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Abstract This paper presents a novel method for clustering surfaces. The proposal involves first using natural splines basis
functions in a tensor product to smooth the data and thus reduce the dimension to a finite number of coefficients, and then
using these estimated coefficients to cluster the surfaces via k-means or spectral clustering. An extension of the algorithm to
clustering higher-dimensional tensors is also discussed. We show that the proposed algorithm exhibits the property of strong
consistency, with or without measurement errors, in correctly clustering the data as the sample size increases. Simulation
studies suggest that the proposed method outperforms the benchmark k-means and spectral algorithm which use the original
data. In addition, an EGG real data example is considered to illustrate the practical application of the proposal.
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1. Introduction

Clustering objects in an infinite dimensional space is a challenging task given the complex nature of the data.
Although most data on a continuous domain are observed at a finite set or grid, the computational cost may be too
high or the direct application of a clustering procedure to the raw data may fail to capture the intrinsic stochasticity
of the observations. Examples of such data structures with infinite dimensions include curves, surfaces, and
tensors, which are in reality usually observed with errors. The main goal of this paper is to develop a novel
clustering procedure for data sets whose elements are surfaces such as bivariate densities. The idea is to first
find an approximation of each surface by estimating the matrix (or tensor) of coefficients of a model in a finite
dimensional space, thereby lowering the complexity of the data, and then use these coefficients as the new data for
a certain clustering method.

Since the seminal paper of [42], introducing hierarchical clustering, and the work of [18] and [19], discussing
k-means clustering, developments and adaptations of these classical algorithms have been seen in a wide range of
applications, such as in bioinformatics ([2], [11]), clinical psychiatry ([27]), environmental policy ([21]), market
segmentation ([43]), medicine ([39]), text mining ([3]), supply management ([4]), and many other areas. The overall
goal of these algorithms is to find partitions of the data based on distance metrics between elements. For instance,
in (agglomerative) hierarchical clustering one produces a sequence of n− 1 partitions of the data, starting with
n singleton clusters, and then merging the closest clusters together step by step until a single cluster of n units
is formed. The iterative k-means clustering algorithm starts with a set of k initial cluster centers given as input
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based on a starting-point algorithm or previous knowledge. Each element of the data is then assigned a cluster
membership in such a way that the within-cluster sum of squares is minimized.

Clustering methods for curves, i.e. functional data clustering, have been explored by several researchers in
the past few years. [22], for example, performs clustering for multivariate functional data with a modification
of the k-means clustering procedure. In its motivating example, the goal is to find clusters of similar reconstructed
and registered ECGs based on their functional forms and first derivatives. For the multivariate functional data,
X(t) = (X1(t), . . . , Xp(t)) (p ∈ Z+), where t is in a compact subspace of R (often representing time), [34]
generalize the Mahalanobis distance in Hilbert spaces to create a measure of the distance between functional
curves and use it to build a k-means clustering algorithm. Their setting is different from our proposed method in
that the time t in [34] is the same for all components of the multivariate functional data, while in this paper we
allow bivariate functions, such as X(t1, t2), for example. A non-exhaustive list of recent literature that has studied
functional data clustering includes [1], [37], [13], [38], [14], [44], [8], [12], [45], [41], [17], [28], [31], [33], [9],
[47], [16].

In this paper we are interested in the generalization of clustering methods, such as the k-means algorithm, to
surfaces and tensors. We propose using basis functions in a tensor product as an approximation of the observed
data, and then applying the estimated coefficients of the basis functions to cluster the surfaces (or tensors) with
k-means or spectral clustering algorithm. Simulations show that our proposed method improves the accuracy of
clustering compared to the baseline applied directly to the raw vectorized data.

The remainder of the paper is organized as follows. In Section 2 we describe the estimation procedure of
the surfaces and the algorithm for clustering surfaces. Section 3 shows some asymptotic results on the strong
consistency of the algorithm in correctly clustering the data as the sample size increases. A generalization of this
method to tensor products of higher dimensions is discussed in Section 4. In Section 5 we present simulations that
assess the finite sample performance of the proposed method in comparison with the benchmark algorithms.

2. Methodology

Our proposed surface clustering method can be described in a general framework that consists of the following
two stages:
Stage 1: Obtain a matrix of estimated coefficients for each surface through a basis smoothing method.
Stage 2: Cluster the surfaces by grouping the estimated coefficient matrices via a clustering method.

In what follows, we detail the proposed methodology by considering natural cubic splines as the smoothing
method in Stage 1 to approximate each surface and k-means as the algorithm in Stage 2. However, note that the
proposal can be implemented in other forms. In particular, we consider spectral clustering ([32]) as the algorithm
in Stage 2 as an alternative proposal in the simulation studies in Section 5.

