λ

) , i = 1, 2, ...,m, (16)

where λ is the scale parameter for the Log-Logistic distribution. Thus, the survival function of the Log-Logistic
survival time T is given by:

Si(t) =

[
1 + e

(
logti−w′iβ

λ

)]−1
,−∞ < logti <∞. (17)

The log-likelihood function based on (1) simplify to

L(β) = log[l(β)] ∝
m∑
i=1


(−logλ) +

(
logti−w′iβ

λ

)
− log

[
1 +

(
logti−w′iβ

λ

)]
−(Ri + 1)log

[
1 + e

(
logti−w′iβ

λ

)]
.

 (18)

The MLE estimate of the jth covariate’s parameter is obtained by solving

∂L(β)

∂βj
=

m∑
i=1

−xij
λ

1− 1

1 +
(
logti−w′iβ̂

λ

) − (Ri + 1)e

(
logti−w′iβ̂

λ

)

1 + e

(
logti−w′

i
β̂

λ

)

 = 0. (19)

In addition, Fisher’s information matrix is as follows:

− E
[(

∂2L(β)

∂βj∂βj′

)]
(p+1)×(p+1)

= E


m∑
i=1

xjixj′i
λ2


[
1 +

(
logTi −w′iβ̂

λ

)]−2
− (1 +Ri)e

(
logTi−w′iβ̂

λ

)
[
1 + e

(
logTi−w′

i
β̂

λ

)]2


 .

(20)
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Finally, the other AFT regression models for the Log-Normal and the Gamma distributions have similar derivations,
and their performance will be discussed in the simulation section.

4. Simulation Studies

We conducted a simulation study based on 10,000 samples of size n to investigate the performance of the AFT
models based on P-II censoring schemes. We calculated the Bias, MSE, test power of H0 : β = 0 vs. H1 :
β 6= 0, and 95% confidence interval coverage for the hazard ratio (HR) for each set of the simulated samples.
We consider, for n = 300, six values of m namely; m = 180, 200, 230, 250 and 300, providing failure information
percentage: {(mn x100%); 60, 66.7, 76.7, 83.3, 93.3, and 100%}.

Four sampling schemes are considered, namely, ”censoring left” when (n−m) items are removed at the time of
the first failure and ”censoring right” when (n−m) items are removed at the time of themth failure. And when the
items are removed uniformly throughout the experiment, we call them censoring uniformly. Finally, the scheme
with n = m, R = (0, . . . , 0) denotes the complete sample, represented in all Figures by a blue horizontal line.
Note that, when n = 15,m = 10, then the censoring scheme R = (2, 3, 0∗8) means that after the first failure, two
items are removed at random from the remaining 14 items, then after the second failure, three items are removed
at random from the remaining 11 items. The next eight failure times are observed. For simplicity of notations,
R = (0∗4) indicates R = (0, 0, 0, 0). The table below provides more details on all schemes used in this paper.

Table 1. Censoring schemes and percentages

% of
censored data (n,m)

censoring
left

censoring
right

censoring
uniformly

40% (300, 180) (120, 0, . . . , 0) (0, 0, . . . , 120) (0, 1, 1, 0, . . . , 0, 1, 1)
33.3% (300, 200) (100, 0, . . . , 0) (0, 0, . . . , 100) (1, 0, 1, 0, . . . , 1, 0)
23.3% (300, 230) (70, 0, . . . , 0) (0, 0, . . . , 70)

(
7, 0∗22, . . . , 7, 0∗22

)
16.67% (300, 250) (50, 0, . . . , 0) (0, 0, . . . , 50)

(
1, 0∗4, 1, 0∗4, . . . , 1, 0∗4

)
6.67% (300, 280) (20, 0, . . . , 0) (0, 0, . . . , 20)

(
1, 0∗13, 1, 0∗13, . . . , 1, 0∗13

)
Ten thousand replicates of Progressively Type-II censored samples are generated from the following AFT

models: Weibull, Gamma, Log-Normal, and Log-Logistic. In our simulation, we take σ = 1 , β(= 0, 0.05, and
0.2), where, β represents the coefficient associated with the covariates. Due to the article’s length, we present only
some of the simulation results. The other results are similar.

