
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 11, September 2023, pp 829–852.
Published online in International Academic Press (www.IAPress.org)

Statistical inferences for the Weibull distribution under adaptive progressive
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Abstract This paper provides four well-known statistical inferences for the principal parameters regarding the two-
parameter Weibull distribution including its hazard, quantile, and survival function based on an adaptive progressive type-II
censoring plan. The statistical inferences involve the likelihood and approximate likelihood methods, the Bayesian approach,
the bootstrap procedure, and a new conditional technique. To construct Bayesian point estimators and credible intervals,
Markov chain Monte Carlo, Metropolis-Hastings, and Gibbs sampling algorithms were used. The Bayesian estimators are
developed under conjugate and non-conjugate priors and in the presence of symmetric and asymmetric loss functions.
In addition, a conditional estimation technique with interesting distributional characteristics has been introduced. The
aforementioned methods are compared extensively through a series of simulations. The results of comparative study showed
the superiority of the conditional approach over the other ones. Finally, the developed methods are applied to analyze well-
known wind speed data.
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1. Introduction

Although the Weibull distribution is a classical distribution introduced in the early 1950s by [42], it has attracted
more and more attention in recent decades from modern engineers, statisticians, and researchers. This is because
its probability density function (p.d.f.) is well-formed and flexible enough to describe many types of data. This
model is broadly utilized in reliability engineering [7,20], quality engineering [3,15,19,28], survival analysis
[10,22,31,39], and statistical inference [6,30,43] for modeling the failure time or failure rate of a product,
component, or an alive creature. While the two-parameter Weibull model has two original parameters, i.e., a
scale parameter and a shape parameter; there are some interesting functions related to the distribution like the
cumulative distribution function (c.d.f.), survival function (s.f.), hazard rate function (h.r.f.), and quantile function
(q.f.) that their estimations are of importance for the researchers. In brief, the main challenges around this model
are as follows: (i) How to estimate its parameters or its related interesting functions, and (ii) How to provide
lifetime data to make an analysis. To tackle concern (i), several inferential methods like maximum likelihood
(ML) and approximate maximum likelihood (AML), least square, best linear unbiased, bootstrap, and Bayesian
approaches are implemented in literature. In addition, censoring plans, especially progressively censored samples,
are commonly used to relax concern (ii) when trying to collect lifetime data for reliability tests, quality inspections,
or clinical trials. The reader can find excellent topics in these areas in [5,8,22,34] and references therein.
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In the literature, the estimation of the Weibull original parameters as well as its related functions has been
widely investigated. Lin et al. [27] provided point estimators of the original parameters through ML and AML
methods according to a progressive type-II hybrid censoring plan. Aboeleneen [2] investigated the Bayesian and
ML estimation of the original parameters along with the s.f. and h.r.f. under generalized order statistics. Given
a progressively type-II hybrid censoring sample, ML, AML and Bayesian estimators of the original parameters
were studied by Bayatmokhtari et al. [29]. Elmahdy and Aboutahoun [13] considered finite mixtures of three
parameters Weibull distribution and derived ML estimation of the original parameters when data are completely
available. The entropy of the Weibull distribution was estimated by utilizing the ML and Bayesian estimation under
the generalized progressively hybrid censoring scheme by Cho et al. [12]. Jia et al. [21] presented the point and
interval estimations in accordance with the ML, AML, and Bayesian approaches for original parameters and s.f.
under multiply type-II censored data. Recently, Tiefeng [45] developed the original parameters estimations using
the Newton-Raphson and EM algorithms, least square, weighted least square, and maximum product of spacing
methods under a generalized progressively hybrid censored sample.

On the other hand, in the conditional estimation perspective, there exists great attention from the researchers in
this filed. Among the earliest work, two comprehensive papers have dealt with the conditional interval estimation
of the Weibull distribution. Firstly, Lawless [24] provided conditional interval estimations of the Weibull original
parameters as well as q.f. in the presence of a type-II censoring scheme. They also enumerated some reasons
for considering this strategy instead of classical methods. Later, Viveros and Balakrishnan [38] extended the
conditional estimations of the original parameters and q.f. for the location-scale family of distributions. From
the application point of view, Haghighi et al. [19] presented conditional control charts for monitoring the q.f. of
the Weibull distribution under the type-II censoring plan. A similar work was also done by Haghighi [18] based on
the Bayesian-conditional method. Recently, Wang et al. [41] compared conditional and some existing monitoring
procedures of the Weibull q.f. under complete and type-II censored data.

Although researchers have addressed separately some estimation methods of the Weibull s.f., h.r.f. and q.f., to
the best of our knowledge, there is no unified study in the literature concerning the point and interval estimators
of these interesting functions based on the ML, AML, Bayesian, and bootstrap approaches. In addition, this study
develops conditional estimators of s.f. and h.r.f.. The motivation for constructing conditional confidence intervals
for the s.f. and h.r.f. has arisen from the fact that the conditional confidence intervals for the original parameters
as well as q.f. are reported in literature as more efficient than the traditional methods even in the small sample
sizes. Thus, this study also tries to answer the question: what are the performances of the conditional confidence
intervals for s.f. and h.r.f. of the Weibull distribution? Another favourite challenge is generalizing sampling plan to
a general scheme that includes ordinary and progressive type-I and type-II censored schemes. This generalization
helps the practitioner to investigate and compare all the previous stuff and provides the matter to make inference
about the Weibull original parameters and its relating functions under progressive and ordinary type-I and/or type-
II censoring plans. This flexible censoring plan is called adaptive progressive type-II censoring (APC-II) scheme,
which is completely discussed in the next section.

The rest of the paper is organized as follow. The p.d.f., s.f, h.r.f., and q.f. of the Weibull and smallest extreme value
(SEV) models as well as the definition of APC-II plan are presented in Section 2. The point and interval estimators
of p.d.f., s.f, h.r.f., and q.f. based on ML and AML methods, percentile bootstrap procedure, Bayesian approach, and
conditional technique are developed in Sections 3-7, respectively. Section 8 is devoted to the conduct simulation
of studies to assess the behavior of the presented estimation methods. In section 9, to analyze a well-known wind
speed dataset, the conditional method has been applied for assessing the treatment of the parameters of s.f, h.r.f.,
and q.f. according to the Weibull distribution. Finally, in the last section, some conclusions are provided.

2. Models and Notation

Some of the introductory symbols and definitions applied throughout the paper are provided in this section.
Especially, the APC-II plan has been described in detail and some of its interesting features are discussed. In
addition, the related functions of both the Weibull and SEV distributions and their interactions are presented.
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Finally, four loss functions including two symmetric and two asymmetric functions along with their corresponding
Bayesian estimators are presented for the Bayesian approach.

2.1. Adaptive progressive Type-II censoring scheme

Inference based on complete datasets usually takes a lot of time and may cost lots of money as well [23,37].
To tackle this obstacle, researchers introduce several sampling plans to reduce the sampling time and cost. For
example, the ordinary and progressive Type-I and Type-II censoring schemes have been introduced to deal with
time and cost limitations of censorship, respectively [17,32]. In a Type-I scheme, the time for the test is pre-fixed,
whereas in a Type-II scheme, the number of observed failures is pre-fixed and the test termination time is random.
Both of these sampling plans do not provide the flexibility and freedom of action to the experimenter. To tackle
these restrictions, many sampling plans are suggested as extensions or combinations of these two basic censoring
schemes. As some excellent examples, in [32,33,37], the APC-II censoring scheme was introduced that combines
the progressive Type-I and Type-II plans. In this plan, the experimenter has a prefixed time like the progressive
Type-I plan and a censoring scheme like the progressive Type-II plan. Until the prefix time, the experimenter acts
like a progressive Type-II censoring scheme, and after that, he/she only wants to terminate the experiment as soon
as possible. In the next step, the failure times are observed, and no unit is removed. In continue, the process of this
experiment is presented and some of its related notations are provided.