Let Si := Si(x, y), (x, y) ∈ Q be the underlying data generating process of the ith surface (1 ≤ i ≤ n), where
Q is a compact subset of R2. Since data are in general discretely recorded and frequently contaminated with
measurement errors, denote

zij = Si(xij , yij) + εij , (1 ≤ j ≤ mi; 1 ≤ i ≤ n) (1)

as the mi observed values of the ith surface at coordinates (xij , y
i
j), where εij is the measurement error which is

assumed to be i.i.d. with mean 0 and constant finite variance σ2.
There are different ways of representing functions and surfaces using basis functions, such as wavelets ([26]),

spline wavelets ([40]), logsplines ([24]), Fourier series, radial basis, B-splines ([7]), among others. In this paper
we focus on natural cubic splines, which impose boundary constraints so that the function is linear beyond the
boundary. A natural cubic spline with L knots is associated with L basis functions. It generally yields smoother
estimation than polynomial splines or B-splines, and therefore avoids unreasonable extrapolation at the boundary
([20]). The theoretical results we establish next are also valid for the other aforementioned dimension reduction
methods. Consider R knots in the x-dimension and L knots in the y-dimension, denoted as ζr (1 ≤ r ≤ R) and
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η` (1 ≤ ` ≤ L) respectively. Assume that the surface Si(x, y) can be well approximated by a natural cubic spline
tensor product, defined as

si(x, y,Θ) =

R∑
r=1

L∑
l=1

Nx,r(x)Ny,l(y)θirl,

where θirl are coefficients to be estimated, and Nx,r(·) and Ny,l(·) are natural cubic spline basis functions that
generate the spline spaces S1 = span{Nx,1, . . . , Nx,R} and S2 = span{Ny,1, . . . , Ny,L} respectively. Nx,r(·) and
Ny,l(·) are defined as

Nx,1(x) = Ny,1(y) = 1,

Nx,2(x) = x,

Ny,2(y) = y,

Nx,r+2(x) = dx,k(x)− dx,R−1(x) (k = 1, . . . , R− 2),

Ny,`+2(y) = dy,`(y)− dy,L−1(y) (` = 1, . . . , L− 2),

where

dx,r(x) =
(x− ζr)3+ − (x− ζR)3+

ζR − ζr
,

dy,`(y) =
(y − η`)3+ − (y − ηL)3+

ηL − η`
.

For ease of notation, we use the same degree (i.e. degree=3) and the same vector of knots for the natural spline
functions for all the n surfaces ([5], [6]). In this paper we assume R and L are fixed, however, there are several
methods in the literature that describe automatic procedures to obtain these values, see for example [40] and [10].
The linear space of functions formed by the product of these two spaces is denoted by S1 ⊗ S2. Because the Sobolev
spaceH2 :=

{
f :
∫
f2 +

∫
(f ′)2 +

∫
(f ′′2) <∞

}
can be well approximated by S1 or S2 in their respective domains

([23], [36], [29], [30]), the space of smooth surfaces in H2 ⊗H2 can be well approximated by S1 ⊗ S2.
The R× L matrix of coefficients Θi = {θirl}1≤r≤R;1≤l≤L for each surface i (i = 1, . . . , n), observed with

measurement errors, as specified in model (1) can be estimated by minimizing the least squares errors

vec(Θ̂i) = arg min
Θ

mi∑
j=1

[zij − si(xij , yij ,Θ)]2

= arg min
Θ

mi∑
j=1

[zij −N i
x(xij)

T
ΘN i

y(yij)]
2

= arg min
Θ

mi∑
j=1

[zij − (N i
y(yij)⊗N i

x(xij))
T vec(Θ)]2

= (M iTM i)−1M iT zi

where vec(Θi) is the vectorization of the matrix Θi arranged by columns, zi = (zi1, . . . , z
i
mi

)T , N i
x(xij) =

(N i
1(xij), . . . , N

i
R(xij))

T , N i
y(yij) = (N i

1(yij), . . . , N
i
L(yij))

T , and M i is the mi ×RL matrix with its jth row equal
to the 1×RL vector of (N i

y(yij)⊗N i
x(xij))

T .
Surface Si is hence summarized by the estimated matrix of parameters Θ̂i, which will be used as the input

features in clustering. Although the vectorization of the parameter matrix Θi exhibits an elegant expression of the
least squares solution, it may lead to loss of the information contained in the matrix structure of the estimated
parameters, when employing the clustering procedure. The k-means clustering (or other clustering methods) is a
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minimization algorithm based on distances between objects. Thus, we propose to convert vec(Θ̂i) back to a matrix
form by writing