We computed the Bias and MSEs of the estimated conditional hazard ratios from the simulated data. The
values are provided in Figures 1 and 8. It is observed from Figure 1-4 that the MSE values of ĤR are consistently
small. Moreover, as the failure rate m

n increases, we notice that not only do the MSE values decrease, but they
also become quite close to the MSEs of the complete sample. Furthermore, the censoring scheme does not affect
the MSEs when data are simulated from Gamma and Log-Normal AFT models (Figure 1 and 2). However, when
data are simulated from the Log-Logistic and Weibull AFT models, censoring from the right outperforms the other
schemes (see Figure 1 and 2). It is easy to notice from Figure 5-8 that the Bias values under all schemes are
significantly small. Furthermore, the Bias based on Progressively Type-II censoring is competitive with the Bias
based on the complete sample but is even smaller in many cases (see Figure 5-8).

The coverage probabilities are shown in tables 2 and 4. In general, the coverage probability based on
Progressively Type-II censoring performs fairly similar to the coverage probability based on the uncensored data
(n = 300) for all proposed AFT models. As for the Weibull and Log-Normal AFT models, the coverage probability
based on left censoring fiercely competes with all other censoring schemes, including the complete uncensored
data. It almost always reaches the desired level of 0.95, even when the failure rate is as low as 60%. From tables 3
and 4, the test power increases as the failure rate m

n increases.
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Moreover, Progressive Type-II censoring schemes in the Gamma and the Log-Normal AFT models behave nearly
identical to each other. This result indicates that censoring schemes have no severe impact on the test’s power when
data are from the models mentioned above. It is worth noticing that the tests based on Progressive Type-II censoring
are as powerful as those based on the complete uncensored sample. We can easily see from tables 3 and 4 that they
all achieve close estimation to the test nominal value of 0.05 under the null hypothesis in all cases. Furthermore,
the power of the test increases as m/n increases. A greater power of more than 0.9 is achieved under Weibull and
Log-Normal AFT models.
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Figure 1. Graphical representation of MSE values for estimates of the Hazard Ration (HR) when data are progressively
type-II censoring from the Weibull AFT model, with n = 300 and different m and β. The blue horizontal line represents the
MSE value for the complete data.
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Figure 2. Graphical representation of theMSE values for the estimates of the Hazard Ratio (HR) when data are Progressively
Type-II censoring data from the Log-Logistic AFT models, with n = 300 and for different values of m and β. The blue
horizontal line represents the MSE values for the complete data.
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Figure 3. Graphical representation of theMSE values for the estimates of the Hazard Ratio (HR) when data are Progressively
Type-II censoring data from the Gamma AFT models, with n = 300 and for different values of m and β. The blue horizontal
line represents the MSE values for the complete data.
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Figure 4. Graphical representation of theMSE values for the estimates of the Hazard Ratio (HR) when data are Progressively
Type-II censoring data from the Log-Normal AFT models, with n = 300 and for different values of m and β. The blue
horizontal line represents the MSE values for the complete data.
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Figure 5. Graphical representation of Bias values for estimates of the Hazard Ration (HR) when data are progressively type-
II censoring from the Weibull AFT model, with n = 300 and different m and β. The blue horizontal line represents the Bias
value for the complete data.
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Figure 6. Graphical representation of theBias values for the estimates of the Hazard Ratio (HR) when data are Progressively
Type-II censoring data from the Log-Logistic AFT models, with n = 300 and for different values of m and β. The blue
horizontal line represents the Bias values for the complete data.
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Figure 7. Graphical representation of theBias values for the estimates of the Hazard Ratio (HR) when data are Progressively
Type-II censoring data from the Gamma AFT models, with n = 300 and for different values of m and β. The blue horizontal
line represents the Bias values for the complete data.
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Figure 8. Graphical representation of theBias values for the estimates of the Hazard Ratio (HR) when data are Progressively
Type-II censoring data from the Log-Normal AFT models, with n = 300 and for different values of m and β. The blue
horizontal line represents the Bias values for the complete data.
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Table 2. Estimating the 95% confidence interval coverage for Weibull, Gamma, Log-Normal, and Log-Logistic distributions

β1 m Weibul Model Gamma Model Log-normal Model Log-logistic Model
Left Right Uniform Left Right Uniform Left Right Uniform Left Right Uniform