Consider threshold time T , sample size n, number of failed units m (0 ≤ m ≤ n) and censoring scheme
R = (R1, R2, . . . , Rm) such that n = m+

∑m
i=1 Ri as prefixed values available for the experimenter before the

test. Assume that n units are putted on a life testing experiment and let X1, X2, . . . , Xn be their corresponding
random lifetimes. The experiment is set to begin until the first failure, which is denoted by X1:m:n. After that,
immediately, R1 units from n− 1 unobserved ones are randomly removed from the process. The experiment
continues until the second failure, denoted by X2:m:n, is occurred, and similarly, the experiment is followed until
progressively type-II censored order statistics (PCOS-II), X1:m:n, X2:m:n, . . . , Xm:m:n are completely observed.
Just like the process of PCOS-II, in APC-II, Xi:m:n’s are observed until the first of ones exceeds the threshold T or
equivalently j = inf{j1 : xj1−1:m:n < T < xj1:m:n} is supposed. Here, the experimenter must reset the censoring
scheme such that the experiment is done as soon as possible, or consequently the new censoring scheme is
R∗ = (R1, R2, . . . , Rj−1, 0, 0, . . . , 0, 0, n−m−

∑j−1
i=1 Ri). It is easy to check that for T = −∞ and T = ∞, APC-

II reduces to progressive Type I and progressive Type-II censoring schemes, respectively.
Given the integer sizes m and n, censoring scheme R = (R1, R2, . . . , Rm), and time threshold T and according

to [32,33], the joint p.d.f. of the random sample X1:m:n, X2:m:n, . . . , Xm:m:n arising from a APC-II plan is given
by

fXR
1:m:n,...,X

R
m:m:n

(x1, . . . , xm) =

m∏
i=1

γif(xi)× SCj (xm)

J∏
i=1

SRi(xi), (1)

where γi =
∏m

k=1(n− k + 1−
∑min(i−1,j)

l=1 Rl) and Cj = n−m−
∑j

i=1 Ri.
The relation (1), has a complicated form and it is better to altered. In accordance with a APC-II plan, one can

replace R = (R1, R2, . . . , Rm) and γi with R∗ = (R∗
1, R

∗
2, . . . , R

∗
j , 0, 0, . . . , 0) and γ∗

i =
∑m

j=i R
∗
j where J = j.

Consequently, the joint p.d.f. in (1) can be represented as [8]:

fXR
1:m:n,...,X

R
m:m:n

(x1, . . . , xm) =

m∏
i=1

γ∗
i f(xi)× SR∗

i (xi). (2)

In what follows, relation (2) would be used instead of (1) because of its simplicity in manipulation and simulation
process.
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2.2. Models

Suppose that the lifetime X follows the two parameters Weibull distribution with shape parameter α and scale
parameter β. It is shown here by X ∼ W (α, β). The p.d.f., s.f., h.r.f., and q.f. of X are, respectively, given by:

fX(x) =
α

β

(
x

β

)α−1

e−(
x
β )

α

, (3)

SX(x) = e−(
x
β )

α

, (4)

HX(x) =
α

β

(
x

β

)α−1

, x > 0, α, β > 0, (5)

and
QX(p) = β[− log(1− p)]α, 0 < p < 1. (6)

As a suitable transformation to the location-scale family of distributions, set Y = log(X). It is known that Y

follows the SEV distribution with location parameter µ = log(β) and scale parameter σ =
1

α
that is shown by

Y ∼ SEV (µ, σ). Then, the p.d.f., s.f., h.r.f., and q.f. of Y are, respectively, given by:

fY (y) =
1

σ
e

y−µ
σ −e

y−µ
σ , (7)

SY (y) = e−e
y−µ
σ , (8)

HY (y) =
1

σ
e

y−µ
σ , y, µ ∈ R, σ > 0, (9)

and
QY (p) = µ+ σ log(− log(1− p)), 0 < p < 1. (10)

This transformation allows conditional estimation for the reliability parameters of the Weibull distribution. It’s
due to the direct derivations between the aforementioned parameters in the SEV and Weibull distributions discussed
in the following Lemmas.

Lemma 1. Let (XR
1:m:n, . . . , X

R
m:m:n) be an APC-II sample arising from the W (α, β) distribution with censoring

scheme R = (R1, R2, . . . , Rm) and the threshold T and let the transformations Yi = log(XR
i:m:n) for i =

1, 2, . . . ,m. Then Yi
d
= Y R

i:m:n where the notation d
= represents that X and Y follow the same distribution and

where (Y R
1:m:n, . . . , Y

R
m:m:n) is an APC-II sample arising from the SEV (µ, σ) distribution with the same censoring

scheme and threshold log(T ).

Proof
Using relation (2) and monotone property of transformation Y = log(X), the proof would be resulted.

Lemma 2. If X ∼ W (α, β) and Y ∼ SEV (µ, σ), then

QX(x) = eQY (x), SX(x) = SY (log(x)),

and

HX(x) ≃ lim
h→0

log
SX(x)

SX(x+ h)
= lim

h→0
log

SY (log(x))

SY (log(x+ h))
.

Proof
Applying the transformation Y = log(X) and considering relations (3)-(6) and (7)-(10), the proof would be resulted
after some mathematical manipulations.
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Table 1. Four kinds of loss functions and their corresponding Bayesian estimators

Loss Function Formula Li(δ, θ) Bayesian Estimator δ∗iB
Squared Error Loss (SEL) (δ − θ)2 E(θ | x)
Linear Exponential Loss (LINEXL) e(δ−θ) − (δ − θ)− 1 − log(E(e−θ | x))
Entropy Loss (EL) δ

θ
− log( δ

θ
)− 1 1

E( 1
θ
|x)

Stein’s Loss (SL) δ
θ
+ θ

δ
− 2

√
E(θ|x)
E( 1

θ
|x)

2.3. Loss Functions

Two kinds of loss functions are considered in Bayesian estimation, symmetric and asymmetric ones. Let θ be an
unknown parameter and δ be an arbitrary estimator for θ. These loss functions and the Bayesian estimator regarding
each of them are presented in Table (1). It is easy to see that Squared Error Loss (SEL) and Stein’s Loss (SL) are
symmetric, i.e., L(δ, θ) = L(θ, δ) and Linear Exponential Loss (LINEX) and Entropy Loss (EL) are asymmetric,
i.e., L(δ, θ) ̸= L(θ, δ).

3. MLE

The most widely used estimator that researchers are interested in, is MLE. The strong theoretical background,
easy way of understanding, having asymptotic normality property, closed-form in many cases, and the availability
in most of the mathematical software have made this type of estimator so popular. In this section, the method of
deriving MLEs and related asymptotic confidence intervals according to these estimators for the original parameters
and s.f., h.r.f., and q.f.of the Weibull model under an APC-II scheme is investigated.

Let (XR
1:m:n, . . . , X

R
m:m:n) be an adaptive progressive type-II censored sample of size m from a sample of size

n that are taken from the model (3) with the associated progressive censoring scheme R = (R1, . . . , Rm). Given
J = j, the corresponding likelihood function based on these data using relation (1), is given as

L(µ, σ) =
αm
∏m

i=1 γ
∗
i

βαm
(

m∏
i=1

xi)
α−1e−

∑m
i=1(R

∗
i +1)(

xi
β )α , (11)

where R∗ = (R∗
1, . . . , R

∗
m) = (R1, . . . , Rj , 0

(m−j−1), n−m−
∑j

i=1 Ri) and consequently γ∗
i =

∑m
l=i R

∗
l . The

MLEs of α and β denoted by α̂ and β̂ can be calculated by maximizing relation (11). To calculate them, the
log-likelihood function of α and β is

l(α, β) = m log(α)−mα log(β) +

m∑
i=1

log(γ∗
i ) + (α− 1)

m∑
i=1

log(xi)−
m∑
i=1

(R∗
i + 1)(

xi

β
)α. (12)

Taking the first partial derivatives of l(α, β) in (12) with respect to α and β, the following log-likelihood equations
are derived

∂l(α, β)

∂α
=

m

α
+

m∑
i=1

log(xi)−m log(β)−
m∑
i=1

(R∗
i + 1) log(

xi

β
)(
xi

β
)α, (13)

∂l(α, β)

∂β
=

α

β
[−m+

m∑
i=1

(R∗
i + 1)(

xi

β
)α]. (14)