Θ̂i = devec{(M iTM i)−1M iT zi}, (2)

where “devec” represents de-vectorization, i.e. arranging vec(Θ̂i) into an R× L matrix whose entries correspond
to the parameter matrix Θi. This preserves the spatial structure of the columns and rows of the coefficients that
correspond to the hills and valleys of the surface. Such spatial structure of the coefficients can be informative
when computing the distance between objects, which are based on matrix distance metrics. Next, one aims to
find a partition of the set of surfaces S = (S1, . . . ,Sn) by grouping the set of estimated parameter matrices
Θ̂
n

= {Θ̂1, . . . , Θ̂n} so that surfaces in the same cluster have features as similar as possible, and surfaces in
different clusters have dissimilar features. That is, for a given number of clusters K, the algorithm searches for the
set of cluster centers c = {c1, . . . , cK} that minimizes

1

n

n∑
i=1

min
c∈c
||Θ̂i − c||, (3)

where each c represents an R× L matrix with real elements, and || · || is an appropriate matrix norm.
The k-means algorithm finds the partition of the surfaces and their cluster centers c in the following iterative

manner.
Step 1: Initialize the partitions by setting c(0) as (Θ̂`1 , . . . , Θ̂`K ) (`1, . . . , `K ∈ {1, . . . , n}), which can be done,
for instance, by choosing
(a) the K matrices with random entries in the range of the entries of Θ̂i (i = 1, . . . , n),
(b) theK matrices among Θ̂i (i = 1, . . . , n) whose distance (norm) is the largest among themselves: first choose the
2 surfaces that are farthest apart, then sequentially choose other surfaces whose average distance to the previously
selected ones is the maximum,
(c) the K matrices (Θ̂`1 , . . . , Θ̂`K ) among Θ̂i (i = 1, . . . , n) so that the sum of the distances (norm) from each Θ̂i

to the closest one in (Θ̂`1 , . . . , Θ̂`K ) is the minimum.
(d) K randomly chosen matrices among Θ̂i (i = 1, . . . , n),
(e) the output of a pre-clustering procedure.
Step 2: Assign each surface, i.e. estimated parameter matrix Θ̂i, to the closest cluster center ` according to the
minimum distance (norm) ||Θ̂i − Θ̂`|| (` ∈ {`1, . . . , `k}).
Step 3: Compute the new cluster centers c(1) = (c

(1)
1 , . . . , c

(1)
K ), where c(1)` is the mean of the matrices Θ̂i for all

surfaces i allocated to the `-th cluster (` = 1, . . . ,K) .
Step 4: Repeat Steps 2 and 3 until there are no more changes in the cluster membership assignments.

3. Asymptotic Results

3.1. Strong Consistency without Measurement Errors

In this section we consider the ideal scenario where the entire surface S is observable without measurement errors.
Lemma 1 below shows that, given an approximation of S by a natural spline tensor (projection onto S1 ⊗ S2), the
cluster centers cn obtained from minimizing equation (3) converge to a unique (optimal) cluster center set c∗, as
the number of surfaces n goes to infinity.

Here we use notations similar to those in [25] and [1]. Let Π(S) be the unique matrix Θ ∈ RR×L such that

inf
Θ∈RR×L

||S − s(·,Θ)|| = ||S − s(·,Π(S))||.

That is, Π(S) is the projection of the smooth surface space H2 ⊗H2 onto S1 ⊗ S2. Let NRR×L and µ denote the
Borel σ-filed of RR×L and the image measure of P induced by Π. As Π is continuous, (RR×L,NRR×L , µ) is a

Stat., Optim. Inf. Comput. Vol. 10, March 2022



A. Z. ZAMBOM, Q. WANG AND R. DIAS 343

probability space. The surface sequence (S1, . . . ,Sn) induces a sequence Θn = (Θ1, . . . ,Θn) of i.i.d. random
matrices Θi = Π(Si) ∈ RR×L.

Let

F = {c ⊂ RR×L|card(c) ≤ K},
u(Θ, c) = min

c∈c
||Θ− c||F ,

and denote the objective function of the k-means algorithm as

un(Θn, c) =
1

n

n∑
i=1

u(Θi, c),

for all Θ ∈ RR×L, c ∈ RR×L, and c ∈ F . This differs from the classical clustering methods in that it is composed
of norms of matrix differences. Using an appropriate matrix norm, we can establish the following result.