0 180 0.9471 0.8972 0.9391 0.94830 0.94800 0.94370 0.9503 0.9484 0.9471 0.9478 0.9443 0.9489
200 0.9515 0.9004 0.9384 0.94520 0.94770 0.94520 0.9476 0.9519 0.9502 0.9491 0.9427 0.9488
230 0.9494 0.9056 0.9457 0.94490 0.94740 0.94890 0.9521 0.9494 0.9527 0.9494 0.9455 0.9511
250 0.9456 0.9174 0.9434 0.94750 0.94670 0.94470 0.9470 0.9508 0.9460 0.9486 0.9445 0.9500
300 0.9482 0.9274 0.9455 0.94910 0.94700 0.94870 0.9491 0.9486 0.9469 0.9474 0.9420 0.9475

0.05 180 0.9490 0.8963 0.9400 0.9496 0.9468 0.9433 0.9483 0.9487 0.9484 0.9503 0.9418 0.9502
200 0.9494 0.8968 0.9374 0.9505 0.9461 0.9461 0.9488 0.9508 0.9458 0.9500 0.9464 0.9467
230 0.9469 0.9038 0.9416 0.9494 0.9496 0.9495 0.9492 0.9486 0.9496 0.9507 0.9434 0.9476
250 0.9436 0.9133 0.9415 0.9451 0.9439 0.9436 0.9466 0.9519 0.9496 0.9504 0.9441 0.9501
300 0.9479 0.9334 0.9507 0.9491 0.9458 0.9467 0.9510 0.9496 0.9478 0.9509 0.9360 0.9485

0.1 180 0.9486 0.8893 0.9397 0.9470 0.9496 0.9486 0.9494 0.9491 0.9471 0.9491 0.9452 0.9441
200 0.9480 0.9017 0.9400 0.9452 0.9449 0.9471 0.9480 0.9511 0.9477 0.9504 0.9426 0.9483
230 0.9482 0.9072 0.9456 0.9461 0.9475 0.9499 0.9471 0.9473 0.9482 0.9499 0.9449 0.9526
250 0.9500 0.9157 0.9427 0.9436 0.9462 0.9462 0.9490 0.9482 0.9520 0.9496 0.9440 0.9484
300 0.9462 0.9325 0.9497 0.9487 0.9495 0.9481 0.9477 0.9470 0.9491 0.9505 0.9450 0.9484

Table 3. Estimating the power of testing HR = 1 for Weibull, Gamma, Log-Normal, and Log-Logistic distributions, when
α = 0.05

β1 m Weibul Model Gamma Model Log-normal Model Log-logistic Model
Left Right Uniform Left Right Uniform Left Right Uniform Left Right Uniform

0 180 0.0529 0.1028 0.0609 0.05170 0.05200 0.05300 0.0497 0.0516 0.0529 0.0522 0.0557 0.0511
200 0.0485 0.0996 0.0616 0.0527 0.05240 0.05250 0.0524 0.0481 0.0498 0.0509 0.0573 0.0512
230 0.0545 0.0944 0.0543 0.05120 0.05130 0.05110 0.0466 0.0506 0.0473 0.0506 0.0545 0.0489
250 0.0544 0.0826 0.0566 0.05230 0.05330 0.05310 0.0536 0.0504 0.0543 0.0514 0.0555 0.0502
300 0.0518 0.0726 0.0546 0.05090 0.05300 0.05130 0.0509 0.0514 0.0531 0.0526 0.0580 0.0525

0.05 180 0.2688 0.6068 0.4271 0.1101 0.1129 0.1085 0.2709 0.2661 0.2693 0.1225 0.2196 0.1490
200 0.2889 0.5844 0.4399 0.1069 0.1135 0.1099 0.2952 0.3084 0.2999 0.1299 0.2168 0.1526
230 0.3256 0.5721 0.4047 0.1204 0.1147 0.1195 0.3295 0.3344 0.3282 0.1447 0.2217 0.1772
250 0.3566 0.5366 0.4094 0.1307 0.1352 0.1364 0.3535 0.3573 0.3516 0.1488 0.2149 0.1648
300 0.3898 0.4861 0.4138 0.1419 0.1354 0.1406 0.3885 0.3897 0.3896 0.1616 0.2042 0.1709