The estimators α̂ and β̂ can be calculated by equating (13) and (14) to zeros, respectively. However, because
of the complicated form of these equations, α̂ and β̂ can be obtained in closed forms and should be calculated
numerically. Accordingly, the MLEs of SX(x), HX(x), and QX(x) in (4), (5), and (6), can be obtained by the
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invariance property of MLEs as

ŜX(x) = e
−

x

β̂

α̂

,

ĤX(x) =
α̂

β̂

(
x

β̂

)α̂−1

,

and

Q̂X(x) = β̂[− log(1− x)]α̂,

respectively. Once the point estimations are determined, we aim to build confidence intervals. Based on the
asymptotic normality of the MLE, the asymptotic distribution of (α̂, β̂) is N(Π,Σ) such that

Π =

[
α
β

]
(15)

and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=

[
−∂2l(α,β|x)

∂α2 −∂2l(α,β|x)
∂α∂β

−∂2l(α,β|x)
∂α∂β −∂2l(α,β|x)

∂β2

]−1

α=α̂

β=β̂

. (16)

In order to construct the confidence intervals, we applied the delta method (see [26] and [14]) and used the facts
that

var(α̂) = Σ11, var(β̂) = Σ22,

var(Q̂X(x)) = Σ11 + w2
pΣ22 + 2wpΣ12,

var(ŜX(x)) = f2
X(x)[(

x

α
log(

x

β
))2Σ11 − 2(

x2

αβ
log(

x

β
))Σ12 + (

x

β
)2Σ22],

var(ĤX(x)) = H2
X(x)[(

1

α
+ log(

x

β
))2Σ11 − 2

α

β
(
1

α
+ log(

x

β
))Σ12 + (

α

β
)2Σ22].

We have,

1− (ϵ1 + ϵ2) = P
(
α̂− zϵ1

√
var(α̂) ≤ α ≤ α̂+ zϵ2

√
var(α̂)

)
= P

(
β̂ − zϵ1

√
var(β̂) ≤ β ≤ β̂ + zϵ2

√
var(β̂)

)
= P

(
Q̂X(x)− zϵ1

√
var(Q̂X(x)) ≤ QX(x) ≤ Q̂X(x) + zϵ2

√
var(Q̂X(x))

)
= P

(
ŜX(x)− zϵ1

√
var(ŜX(x)) ≤ SX(x) ≤ ŜX(x) + zϵ2

√
var(ŜX(x))

)
= P

(
ĤX(x)− zϵ1

√
var(ĤX(x)) ≤ HX(x) ≤ ĤX(x) + zϵ2

√
var(ĤX(x))

)
,

where 0 < ϵ1, ϵ2 < 1 and also 0 < ϵ1 + ϵ2 < 1.
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4. AMLE

Despite that MLEs have some many features, which are mentioned in the previous section, they have has also
some defects in practice. Including these shortcomings, the bad performances for small sample size and their needs
for numerical resolution in some sampling schemes and some distributions can be highlighted. In addition, the
optimization problem in most mathematical software needs to start for solving the problem at some start points.
In statistical software R, [36], the function optim can be useful for calculating MLE. Moreover, there are some
famous packages such as bbmle, maxlik, fitdistrplus, and so on, that each of them is so applicable with the aim
of solving likelihood equations. For those packages and their functions related to the MLE, there is one effective
weakness that may be confusing in some cases. The problem of choosing the start point is that weakness. This
problem becomes more serious in situations that there is no moderate initial guess like a moment estimator for the
start point. One way to tackle this practical problem is utilizing AMLE that has most of the MLE properties and
also can be derived in a closed-form without need of any numerical experiment. It is necessary to mention that, in
the present study, the bbmle package in statistical software R have been used to calculate MLEs; see [36].

In the previous section, it was seen that α̂ and β̂ can not be obtained in closed forms form the derivatives of the
log-likelihood function. Thus, an approximated log-likelihood function is desired. To this end, similar to [9], the
Weibull data transformed to the SEV data and then by utilizing the invariant property of MLE, AMLE, are derived.
Assume that the failure times XR

1:m:n, X
R
2:m:n, . . . , X

R
m:m:n come from the Weibull model (3) under an APC-II

plan with censoring scheme R = (R1, R2, . . . , Rm) and switching time T . After transforming of these data, i.e.,
Y RT
i:m:n = log(XRT

i:m:n), it is clear to check that (Y RT
1:m:n, Y

RT
2:m:n, . . . , Y

R
m:m:n) come from the SEV model (7) under

the same censoring scheme R and switching time log(T ). The log-likelihood of the transformed sample is

log l(µ, σ) =

m∑
j=1

γ∗
j −m log(σ) +

m∑
j=1

yj − µ

σ
−

m∑
j=1

(R∗
j + 1)e

yj−µ

σ , (17)

where µ = log(β) and σ = 1
α . Taking the first partial derivatives of l(µ, σ) in (17)) with respect to µ and σ and then

setting zj =
yj−µ

σ , ∂
∂σ zj = − zj

σ , ∂
∂µzj = − 1

σ , ∂
∂µ log(l(µ, σ)) = 0, and ∂

∂µ log(l(µ, µ)) = 0, the following equations
can be derived

m∑
j=1

(R∗
j + 1)ezj −m = 0,

m∑
j=1

(R∗
j + 1)zje

zj −
m∑
j=1

zj −m = 0.

From here onwards, with some changes in the notation, we do the same task as before done in [9]. Finally, the
AMLEs of µ and σ can be calculated in closed forms as

σ̃ =
A+

√
A2 + 4mB

2m
, µ̃ = K + Lσ̃,

where

K =

∑m
j=1(R

∗
j + 1)cjyj∑m

j=1(R
∗
j + 1)cj

, L =

∑m
j=1(R

∗
j + 1)dj −m∑m

j=1(R
∗
j + 1)cj

,

A =

m∑
j=1

[(R∗
j + 1)dj − 1](yj −K), B =

m∑
j=1

(R∗
j + 1)cj(yj −K)2,

cj = eE(Zj:m:n), dj = eE(Zj:m:n)(1− E(Zj:m:n)).

Consequently, the AMLEs of α and β denoted by α̃ and β̃ can be obtained as α̃ = 1
σ̃ and β̃ = eµ̃, respectively.

5. Bootstrap Methods

Percentile bootstrap is another alternative method for constructing a confidence interval for any given parameter.
The simplicity procedure, good performances in the presence of small sample sizes, and its convergence to
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the true value of parameter are some advantages of this estimation method. In this section, the percentile
bootstrap confidence interval of Weibull original parameters and its s.f., h.r.f., and q.f. are provided. Suppose
that, given the APC-II sample XRT

1:m:n, X
RT
2:m:n, . . . , X

R
m:m:n, with censoring scheme R = (R1, R2, . . . , Rm)

and switching time T , MLEs α̂, β̂, ŜX(x), ĤX(x), and Q̂X(x) are calculated. The next step is generating
B (for example B = 1000) APC-II random samples of size m with censoring scheme R and switching
time T from Weibull distribution with estimated parameters α̂ and β̂. These samples are called Bootstrap
samples. Then, the MLEs of α, β, SX(x), HX(x), and QX(x) based on B Bootstrap samples, denoted here
by (α∗

i , β
∗
i , S

∗
Xi(x), H

∗
Xi(x), Q

∗
Xi(x)) for i = 1, 2, ..., B, should be calculated. Finally, after sorting calculated

bootstrap MLEs, for example α∗
(1) < α∗

(2) <, ..., < α∗
(B), 100 (1− (ϵ1 + ϵ2))% percentile bootstrap confidence

intervals are calculated as follows:

1− (ϵ1 + ϵ2) = P (α∗
(Bϵ1)

≤ α ≤ α∗
(B(1−ϵ2))

)

= P (β∗
(Bϵ1)

≤ β ≤ β∗
(B(1−ϵ2))

)

= P (S∗
X(Bϵ1)

(x) ≤ SX(x) ≤ S∗
X(B(1−ϵ2))

)

= P (H∗
X(Bϵ1)

≤ HX(x) ≤ H∗
X(B(1−ϵ2))

)

= P (Q∗
X(Bϵ1)

≤ QX(x) ≤ Q∗
X(B(1−ϵ2))

).