Lemma 1
Let u(c) =

∫
RR×L u(Θ, c)µ(dΘ) and assume that inf{u(c)|c ∈ F} < inf{u(c)|c ∈ F, card(c) < K}. Then, the

(unique) minimizer c∗ of u(·) exists and there also exists a unique sequence of measurable functions cn from
(Ω,A, P ) into (F,BF ) such that cn(ω) ⊂Mn for all ω ∈ Ω and

un(Θn, cn) = inf
c⊂Mn

un(Θn, c) a.s.,

where {Mn}n is an increasing sequence of convex and compact subsets of RR×L such that RR×L = ∪nMn.
Furthermore, this sequence {cn} is strongly consistent to c∗ with respect to the Hausdorff metric.

3.2. Strong Consistency with Measurement Errors

Consider the more realistic model specified in equation (1), where the surfaces are actually recorded with some
measurement errors. Without loss of generality, assume the number of observations for each surface is the same,
denoted by m. Given a set of observations, {(xi1, yi1, zi1), . . . , (xim, y

i
m, z

i
m)} , one can estimate the surface si(·,Θ)

by the natural spline estimate ŝi = s(·, Θ̂), where Θ̂ is least-square estimated natural spline coefficient matrix given
in equation (2). Assume that each surface is observed at different grid points over a compact set [a, b]× [c, d], for
some real constants a, b, c, and d (a < b, c < d). Assume also that for each i, xi1, . . . , xim and yi1, . . . , yim are i.i.d.
with probability distributions h and g respectively. The following lemma shows that the estimator Θ̂ is strongly
consistent for Θ = Π(S), projection of the smooth surface spaceH2 ⊗H2 onto the space generated by the natural
spline bases.

Lemma 2
Assume the spline bases functions Nx,1, . . . , Nx,R and Ny,1, . . . , Ny,L are linearly independent on the support of
h and g respectively. Assume also that the surfaces Si belong to the space S defined as H2 ⊗H2 restricted to
bounded variation on [a, b]× [c, d]. Then, Θ̂ converges strongly to Θ = Π(S) when m→∞ uniformly over space
S. As a result, for almost all ω ∈ Ω and all S ∈ S, ||Θ̂−Θ|| → 0 as m goes to infinity.

Theorem 1
If all the assumptions in Lemma 1 and Lemma 2 are satisfied, the errors are i.i.d. with zero mean and finite constant
variance, and the errors are independent of surfaces or the design, for every n, if m is sufficiently large, the set
arg minc⊂Mn un(Θ̂

n
, ·) is nonempty. For all ω ∈ Ω, let ĉn(ω) be a minimizer of un(Θ̂

n
(ω), ·) with the constraint

that ĉn(ω) ⊂Mn, then limn limm h(ĉn, c∗) = 0 a.s.

The proofs of Lemma 1, Lemma 2, and Theorem 1 follow steps similar to those in [1]. We include the proof for
Theorem 1 in the appendix.
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4. Generalization to Tensor Clustering

The framework designed in Section 2 can be generalized to multi-dimensional clustering. Denote Si(x),x =
(x1, . . . , xd) ∈ Q, as the data generating tensor mechanism, whereQ is a subset of Rd and d is the tensor dimension
(d ≥ 2). The observed data (zi,xi) is such that

zij = Si(xij) + εij , (1 ≤ j ≤ mi; 1 ≤ i ≤ n). (4)

The approximation of surface Si(x) is then based on the smooth natural spline d-dimensional tensor product

si(x,Θ) =

R1∑
r1=1

. . .

Rd∑
rd=1

Nx1,r1(x1) . . . Nxd,rd(xd)θ
i
r1,...,rd

,

where θir1,...,rd are coefficients to be estimated and Nx1,r1(·), . . . , Nxd,rd(·) are the natural splines basis functions
that generate the spline spaces
S1 = span{Nx1,1, . . . , Nx1,R1

}, . . ., Sd = span{Nxd,1, . . . , Nxd,Rd
} respectively. The array of coefficients Θ has

dimension
∏d
i=1 ri, which is the number of parameters to be estimated.

The multi-dimensional space of smooth surfaces in H2 ⊗ . . .⊗H2 is then approximated by S1 ⊗ . . .⊗ Sd. The
least squares solution of this model can be written as

vec(Θ̂i) = arg min
Θ

mi∑
j=1

[zij − si(xij ,Θ)]2

= arg min
Θ

mi∑
j=1

[zij − (N i
xd

(xidj)⊗ . . .⊗N i
x1

(xi1j))
T vec(Θ)]2

= (M iTM i)−1M iT zi,

where vec(Θi) is the vectorization of matrix Θi arranged by columns, zi = (zi1, . . . , z
i
mi

)T , N i
x(xij) =

(N i
1(xij), . . . , N

i
R(xij))

T , N i
y(yij) = (N i

1(yij), . . . , N
i
L(yij))

T , and M i is the mi ×RL matrix with its jth row equal
to the 1×RL vector of (N i

y(yij)⊗N i
x(xij))

T . The proposed procedure can be applied to Θ̂i in a similar fashion
as in Section 2, except that one needs to employ an appropriate array norm to evaluate the distances between Θ̂i

and Θ̂j (i 6= j; i, j = 1, ..., n). We omit the details for the discussion of tensor clustering in this paper.