0.1 180 0.7621 0.9815 0.9277 0.2644 0.2737 0.2716 0.7644 0.7618 0.7713 0.3344 0.6339 0.4367
200 0.7939 0.9813 0.9352 0.2932 0.2957 0.2913 0.8026 0.8070 0.8020 0.3721 0.6449 0.4622
230 0.8474 0.9738 0.9226 0.3295 0.3337 0.3342 0.8485 0.8583 0.8577 0.4202 0.6354 0.4908
250 0.8780 0.9674 0.9284 0.3610 0.3509 0.3460 0.8851 0.8851 0.8836 0.4586 0.6272 0.4908
300 0.9284 0.9562 0.9263 0.3874 0.3859 0.3852 0.9170 0.9132 0.9136 0.4793 0.5924 0.5036
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5. Real data illustration

We illustrate our proposed approach using data from the University of Chicago’s Billings Hospital’s study
conducted between 1958 and 1970 on the survival of patients who had undergone surgery for breast cancer
(see Haberman, 1976, Landwehr et al., 1984). The number of cases in the study is n = 306 (the number of
events, m = 81). The data set contains four variables, Age of the patient at the time of operation, patient’s
year of operation (year - 1900), number of positive axillary nodes detected, and survival status. We fitted
the data using Weibull, Gamma, Log-Logistic, and Log-Normal AFT models. Tables 4 & 5 present the two
best-fit models to the data, namely Log-Logistic and Log-Normal based on Progressive Type-II censoring.
(https://archive.ics.uci.edu/ml/datasets/Haberman’s+Survival).

Table 4. The results of the AFT Log-Logistic fitted model, using Type-II right censoring

Fit Statistics (Unlogged Response)
-2Log Likelihood 626.154
LLogistic AIC(smaller is better) 632.154
LLogistic AICC(smaller is better) 632.233
LLogistic BIC(smaller is better) 643.324
Analysis of maximum likelihood parameter estimate
Parameter df Estimate Standard error 95% confidence limits Chi-square p-value
Intercept 1 4.2248 0.008 4.2092 4.2404 280843 < 0.0001
Number of nodes
Coefficient 1 -0.0027 0.0006 -0.0040 -0.0015 18.25 < 0.0001

Scale parameter 1 0.0401 0.0035 0.0338 0.0476

Table 5. The results of the AFT Log-Normal fitted model, using Type-II right censoring

Fit Statistics (Unlogged Response)
-2Log Likelihood 626.154
LLogistic AIC(smaller is better) 632.154
LLogistic AICC(smaller is better) 632.233
LLogistic BIC(smaller is better) 643.324
Analysis of maximum likelihood parameter estimate
Parameter df. Estimate Standard error 95% confidence limits Chi-square p-value
Intercept 1 4.2262 0.0089 4.2092 4.2087 224686 < 0.0001
Number of nodes
Coefficient 1 -0.0026 0.0007 -0.0040 -0.0040 13.88 0.0002

Scale parameter 1 0.0733 0.0058 0.0338 0.0627

Tables 4 and 5 indicate that the number of nodes has a statistically significant reverse relationship to the survival
time of patients’ undergone surgery for breast cancer. Both Log-Logistic and Log-Normal models provide similar
results.

6. Final remarks

Recently, progressive censoring has received substantial attention from many researchers. It is due to its advantages
in reducing the cost and time of the tests. Moreover, the availability of high-speed computing resources enhances the
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focus on progressive censoring. This paper proposed a more efficient survival regression analysis method for AFT
models based on Progressive Type-II censoring with four censoring schemes: censoring from right, left, uniform,
and uncensored samples. First, we studied parameter estimation based on the maximum likelihood approach. Then,
based on the inverse information matrix, we provided an expression for the estimated variance-covariance matrix.
The results showed that despite reducing the amount of information available for estimating the hazards ratios,
the Progressive Type-II censoring performance is still outstanding and even better than the estimates based on
complete data. Furthermore, Progressive Type-II censoring can significantly increase power when implemented on
the AFT models. The simulation study showed that, in general, the power of the test increases as the failure rate
m/n increases. Moreover, Progressively Type-II censoring proves to be reasonably accurate (all Bias values are
less than 0.0008) with smaller MSEs and broader coverage than those under the complete sample.
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