6. Bayesian Estimators

In contrast to the classical estimation approaches, the Bayesian method has been arisen. In this section, the Bayesian
strategy of estimating Weibull original parameters and its related functions have been investigated. The use of this
method allows incorporating given knowledge of parameters through the priors. Therefore, as a deep grasp of
the behavior of choosing prior densities, two kinds of densities have been considered. For the first prior, it is
assumes that α and β are independence and follow different gamma distributions. It can be mentioned as a backing
up of choosing this prior [23,32,33]. The second prior is chosen in a way to corporate the sample information,
and moreover, the corresponding posterior density is also conjugate. In addition to these assumptions, the desired
Bayesian estimators are calculated with respect to four loss functions including two symmetric and two asymmetric
ones, which are listed in Table 1. Based on the above assumptions about the prior densities of (α, β), the first and
the second prior densities are

π1(α, β) = αa−1e−bαβc−1e−dβ , (a, b, c, d, α, β) ∈ R+, (18)

π2(α, β) =
[
∑m

i=1(R
∗
i + 1)xα

i ]
m− 1

α

Γ(m− 1
α )

(− log(b))a

Γ(a)
αabαβ−mαe−

∑m
i=1(R

∗
i +1)(

xi
β )α . (19)

It can be clearly checked that π2(α, β) is a true joint p.d.f. The corresponding posterior densities are proportional
to:

π1(α, β | x) ∝ αa+m−1e−α[b−
∑m

i=1 log(
xi
β )]βc−1e−dβe−

∑m
i=1(R

∗
i +1)(

xi
β )α

and

π2(α, β | x) ∝
[
∑m

i=1(R
∗
i + 1)xα

i ]
m− 1

α

Γ(m− 1
α )

αm+a(b

m∏
i=1

xi)

α

β−2mαe−2
∑m

i=1(R
∗
i +1)(

xi
β )α ,

respectively. For more simplification in simulation study, the second posterior density can be rewritten as

π2(α, β | x) ∝
[2
∑m

i=1(R
∗
i + 1)xα

i ]
2m− 1

α

Γ(2m− 1
α )

αm+a

(
b

m∏
i=1

xi

)α

β−2mα

× e−2
∑m

i=1(R
∗
i +1)(

xi
β )α Γ(2m− 1

α )

Γ(m− 1
α )

22m− 1
α (

m∑
i=1

(R∗
i + 1)xα

i )
m.
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Table 2. The functions in equation (20).

Abbreviation Function

h11(α | β, x) αa+m−1[
e−b ∏m

j=1 xi

βm ]αe
−

∑m
i=1(R

∗
i +1)(

xi
β

)α

h12(β | α, x) βc−mα−1e
−[dβ+

∑m
i=1(R

∗
i +1)(

xi
β

)α]

h13(α, β | x) 1
h21(α | β, x) αm+a−1(b

∏m
i=1 xi)

α

h22(β | α, x) α[2
∑m

i=1(R
∗
i +1)xα

i ]
2m− 1

α

Γ(2m− 1
α
)

β−2mαe
−2

∑m
i=1(R

∗
i +1)(

xi
β

)α

h23(α, β | x) Γ(2m− 1
α
)

Γ(m− 1
α
)
22m− 1

α (
∑m

i=1(R
∗
i + 1)xα

i )
m

The posterior density functions π1(α, β | x) and π2(α, β | x) can be rewritten as

πi(α, β | x) ∝ hi1(α | β, x)hi2(β | α, x)hi3(α, β | x), i = 1, 2,

or equivalently

πi(α, β | x) = hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)∫∞
0

∫∞
0

hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ
, i = 1, 2. (20)

The functions hi1(α | β, x) and hi2(β | α, x), presented in Table (2), show the full conditional density function
corresponding to the prior density functions πi(α, β | x).

Thus, the Bayesian estimator of any function of α and β, say, u(α, β) considering the prior density function
πi(α, β), i = 1, 2 under the SEL, LINEXL, EL, and SL functions are given by

u∗
1Bi(α, β) =

∫∞
0

∫∞
0

u(α, β)hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ∫∞
0

∫∞
0

hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ
, (21)

u∗
2Bi(α, β) = − log

[∫∞
0

∫∞
0

e−u(α,β)hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ∫∞
0

∫∞
0

hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ

]
, (22)

u∗
3Bi(α, β) =

∫∞
0

∫∞
0

hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ∫∞
0

∫∞
0

1
u(α,β)hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ

, (23)

u∗
4Bi(α, β) =

√√√√∫∞
0

∫∞
0

u(α, β)hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ∫∞
0

∫∞
0

1
u(α,β)hi1(α | β, x)hi2(β | α, x)hi3(α, β | x)dαdβ

, (24)

respectively. It is not possible here to calculate the mentioned relation analytically. Consequently, these integrals
should be approximated by some numerical methods. For such a similar calculation in Bayesian inferences, the
Monte Carlo methods are usually used to perform these ends. On the other hand, given the dependence of the
parameters in both posterior densities, it has been needed to use the Gibbs sampling. Because in the case of Gibbs
sampling, the generated variables are based on the variables that were generated in the previous steps, the Monte
Carlo Markov Chain (MCMC) method is utilized. After that by utilizing the MCMC and Gibbs sampling method,
some pairs of random variables have been generated from each of the posterior densities. For generating random
numbers from full conditional posteriors related to first posterior densities, one should use Metropolis–Hastings
algorithm. The step-by-step procedures to generate random numbers from the posterior densities and to calculate
Bayesian estimators are presented in Algorithms (1) and (2).
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Algorithm 1: Posterior Density 1
1: Start with an initial values of each parameters

(α
(0)
1 , β

(0)
1 ).

2: Set j = 1.
3: Generate α

(j)
1 from h11(α | β(j−1)

1 , x) with the
N(α

(j−1)
1 , V ar(α̂)) as a proposal distribution.

4: Generate β
(j)
1 from h22(β | α(j)

1 , x) with the
N(β

(j−1)
1 , V ar(α̂)) as a proposal distribution.

5: Compute α
(j)
i and β

(j)
i .

6: Set j = j + 1.
7: Repeat steps 3− 6 N times.
8: Obtain the Bayesian estimators of SX(x), QX(x),

and HX(x) based on SEL, LINEX, EL, and SL
functions, using the following numerical integral
approximation

∫ ∞

0

∫ ∞

0
h(α, β)h11(α | β, x)h12(β | α, x)

× h13(α, β | x)dαdβ =

∑N
j=M+1 h(α

(j)
1 , β

(j)
1 )

N − M

(25)

for any two variables function h(·, ·) and M as the
burn-in number for eliminating the effects of
choosing initial values.

9: For any given prefix value of x, to compute the
credible intervals of SX(x), QX(x), and HX(x)
increasingly sort the computed Bayesian estimators
of these parameters as
S
(i1)
X (x) ≤ S

(i2)
X (x) ≤ · · · ≤ S

(i(N−M))
X (x),

Q
(i1)
X (x) ≤ Q

(i2)
X (x) ≤ · · · ≤ Q

(i(N−M))
X (x), and

H
(i1)
X (x) ≤ H

(i2)
X (x) ≤ · · · ≤ H

(i(N−M))
X (x).

10: Now, the 100(1− ϵ1 − ϵ2) percent credible
intervals of SX(x), QX(x), and HX(x),
respectively, are given by

(S
(i([ϵ1

N−M
2

]))

X (x), S
(i([ϵ2

N−M
2

]))

X (x)),

(Q
(i([ϵ1

N−M
2

]))

X (x), Q
(i([ϵ2

N−M
2

]))

X (x)), and

(H
(i([ϵ1

N−M
2

]))

X (x), H
(i([ϵ2

N−M
2

]))

X (x)), where
[x] denotes the greatest integer number less than or
equal to the value of x.

11: The End.

Algorithm 2: Posterior Density 2
1: Set j = 1.
2: Generate α

(j)
2 from a gamma distribution with

shape parameter a+m and scale parameter
1

log(b
∏m

i=1 xi:m:n)
.