5. Simulation Study

In this section we investigate the finite sample performance of the proposed method in clustering surfaces through
two simulation scenarios. For comparison purposes, we also evaluate the performance of the k-means clustering and
spectral clustering as the benchmark procedures. For both the proposed method using k-means in Stage 2 and the
benchmark k-means, we chose the initial guess of the cluster centers in the first step of our proposed algorithm as
follows: consider the possible initial guesses given by initialization methods (b), (c), and 50 random initialization as
described in method (d) of the k-means algorithm in Section 2. From these 53 possible initial guesses, we choose
the one whose K matrices of estimated coefficients, when defined as the center of clusters, have the minimum
average distance to the objects in the data assigned to their corresponding clusters. In our numerical studies, we
use the Frobenius norm.

The first simulation setting, denoted as Scenario 1, concerns two clusters whose cluster centers are the following
(probability density) surfaces, each composed of a mixture of Normal distributions:

f1(x, y) = 0.3φ

(
(x, y);

(
0
−3

)
,

(
1 0
0 5

))
+ 0.7φ

(
(x, y);

(
0
3

)
,

(
1 0
0 1

))
,

f2(x, y) = 0.3φ

(
(x, y);

(
0
−3

)
, c

(
1 0
0 1

))
+ 0.7φ

(
(x, y);

(
0
3

)
, c

(
1 0
0 1

))
,
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Figure 1. Top: from left to right, surface of the second cluster center (density f2) with constant c equal to 0.25, 1, and 2.5
respectively. Bottom: surface of the first cluster center (density f1) for ease of visual comparison with the second cluster
center.

where φ((x, y);µ,Σ) is the probability density function of a bivariate Normal distribution with mean µ and variance
Σ, and c is a fixed constant. Note that the covariance matrix of each Normal component of the second cluster
center is a multiple of c. For small values of c, the peaks, or modes, of the Normal mixture densities in the
second cluster are very high. As c increases, the peaks become lower. The simulations we present below show
the performance of the proposed clustering procedure with different values of c, that is, with varying degrees
of difficulty in differentiating between the two clusters. Figure 1 shows the centroid surfaces from both clusters
without random error (see data generation below), where the top plots display the surface of the second cluster for
c = 0.25, 1 and 2.5. Note that distinguishing between these two clusters when c = 1 is challenging, due to the fact
that the only difference is the variance of the first component of the normal mixture. The task of clustering becomes
more difficult with the presence of random error in the data generating process which we describe next.

The simulated data (x, y, z) for each surface were generated in a 20 × 20 grid, i.e. a total of 400 data points, in
the square region (−5, 5)× (−5, 5). The data for Clusters 1 and 2 are generated as follows

Cluster 1 : {(x, y, z) : xj = yj = −5 + j/2, j = 1, . . . , 20; zj = f1(xj , yj) + ε1j},
Cluster 2 : {(x, y, z) : xj = yj = −5 + j/2, j = 1, . . . , 20; zj = f2(xj , yj) + ε2j},

where ε1j and ε2j are i.i.d. random errors from N(0, 0.0152) and N(0, 0.012) respectively. We generated a total of
n = 60 surfaces, with 30 samples belonging to each of the two clusters. In the simulations in this paper, we used
natural cubic splines basis and a fixed number of 6 knots in each axis for the estimation of the surfaces. This process
is repeated for B = 500 Monte Carlo simulation runs.
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The second simulation setting, denoted as Scenario 2, is composed of 3 clusters whose centroid surfaces are
defined by

f3(x, y) = 0.3φ

(
(x, y);

(
0
−3

)
,

(
2 0
0 1

))
+ 0.7φ

(
(x, y);

(
0
1

)
,

(
1 0
0 1

))
,

f4(x, y) = 0.3φ

(
(x, y);

(
0
1

)
,

(
2 0
0 2

))
+ 0.7φ

(
(x, y);

(
0
−3

)
,

(
1 0
0 1

))
,

f5(x, y) = 0.3φ

(
(x, y);

(
0
−2

)
, c

(
2 0
0 1

))
+ 0.7φ

(
(x, y);

(
1
0

)
, c

(
1 0
0 1

))
.