3: Generate β∗ from a gamma distribution with
shape parameter 2m− 1

α
(j)
2

and scale

parameter 1

2
∑m

i=1(R
∗
i +1)x

α
(j)
2

i:m:n

and set

β
(j)
2 = (β∗)

− 1

α
(j)
2 .

4: Set

h23(α
(j)
2 , β

(j)
2 | x) = 2

2m− 1

α
(j)
2

×

Γ(2m − 1

α
(j)
2

)

Γ(m − 1

α
(j)
2

)
(

m∑
i=1

(R
∗
i + 1)x

α
(j)
2

i
)
m (26)

5: Compute α
(j)
2 , β(j)

2 and h23(α
(j)
2 , β

(j)
2 | x).

6: Set j = j + 1.
7: Repeat steps 3− 6 N times.
8: Obtain the Bayesian estimators of SX(x),

QX(x), and HX(x) based on SEL, LINEX,
EL, and SL functions, using the following
numerical integral approximation

∫ ∞

0

∫ ∞

0
h(α, β)h21(α | β, x)h22(β | α, x)

× h23(α, β | x)dαdβ

=

∑N∗
j=1 h(α

(j)
1 , β

(j)
1 ) × h23(α

(j)
2 , β

(j)
2 | x)

N∗

(27)
for any two variables function h(·, ·) and
N∗ = N −M (Regarding the comparable
results of two prior density, the number of
simulated random variables are equally
considered.).

9: Do the same as the steps 9 and 10 in Algorithm
(2) with the new constructed desired
parameters.

10: The End.

7. Conditional Estimators

As it mentioned earlier, conditional confidence intervals for the original parameters as well as for q.f. of the Weibull
distribution in the literature were developed under complete or Type-II censored samples. In this section, the exact
c.d.f. of the conditional estimators of s.f., h.r.f., and q.f. of the SEV distribution given a APC-II censored sample are
provided. To this end, let a be a 1×m vector of pivotal quantities with elements ai =

Y R
i:m:n−µ̂

σ̂ , i = 1, 2, . . . ,m. In
addition, let us define new parameters Z1 = µ̂−µ

σ̂ and Z2 = σ̂
σ . Given the vector a, the likelihood function regarding

these parameters for
fZ1,Z2|a(z1, z2) ∝ zm−2

2 e
∑m

i=1(z1+ai)z2e−
∑m

i=1(R
∗
i +1)e(z1+ai)z2

. (28)

The conditional c.d.f. of s.f., h.r.f., and q.f. in (8), (9), and (10) are calculated in the following subsections.
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7.1. Conditional estimation of s.f.

The role of s.f. in medical and engineering studies is undeniable. In medicine, it is very important to know how
long a patient is alive from a certain time and also it is so functional to know the probability of failure for any
component or system after its work to a specific time. It is so obvious to understand the importance of estimation in
the mentioned situations. The following theorem provides the statistical matter to construct conditional confidence
interval of s.f. in the SEV model under an APC-II plan.

Theorem 1. Let c = y−µ̂
σ̂ . The conditional c.d.f. of s.f. in the SEV model under an APC-II plan is

P (SY (y) ≤ z | a) =

∫∞
0

wm−2e
∑m

i=1(ai−c)w

[
∑m

i=1(R
∗
i +1)e(ai−c)w ]m

[ ∫∞
− log(z)

∑m
i=1(R

∗
i +1)e(ai−c)w

sm−1e−s

(m−1)!
ds
]
dw∫∞

0
wm−2e

∑m
i=1(ai−c)w

[
∑m

i=1(R
∗
i +1)e(ai−c)w ]m

dw
.

Proof
Let we define the new auxiliary random variable U = Z2(Z1 +

y−µ̂
σ̂ ). The joint density function of U and Z2 can

be obtained after some slight mathematical calculations as

fU,Z2|a(u,w) ∝ wm−2emu+
∑m

i=1(ai−c)we−eu
∑m

i=1(R
∗
i +1)e(ai−c)w

.

Now, we have

P (SY (y) ≤ z | a) = P

(
e−e

y−µ
σ ≤ z | a

)
= P (U ≥ log(− log(z)) | a)

=

∫ ∞

log(− log(z))

fU |a(u)du

=

∫ ∞

log(− log(z))

∫ ∞

0

fU,Z2|a(u,w)dwdu

=

∫ ∞

0

∫ ∞

log(− log(z))

fU,Z2|a(u,w)dudw.

Finally, substituting the transformation s = eu in the last integrand completes the proof.

It is clear that (Sϵ1(y), S1−ϵ2(y)) is a 100(1− (ϵ1 + ϵ2))% confidence interval of the SEV’s s.f. at any point
y ∈ R such that P (SY (y) ≤ Sϵ(y) | a) = ϵ for all ϵ ∈ [0, 1].

7.2. Conditional estimation of h.r.f.

Throughout the studying of life span of a component, item, system, or even an alive creature, it is very useful to
know the dynamic behavior of event rate at a given time t conditioning on the survival until or later t, i.e., X ≥ t.
This information is provided through the h.r.f. which is defined as HX(t) = limdt−→0

Pr(X<t+dt|X>t)
dt = fX(x)

SX(t) for
any continuous random variable X . The following theorem presents the exact conditional c.d.f. of h.r.f. in SEV
model under an APC-II plan.
Theorem 2. Given the assumptions of Theorem (1), the conditional c.d.f. of h.r.f. in SEV model under an APC-II
plan is

P (HY (y) ≤ z | a) =

∫∞
0

wm−2e
∑m

i=1 aiw

[
∑m

i=1(R
∗
i +1)eaiw ]m

[ ∫ σ̂z
e−cw ∑m

i=1(R∗
i +1)eaiw

w
0

sm−1e−s

(m−1)!
ds
]
dw∫∞

0
wm−2e

∑m
i=1 aiw

[
∑m

i=1(R
∗
i +1)eaiw ]m

dw
.

Proof
Let define the auxiliary random variable U = Z2e

(c+Z1)Z2 . Applying a two-dimensional transformation and using
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the Jacobian rule, the joint p.d.f. of variables U and Z2 is derived as

fU,Z2|a(u,w) ∝ w−2um−1e−cmwe
∑m

i=1 aiwe−u
e−cw ∑m

i=1(R∗
i +1)eaiw

w .

Now, the conditional marginal c.d.f. of HY (y) is obtained as

P (HY (y) ≤ z | a) = P

 1

σ
e

y − µ

σ ≤ z | a


= P (U ≤ σ̂z | a)

=

∫ σ̂z

0

fU |a(u)du

=

∫ σ̂z

0

∫ ∞

0

fU,Z2|a(u,w)dwdu

=

∫ ∞

0

∫ σ̂z

0

fU,Z2|a(u,w)dudw.

Substituting s = u
e−cw ∑m

i=1(R
∗
i +1)eaiw

w in the last integrand and some naive manipulations result in the desired
result.

It is clear that (Hϵ1(y), H1−ϵ2(y)) is a 100(1− (ϵ1 + ϵ2))% confidence interval for the SEV’s h.r.f. at given point
y ∈ R such that P (HY (y) ≤ Hϵ(y) | a) = ϵ for all ϵ ∈ [0, 1].

7.3. Conditional estimation of q.f.

While s.f. gives us a probability for a given point within the domain of random variable, q.f. gives us the point
of the domain that the given probability occurred. Moreover, the extreme quantiles have the ability to express the
behavior of the tails of the random variable and also are helpful in finding its natural tolerance range.

Theorem 3. Given the assumptions of Theorem (1), the conditional c.d.f. of q.f. in SEV model under an APC-II
plan is

P (QY (y) ≤ z | a) =

∫∞
0

wm−2e
∑m

i=1 aiw

[
∑m

i=1(R
∗
i +1)eaiw ]m

[ ∫∞

e
−w

z−µ̂
σ̂

+w(y) ∑m
i=1(R

∗
i +1)eaiw

sm−1e−s

(m−1)!
ds
]
dw∫∞

0
wm−2e

∑m
i=1 aiw

[
∑m

i=1(R
∗
i +1)eaiw ]m

dw
.

Proof
Let us define the auxiliary random variable U = w(y)

Z2
− Z1 and auxiliary value w(y) = log(− log(1− y)).

Therefore, the joint p.d.f. of U and Z2 is given by

fU,Z2|a(u,w) ∝ wm−2e−muw+mw(y)+
∑m

i=1 aiwe−ew(y)−uw ∑m
i=1(R

∗
i +1)eaiw

.
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Now, the conditional marginal c.d.f. of QY (y) is obtained as

P (QY (y) ≤ z | a) = P (µ+ σ log(− log(1− y)) ≤ z | a)

= P

(
w(y)− µ̂+ σ̂w(y)− µ− σw(y)

σ̂
≤ z − µ̂

σ̂
| a
)

= P

(
w(y)

Z2
− Z1 ≤ z − µ̂

σ̂
| a
)

=

∫ z−µ̂
σ̂

−∞
fU |a(u)du

=

∫ z−µ̂
σ̂

−∞

∫ ∞

0

fU,Z2|a(u,w)dwdu

=

∫ ∞

0

∫ z−µ̂
σ̂

−∞
fU,Z2|a(u,w)dudw.

Substituting s = e−wu+w(y) in the last integral completes the proof.

It is straightforward to check that (Qϵ1(y), Q1−ϵ2(y)) is a 100(1− (ϵ1 + ϵ2))% confidence interval of the SEV’s
q.f. given the point 0 < y < 1 such that P (QY (y) ≤ Qϵ(y) | a) = ϵ for all ϵ ∈ [0, 1].

8. Simulation Study

This section provides a comparison study for investigating the behaviour of the presented ML, AML, Percentile-
Bootstrap, Bayesian, and conditional estimators using the Monte Carlo simulations. These ends are assessed
through four popular criteria including mean and MSE of point estimators and the average length and empirical
coverage probability of confidence intervals. During the simulations, we consider sample of sizes n = 54, m =
18, 27 and n = 108, m = 36, 54 for two different Weibull distributions with common scale parameter β = 1 and
shape parameters α = 0.5 and α = 1.5. The elements of censoring scheme are considered equally and to investigate
the performances of the time threshold, the values 0,∞ mode and mean of the corresponding distribution are
provided in each case. The number Bootstrap and Monte Carlo’s repetitions in the Bayesian estimation are
considered as B = 1000 and 10000, respectively. For the Bayesian part, the conjugate prior with parameters a = 1
and b = 1 and the SEL has been considered.

The choice of conjugate prior and SEL have been made in accordance with the fact that conjugate priors are more
efficient in generating method and precise estimation. Moreover, under these priors, there is no notable difference
in estimation based on different loss functions. In addition, the comparisons are tabulated under censoring schemes
R = (1(27)), (1(54)), (2(18)), (2(36)) in Tables 3− 6.
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Table 3. Comparison results: small sample size and decreasing failure rate

n = 54 α = 0.5 β = 1 Significant level = 0.95
Threshold Parameter MLE P-Bootstrap Bayes Conditional
m = 18 R = (2(18)) m = 27 R = (1(27))

T=0 hX(0.5) (4.1800)[1.6990] (0.8826)[0.2424] (-0.4473)[-0.2781] (0.3769)[0.2116]
(20.8512)[4.4595] (3.5053)[0.2163] (0.2017)[0.0807] (0.1998)[0.1801]
(12.4579)[3.3636] (4.5084)[1.3522] (0.4012)[0.4627] (0.3126)[0.3458]
(0.9899)[0.5059] (0.8560)[0.8961] (0.0211)[0.4524] (0.4859)[0.5563]

SX(2) (-0.2287)[-0.2120] (-0.0654)[-0.0392] (0.2690)[0.1296] (0.0961)[0.0625]
(0.0531)[ 0.0461] (0.0143)[0.0078] (0.0732)[0.0177] (0.0326)[0.0258]
(0.0774)[0.1078] (0.3642)[0.2981] (0.3562)[0.2760] (0.4682)[0.3976]
(0.0414)[0.0361] (0.8534)[0.8896] (0.0370)[0.6072] (0.8423)[0.8637]

qX(0.9) (-4.6218)[-4.2401] (4.391124)[0.87968] (5.2369)[1.2574] (0.9621)[0.7563]
(21.6346)[18.2696] (29.6149)[21.3926] (32.6895)[3.2478] (1.0256)[0.9865]
(1.5381)[1.6443] (48.3359)[17.3078] (35.6289)[4.1298] (1.1236)[1.0358]
(0.0220)[0.0149] (0.8533)[0.8890] (0.7896)[0.8159] (0.6523)[0.5986]

T=0.480453 hX(0.5) (0.2684)[0.2484] (0.4443)[0.1690] (-0.3562)[-0.1691] (0.2983)[0.1629]
(0.4329)[0.1674] (0.7014)[0.1073] (0.1292)[0.0327] (0.1126)[0.1046]
(1.4829)[0.9835] (2.2859)[1.0173] (0.5295)[0.5293] (0.2679)[0.2987]
(0.9785)[0.9577] (0.8631)[0.8935] (0.3701)[0.8736] (0.8956)[0.9324]

SX(2) (-0.0497)[-0.0648] (-0.0532)[-0.0293] (0.1953)[0.0736] (0.0456)[0.0568]
(0.0126)[0.0101] (0.0110)[0.0060] (0.0388)[0.0063] (0.0375)[0.0158]
(0.3616)[0.2634] (0.3337)[0.2748] (0.3773)[0.2626] (0.3258)[0.2378]
(0.8248)[0.7628] (0.8580)[0.8976] (0.5130)[0.9016] (0.8964)[0.9158]

qX(0.9) (-0.3442)[-1.4919] (1.0929)[0.2317] (2.2356)[1.0123] (0.8962)[0.6821]
(19.0946)[6.9034] (35.2691)[9.3217] (4.2589)[1.9687] (0.8951)[0.7924]
(15.0707)[7.3678] (21.4803)[11.9523] (2.5879)[2.0125] (0.8714)[0.6312]
(0.7157)[0.6211] (0.8504)[0.8837] (0.7981)[0.8219] (0.8692)[0.8761]

T=1.992439 hX(0.5) (0.1740)[0.0933] (0.4385)[0.1633] (-0.3527)[-0.1570] (0.1841)[0.1025]
(0.2534)[0.0636] (0.8227)[0.0993] (0.1267)[0.0288] (0.1362)[0.1163]
(1.2850)[0.7782] (2.2620)[0.9878] (0.5332)[0.5336] (0.2479)[0.2641]
(0.9675)[0.9668] (0.8673)[0.8967] (0.3907)[0.8991] (0.9687)[0.9597]

SX(2) (-0.0302)[-0.0220] (-0.0532)[-0.0309] (0.1931)[0.0678] (-0.0365)[0.0249]
(0.0108)[0.0061] (0.0109)[0.0061] (0.0379)[0.0056] (0.0269)[0.0199]
(0.3696)[0.2759] (0.3326)[0.2714] (0.3775)[0.2609] (0.2698)[0.2189]
(0.8668)[0.8923] (0.8575)[0.8894] (0.5285)[0.9136] (0.9357)[0.9586]

qX(0.9) (0.3109)[-0.1721] (1.0278)[0.2149] (0.5896)[0.6215] (0.7962)[0.6321]
(22.4499)[8.0703] (30.2841)[11.3698] (0.2489)[0.3289] (0.7321)[0.6258]
(17.2937)[10.4117] (20.9341)[11.5985] (0.2219)[0.2986] (0.8152)[0.6028]
(0.7846)[0.8094] (0.8572)[0.8794] (0.9014)[0.9246] (0.9214)[0.9453]

T=∞ hX(0.5) (0.1801)[0.0756] (0.4392)[0.1628] (-0.3529)[-0.1544] (0.1936)[0.1125]
(0.2651)[0.0580] (0.7000)[.0970] (0.1268)[0.0280] (0.1324)[0.1216]
(1.2974)[0.7555] (2.2562)[0.9852] (0.5328)[0.5344] (0.2314)[0.2519]
(0.9709)[0.9621] (0.8614)[0.8958] (0.3857)[0.9040] (0.9547)[0.9632]