Figure 2 shows the centroid surfaces from the 3 clusters for c = 0.25, 1 and 2.5. The first two clusters are easier to
distinguish, since they have opposite hills. However, the third cluster may bring a challenge to the task, especially
since the data are generated with random errors.

The data for each cluster are simulated as follows:

Cluster 1 : {(x, y, z) : xj = yj = −5 + j/2, j = 1, . . . , 20; zj = f3(xj , yj) + ε1j},
Cluster 2 : {(x, y, z) : xj = yj = −5 + j/2, j = 1, . . . , 20; zj = f4(xj , yj) + ε2j},
Cluster 3 : {(x, y, z) : xj = yj = −5 + j/2, j = 1, . . . , 20; zj = f5(xj , yj) + ε3j},

where ε1j , ε
2
j , ε

3
j are i.i.d. random errors fromN(0, 0.0152). We generated a total of n = 60 surfaces, with 20 surfaces

belonging to each cluster. This process was repeated for B = 500 Monte Carlos simulation runs.
It is well known that the initialization of the k-means procedure can have an immense influence on the clustering

results ([35], [15]). For this reason and for a fair comparison between the proposal and the benchmark, we initialized
each procedure in the same way as described in the first paragraph of this section. The benchmark k-means and
spectral clustering apply the algorithm to the vectorized raw data set, while the proposal employs the k-means or
spectral clustering to the natural cubic splines estimated coefficients.

In order to evaluate the results we consider the following performance measure. Let Si(b) denote the randomly
generated surface i (i = 1, . . . , n) in the b-th simulation run (b = 1, . . . , B). Let L(Si(b)), L∗(Si(b)) ∈ {1, . . . ,K}
be the predicted and true cluster membership for surface i respectively. Define

φ =

∑B
b=1 min

τ∈T

∑n
i=1 I(L(Si(b)) 6= τ(L∗(Si(b))))

B
, (5)

where the T in “τ ∈ T ” is the set of permutations over {1, . . . ,K}. It measures the number of mis-specification
errors of a clustering procedure, which is based on the MCE measure in [15]. Hence, the performance measure φ
is the mean mis-specification, i.e., the average number of surfaces assigned to incorrect clusters.

Table 1 shows the results, out of 500 Monte Carlo simulation runs, of the proposed algorithm that is realized by
either the k-means or spectral clustering, as well as the results of the benchmark k-means and benchmark spectral
clustering. For Scenario 1, for small values of c, the variance of the densities in Cluster 2 is small and hence the
hill is high (see top left plot of Figure 1). In this case all algorithms cluster the data satisfactorily. When c = 1
or 1.25, the benchmark k-means and benchmark spectral clustering incorrectly specify an average of 11 and 28
curves respectively. In comparison, the proposed methods still keep its error rate. In fact, for all values of c, the
proposed procedures are able to maintain a high clustering performance, achieving virtually no errors. For values
of c between 1 and 1.5, the two bivariate densities that compose each cluster are very similar (see top and bottom
middle plots in Figure 1). In such cases, the benchmark k-means has poor performance and incorrectly clusters a
large number of surfaces. For larger values of c, the variance of the densities in Cluster 1 is large, while the hills in
Cluster 2 are low, and therefore the difference between the two clusters are again more visible (see top and bottom
right plots in Figure 1). For these values of c, all methods under comparison yield satisfactory results. For Scenario
2, in all cases the benchmark k-means algorithm yields the largest mean number of incorrectly clustered surfaces.
For values of c between 1.5 and 2, the benchmark spectral clustering performs the best, with the fewest incorrectly

Stat., Optim. Inf. Comput. Vol. 10, March 2022



A. Z. ZAMBOM, Q. WANG AND R. DIAS 347

x

y

z

0.00 0.02 0.04 0.06 0.08 0.10

x

y
z

0.00 0.02 0.04 0.06 0.08 0.10

x

y

z

0.00 0.02 0.04 0.06 0.08 0.10

x

y

z

0.00 0.02 0.04 0.06 0.08 0.10

x

y
z

0.00 0.02 0.04 0.06 0.08 0.10

x

y

z

0.00 0.02 0.04 0.06 0.08 0.10

x

y

z

0.0 0.1 0.2 0.3 0.4

x

y
z

0.00 0.02 0.04 0.06 0.08 0.10

x

y

z

0.00 0.01 0.02 0.03 0.04

Figure 2. From left to right, surfaces of the cluster center with constant c equal to 0.25, 1, and 2.5 respectively; rows one,
two, and three correspond to f3, f4, and f5 respectively.

clustered surfaces. However, for values of c that are smaller than 1.5 or greater than 2, the proposed algorithm,
realized by either the k-means or spectral clustering method in Stage 2, outperforms both benchmarks, with fewer
incorrectly clustered surfaces.