SX(2) (-0.0291)[-0.0157] (-0.0530)[-0.0298] (0.1926)[0.0679] (-0.0258)[-0.0201]
(0.0109)[0.0057] (0.0111)[0.0061] (0.0377)[0.0056] (0.0361)[0.0258]
(0.3701)[0.2768] (0.3320)[0.2712] (0.3777)[0.2601] (0.2754)[0.2169]
(0.8641)[0.9078] (0.8542)[0.8905] (0.5371)[0.9071] (0.9589)[0.9609]

qX(0.9) (0.3845)[0.1063] (0.8868)[0.1933] (1.0298)[1.0327] (0.8324)[0.7986]
(23.9362)[8.3225] (29.9631)[10.2587] (1.2147)[1.3294] (0.7982)[0.7163]
(17.5475)[11.0895] (20.3291)[11.4727] (0.9968)[0.9852] (0.2896)[0.1986]
(0.7896)[0.8412] (0.8418)[0.8745] (0.7146)[0.7329] (0.9327)[0.9583]
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Table 4. Comparison results: large sample size and decreasing failure rate

n = 108 α = 0.5 β = 1 Significant level = 0.95
Threshold Parameter MLE P-Bootstrap Bayes Conditional
m = 36 R = (2(36)) m = 54 R = (1(54))

T=0 hX(0.5) (3.0738)[1.5075] (4.6035)[1.7766] (5.0258)[3.2598] (0.1254)[0.1058]
(14.3990)[2.7661] (17.8516)[5.2381] (20.2419)[8.3627] (0.1412)[0.1123]
(6.1195)[2.1165] (13.2153)[3.1091] (11.2418)[7.2395] (0.1189)[0.0986]
(0.4497)[0.0143] (0.0057)[0.0011] (0.1247)[0.1127] (0.9023)[0.9142]

SX(2) (-0.2339)[-0.2168] (-0.2305)[-0.2154] (4.1239)[2.1749] (0.1142)[0.1028]
(0.0549)[0.0475] (0.0534)[0.0469] (13.2698)[3.2174] (0.1025)[0.1003]
(0.0448)[0.0752] (0.0593)[0.0795] (6.2175)[3.0012] (0.0985)[0.0902]
(0.0026)[0.0007] (0.0037)[0.0013] (0.1495)[0.1028] (0.9123)[0.9208]

qX(0.9) (-4.6783)[-4.2957] (1.5636)[0.3451] (3.2785)[1.0256] (0.1526)[0.1428]
(21.9772)[18.5719] (62.3574)[30.2197] (7.6328)[1.2058] (0.1149)[0.1029]
(0.9451)[1.0738] (21.5669)[10.4083] (5.3274)[1.0029] (0.0952)[0.0902]
(0.0005)[0.0003] (0.9030)[0.9195] (0.1426)[0.1003] (0.8927)[0.9009]

T=0.480453 hX(0.5) (0.1783)[0.2056] (0.2816)[0.2601] (4.2356)[2.1456] (0.1057)[0.0859]
(0.1119)[0.0825] (0.1835)[0.1155] (15.3628)[6.3589] (0.0745)[0.0628]
(0.9080)[0.6532] (1.1604)[0.7503] (13.2578)[8.2584] (0.0526)[0.0412]
(0.9716)[0.8707] (0.8127)[0.6449] (0.2036)[0.1785] (0.9327)[0.9527]

SX(2) (-0.0457)[-0.0635] (-0.0599)[-0.0698] (3.6958)[2.1589] (0.0845)[0.0714]
(0.0077)[0.0072] (0.0087)[0.0079] (11.2578)[2.9986] (0.0529)[0.0418]
(0.2719)[0.1928] (0.2545)[0.1880] (5.2896)[2.0247] (0.0421)[0.0401]
(0.8405)[0.7032] (0.8025)[0.6632] (0.2147)[0.1852] (0.9341)[0.9396]

qX(0.9) (-0.8821)[-1.7089] (0.4088)[0.1074] (2.2859)[1.0058] (0.1125)[0.0964]
(7.2756)[4.8064] (48.5698)[21.5826] (5.6398)[0.9952] (0.0859)[0.0748]
(9.0133)[4.7834] (12.5161)[8.0206] (3.2569)[0.9852] (0.0528)[0.0419]
(0.7228)[0.5364] (0.8944)[0.9157] (0.3214)[0.2689] (0.9251)[0.9379]

T=1.992439 hX(0.5) (0.0736)[0.0623] (0.1657)[0.1008] (0.9865)[0.8512] (0.0321)[0.0204]
(0.0548)[0.0256] (0.0975)[0.0353] (1.2351)[1.0215] (0.0052)[0.0041]
(0.7633)[0.5207] (0.9790)[0.5887] (0.8562)[0.8324] (0.1254)[01103]
(0.9647)[0.9548] (0.9014)[0.8886] (0.4895)[0.3961] (0.9425)[0.9508]

SX(2) (-0.0170)[-0.0172] (-0.0303)[-0.0247] (1.9526)[1.2413] (0.0278)[0.0325]
(0.0056)[0.0031] (0.0057)[0.0039] (2.3695)[2.1478] (0.0123)[0.0109]
(0.2761)[0.1997] (0.2662)[0.1986] (1.9965)[1.3358] (0.0102)[0.0092]
(0.9080)[0.9142] (0.9010)[0.8924] (0.7562)[0.7103] (0.9452)[0.9501]

qX(0.9) (0.1271)[-0.3058] (0.4278)[0.0929] (0.7856)[0.5263] (0.0815)[0.0521]
(9.0214)[3.5948] (35.9124)[17.6289] (0.5123)[0.4125] (0.0421)[0.0369]
(11.3723)[7.0580] (12.4145)[7.8041] (0.3215)[0.2986] (0.0125)[0.0109]
(0.8459)[0.8363] (0.8984)[0.9201] (0.6283)[0.5981] (0.9416)[0.9527]

T=∞ hX(0.5) (0.0739)[0.0352] (0.1595)[0.707] (2.2563)[1.9562] (0.0785)[0.0562]
(0.0552)[0.0193] (0.0899)[0.0269] (5.2365)[3.2471] (0.0038)[0.0256]
(0.7630)[0.4966] (0.9683)[0.5602] (4.2518)[3.6528] (0.0096)[0.0081]
(0.9645)[0.9595] (0.9005)[0.9197] (0.4856)[0.5125] (0.8962)[0.9263]

SX(2) (-0.0158)[-0.0079] (-0.0300)[-0.0152] (2.1254)[1.8254] (0.0563)[0.0895]
(0.0055)[0.0028] (0.0057)[0.0029] (6.3254)[4.9652] (0.0296)[0.0276]
(0.2764)[0.2001] (0.2665)[0.2001] (4.2518)[3.8524] (0.0302)[0.0284]
(0.9098)[0.9278] (0.8971)[0.9204] (0.6142)[0.6895] (0.9226)[0.9321]

qX(0.9) (0.1693)[0.0750] (0.4240)[0.0642] (1.9584)[1.3562] (0.1124)[0.0962]
(9.4741)[4.0082] (29.3674)[21.3217] (3.9527)[2.0281] (0.0985)[0.0741]
(11.4549)[7.6985] (12.3950)[7.7387] (2.2518)[1.8652] (0.0421)[0.0325]
(0.8452)[0.8838] (0.8967)[0.9116] (0.4759)[0.5123] (0.9235)[0.9367]
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Table 5. Comparison results: small sample size and increasing failure rate

n = 54 α = 1.5 β = 1 Significant level = 0.95
Threshold Parameter MLE P-Bootstrap Bayes Conditional
m = 18 R = (2(18)) m = 27 R = (1(27))

T=0 hX(0.5) (3.0553)[1.3740] (0.5222)[0.1555] (-0.5211)[-0.2555] (-0.5029)[0.1136]
(19.9875)[2.6183] (1.0212)[0.1262] (0.2747)[0.0701] (0.2369)[0.0628]
(6.6918)[2.2252] (2.7909)[1.1957] (0.6434)[0.6237] (0.5693)[0.5129]
(0.7720)[0.2242] (0.8794)[0.9166] (0.1285)[0.7616] (0.6981)[0.7893]