6. Real Data Analysis: EEG Clustering

In this section we illustrate the proposed surface clustering method in an analysis of the Electroencephalogram
(EEG) dataset, which is available at the University of California Irvine Machine Learning Repository
(https://archive.ics.uci.edu/ml/datasets/eeg+database). The dataset is composed of 122 subjects that are divided
into two groups: alcohol and control. We focus on the case where participants were exposed to two stimuli (S1 and
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Table 1. Comparison of mean number of incorrectly clustered surfaces out of 500 Monte Carlo runs, with different values of
c in the first simulation setting.

Scenario 1 Scenario 2

Proposal Benchmark Proposal Benchmark
c k-means spectral k-means spectral k-means spectral k-means spectral

.25 0 0 0 0 16.93 15.05 37.84 20

.5 0 0 0 0 17.00 16.00 38.00 20

.75 0 0 0 1 17.00 20.00 38.00 20
1 0 0 11 28 18.00 19.00 38.00 23
1.25 2 0 11 25 20.00 29.00 38.00 22
1.5 0 1 29 7 21.00 15.00 38.00 6
1.75 0 0 27 4 22.00 14.00 38.00 10
2 0 0 27 0 22.00 13.00 38.00 11
2.25 0 0 27 0 21.00 14.00 38.00 25
2.5 0 0 0 0 24.00 16.00 38.00 25

S2). The stimulus was a picture of an object chosen from the 1980 Snodgrass and Vanderwart picture set. They
were either matched, where S1 was identical to S2, or not matched, where S1 was different from S2. On the scalp of
each subject, 64 electrodes were positioned according to the Standard Electrode Position Nomenclature, American
Electroencephalographic Association, and measurements were taken at 256 Hz (3.9-msec epoch) for 1 second (See
[46] for details). The channels (i.e. electrodes) and time compose the surface domain (x, y) and the measurements
are the response z.

We averaged over all trials for each individual and used the mean surface to represent the output of each subject’s
response to the stimuli. Visualization of the raw data of a subject in the control group as well as the raw data of a
subject in the alcohol group are shown in Figure 3. The EEG surface of the control subject seems to be somewhat
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Figure 3. Example of EEG measurements for a subject in the control group (left) and alcohol group (right).

flat with some random noise, while the EEG surface of the subject in the alcohol group shows a few hills for some
channels at later time stamps. However, this is not the case for all subjects. It can also be observed that the EEG
surfaces of some subjects in the control group have hills at later time stamps, while some subjects in the alcohol
group have somewhat flat EEG surfaces throughout time. This imposes practical challenges on the clustering task,
as we discuss below.

We applied our proposed clustering method to the full dataset of 122 patients, where the elements clustered by
the k-means algorithm were the mean surfaces of the subjects across their trials. Given that we know the actual
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groups of the subjects, i.e. either control or alcohol, we can compute how many errors in clustering were made by 
the proposed algorithm when applied to this dataset. The number of incorrectly clustered subjects was 41 (33.6%) 
for the matched stimuli, and 38 (31.1%) for the not matched stimuli using the proposal based on k-means and 
44 (36.1%) and 39 (32.0%) respectively when using the proposal based on spectral clustering. For comparison 
purposes, the benchmark k-means obtained 41 (33.6%) and 44 (36.1%) for the matched and not matched stimuli 
respectively, and the benchmark spectrum obtained 44 (36.1%) and 39 (32.0%) for the matched and not matched 
stimuli respectively.

7. Conclusions

This article proposes a new approach for clustering surfaces using the coefficients o btained f rom n atural cubic 
splines that approximate their data generating smooth forms as the basis for a k-means clustering algorithm. The 
proposed method is shown to be strongly consistent in both stochastic and non-stochastic cases. Compared to the 
classical k-means procedure applied directly to the vectorized version of the data that may lose the geometric 
structure of the surface, our surface clustering procedure performs consistently better in correctly clustering 
surfaces observed with noise in simulation studies. From the wide range of applications of surface clustering, 
in this paper we studied the identification of effects of alcohol in the brain by clustering Electroencephalogram 
data from 122 patients and clustering into alcohol and control groups, where the surfaces were defined b y the 
stimuli response at 64 electrodes throughout time stamps.
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Appendix

Proof for Theorem 1
In the proof of this theorem, we follow steps similar to those in Theorem 1 of [1]. From Lemma 2, for almost all

ω ∈ Ω and all S ∈ S, the sequence un(Θ̂
n
, ·)→ un(Θn, ·) as m→ +∞. Therefore, to prove Theorem 1, we need

to show the convergence of a sequence of minimizers, ĉn, of un(Θ̂, ·) to cn which is the minimizer of un(Θ, ·).
Let K be the number of clusters. Define

ψ : (RR×L)K → F = {c ⊂ RR×L|card(c) ≤ K},
c → {c1, . . . , cK}

and

Φn : (RR×L)n × (RR×L)K → (−∞,+∞],

(Θn, c) → un(Θn, ψ(c)) + IKn(ψ(c))

where Kn = {c ∈ F |c ⊂Mn}, and IKn
(c) = 0 if c ∈ Kn and IKn

= +∞ if c /∈ Kn. It can be seen that finding
arg minc⊂Mn un(Θn, c) is equivalent to finding arg minc∈(RR×L)K Φn(Θn, c).

For all ω ∈ Ω, define

gm(ω, ·) : (RR×L)K → (−∞,+∞]

c → Φn(Θ̂
n
(ω), c)

g(ω, ·) : (RR×L)K → (−∞,+∞]

c → Φn(Θn, c)
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Note that Θ̂
n

depends on the number of observational points m for each surface in the data set. For simplicity of
notation, we omit including a subscript that emphasizes the dependency of Θ̂

n
on m.

For the rest of the proof, we want to apply the theorem of convergence in minimization (Kochafeller & Wets,
1998, p. 266). It is stated as follows: if the sequence (gm)m is eventually level-bounded and epi-converges to g, with
gm and g being lower semi-continuous and proper, then for m sufficiently large, the sets arg min gm are non-empty
and are all included in the same compact set. Furthermore, if tm ∈ arg min gm and t is a cluster point of (tm)m,
then t ∈ arg min g. To employ the theorem of convergence in minimization, we need to show that (1) (gm)m is
level-bounded; (2) g(ω, ·) is the epi-limit of gm(ω, ·); and (3) gm(ω, ·) and g(ω, ·) are both lower semi-continuous.
The proofs for (1)-(3) are given below.

Take ω ∈ Ω such that Θ̂
n
(ω)→ Θn(ω) as n→ +∞ (by Lemma 2). Then, for all S ∈ S and for all c ∈ (RR×L)K

and all sequences (cm)m such that cm → c, by the continuity of un and ψ, we have

lim
m→+∞

gm(ω, cm) = g(ω, c).

Thus, g(ω, ·) is the epi-limit of gm(ω, ·). In addition, because g(ω, ·) and gm(ω, ·) take finite values on Kn, they are
proper. Furthermore, since ψ−1(Kn) =

∏k
i=1Mn and

{
c ∈ (RR×L)K |gm(ω, c) ≤ α

}
for all α ∈ R, it follows that

gm(ω, ·) is level bounded.
Next, we show that both gm(ω, ·) and g(ω, ·) are lower semi-continuous. First, by the continuity of un and ψ, the

set {
c ∈ (RR×L)K |gm(ω, c) ≤ α

}
=
{

c ∈ (RR×L)K |un(Θ̂
n
, ψ(c) ≤ α

}
∩ ψ−1(Kn)

is closed, and therefore gm(ω, ·) is lower semi-continuous. Similarly, it can be shown that g(ω, ·) is also lower
semi-continuous.

By the theorem of convergence in minimization, we conclude that for large enough m, arg min gm(ω, ·) is non-
empty, and every cluster point of a sequence cm(ω) of the minimizer of gm(ω, ·) is a minimizer of g(ω, ·). Note
that

arg min
c⊂Mn

un(Θ̂
n
, c) = ψ(arg min gm(ω, ·)).

Hence, for m that is sufficiently large, arg minc⊂Mn
un(Θ̂

n
, c) is non-empty. If one takes (ĉnm(ω))m, a sequence

of minimizers of un(Θ̂
n
, ·) in Mn, then there exists a sequence (am(ω))m s.t. ĉnm(ω) = ψ(am(ω)) and am(ω) is

a minimizer of gm(ω, ·). Let cn(ω) be the unique minimizer of un(Θn, ·). We have arg min g(ω, ·) = ψ−1(cn(ω))
is a finite set, and (am(ω))m has a finite number of cluster points. Then, for all ε > 0, there exists M s.t. for all
m > M , am(ω) is close to a cluster point s.t. h(ĉnm(ω), cn(ω)) < ε (here h(·) represents the Hausdorff metric).
That is, ĉnm(ω)→ cn(ω) as n→ +∞.

By Lemma 1, we conclude that limm→+∞ limn→+∞ h(ĉn(ω), c∗) = 0 for almost all ω. This completes the proof.
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