SX(2) (-0.0583)[-0.0579] (-0.0010)[-0.0029] (0.3056)[0.1417] (0.2516)[0.1216]
(0.0034)[0.0033] (0.0030)[0.0018] (0.0951)[0.0214] (0.0896)[0.0462]
(0.0064)[0.0082] (0.1968)[0.1547] (0.4286)[0.2962] (0.2639)[0.1796]
(0.0183)[0.0157] (0.8575)[0.8843] (0.0426)[0.4869] (0.8426)[0.8963]

qX(0.9) (-0.9046)[-0.7522] (-0.1074)[-0.0817] (9.6284)[1.5278] (0.5623)[0.3417]
(0.8511)[0.5901] (0.3378)[0.1286] (175.5635)[2.8341] (0.3976)[0.3128]
(0.5834)[0.4913] (2.1390)[1.3604] (36.5327)[4.9061] (0.8621)[0.7126]
(0.0387)[0.0241] (0.8543)[0.8830] (0.0408)[0.5369] (0.8639)[0.9128]

T=0.783219 hX(0.5) (0.2212)[0.1962] (0.3152)[0.1137] (-0.3815)[-0.1396] (0.1165)[0.0986]
(0.2796)[0.1383] (0.3742)[0.0887] (0.1485)[0.0290] (0.0986)[0.0325]
(1.4124)[0.9978] (1.8723)[1.0440] (0.7646)[0.6403] (0.3217)[0.2678]
(0.9666)[0.9308] (0.8850)[0.9201] (0.7062)[0.8835] (0.9367)[0.9512]

SX(2) (-0.0120)[-0.0263] (-0.0048)[-0.0046] (0.2133)[0.0755] (0.0125)[0.0149]
(0.0026)[0.0017] (0.0021)[0.0014] (0.0469)[0.0067] (0.0036)[0.0025]
(0.1818)[0.1118] (0.1650)[0.1364] (0.4195)[0.2489] (0.1628)[0.1139]
(0.6784)[0.6004] (0.8523)[0.8783] (0.4430)[0.9236] (0.9258)[0.9651]

qX(0.9) (-0.1492)[-0.2327] (-0.1314)[-0.0787] (3.8905)[0.6714] (0.2986)[0.1423]
(0.1853)[0.1249] (0.1810)[0.0929] (21.4451)[0.5864] (0.0562)[0.0236]
(1.4948)[0.9333] (1.5673)[1.1310] (14.7554)[2.7320] (0.1128)[0.0963]
(0.7967)[0.6962] (0.8490)[0.8808] (0.4792)[0.9331] (0.9258)[0.9562]

T=0.902745 hX(0.5) (0.1710)[0.1469] (0.3157)[0.1120] (-0.3792)[-0.1322] (0.0984)[0.0714]
(0.2130)[0.1089] (0.3766)[0.0905] (0.1468)[0.0273] (0.0625)[0.0247]
(1.3405)[0.9553] (1.8686)[1.0389] (0.7616)[0.6461] (0.2578)[0.2375]
(0.9676)[0.9389] (0.8872)[0.9236] (0.7025)[0.8928] (0.9489)[0.9589]

SX(2) (-0.0074)[-0.0193] (-0.0056)[-0.0050] (0.2116)[0.0719] (0.0098)[0.0101]
(0.0028)[0.0016] (0.0020)[0.0013] (0.0462)[0.0061] (0.0025)[0.0021]
(0.1925)[0.1269] (0.1636)[0.1352] (0.4189)[0.2459] (0.1745)[0.1204]
(0.7107)[0.6832] (0.8526)[0.8812] (0.4518)[0.9366] (0.9347)[0.9508]

qX(0.9) (-0.1087)[-0.1621] (-0.1263)[-0.0779] (3.8208)[0.6358] (0.2187)[0.1749]
(0.1806)[0.1033] (0.1842)[0.0917] (22.8739)[0.5321] (0.0471)[0.0365]
(1.5417)[1.0028] (1.5669)[1.1211] (14.4287)[2.6437] (0.1357)[0.1257]
(0.8265)[0.7800] (0.8541)[0.8812] (0.4916)[0.9449] (0.9583)[0.9593]

T=∞ hX(0.5) (0.1389)[0.0565] (0.3238)[0.1122] (-0.3760)[-0.1273] (0.0914)[0.0874]
(0.1913)[0.0669] (0.4144)[0.09164] (0.1444)[0.0271] (0.0716)[0.0629]
(1.2960)[0.8745] (1.8798)[1.0334] (0.7680)[0.6451] (0.2491)[0.2235]
(0.9635)[0.9499] (0.8759)[0.9236] (0.7174)[0.8862] (0.9458)[0.9561]

SX(2) (-0.0023)[-0.0026] (-0.0052)[-0.0055] (0.2105)[0.0675] (0.0091)[0.0084]
(0.0029)[0.0016] (0.0020)0.0013 (0.0457)[0.0055] (0.0024)[0.0019]
(0.2052)[0.1572] (0.1639)[0.1333] (0.4187)[0.2415] (0.1569)[0.1102]
(0.7484)[0.8284] (0.8558)[0.8820] (0.4611)[0.9484] (0.9582)[0.9602]

qX(0.9) (-0.0660)[-0.0426] (-0.1205)[-0.0746] (3.7444)[0.5934] (0.2058)[0.1657]
(0.1785)[0.0871] (0.1844)[0.0882] (22.1279)[0.4685] (0.0415)[0.0362]
(1.6020)[1.1232] (1.5694)[1.1079] (14.1100)[2.5437] (0.1125)[0.1016]
(0.8516)[0.8870] (0.8469)[0.8815] (0.5133)[0.9487] (0.9598)[0.9624]

Stat., Optim. Inf. Comput. Vol. 11, September 2023



JABER KAZEMPOOR, ET AL. 845

Table 6. Comparison results: large sample size and increasing failure rate

n = 108 α = 1.5 β = 1 Significant level = 0.95
Threshold Parameter MLE P-Bootstrap Bayes Conditional
m = 36 R = (2(36)) m = 54 R = (1(54))

T=0 hX(0.5) (2.5833)[1.3052] (0.1994)[0.06894] (-0.5270)[-0.2555] (0.1528)[0.0985]
(8.7511)[1.9945] (0.1581)[0.04011] (0.2793)[0.0676] (0.1862)[0.1149]
(3.8965)[1.4983] (1.2974)[0.7193] (0.4421)[0.4376] (0.2289)[0.1976]
(0.0309)[0.0123] (0.9124)[0.9329] (0.0000)[0.3928] (0.9327)[0.9398]

SX(2) (-0.0589)[-0.0586] (0.0002)[-0.0018] (0.3078)[0.1427] (0.0014)[0.0093]
(0.0034)[0.0034] (0.0021)[0.0011] (0.0956)[0.0210] (0.0022)[0.0016]
(0.0016)[0.0028] (0.1685)[0.1272] (0.3057)[0.2159] (0.0176)[0.0116]
(0.0004)[0.0002] (0.8984)[0.9208] (0.0001)[0.0507] (0.9257)[0.9367]

qX(0.9) (-0.9101)[-0.7535] (-0.0576)[-0.0407] (1.1258)[1.0068] (0.0657)[0.0584]
(0.8447)[0.5800] (0.1545)[0.0638] (1.6274)[1.3628] (0.1126)[0.0926]
(0.4065)[0.3473] (1.5148)[0.9835] (1.0149)[0.9984] (0.8692)[0.7129]
(0.0020)[0.0006] (0.9019)[0.9210] (0.0147)[0.0128] (0.9146)[0.9207]

T=0.783219 hX(0.5) (0.1584)[0.1770] (0.1264)[0.0533] (-0.3785)[-0.1238] (0.1023)[0.1238]
(0.1038)[0.0747] (0.0842)[0.0322] (0.1447)[0.0192] (0.0689)[0.0.0981]
(0.9270)[0.6864] (0.9858)[0.6501] (0.5366)[0.4508] (0.1852)[0.1871]
(0.9467)[0.8705] (0.9184)[0.9331] (0.1461)[ 0.8723] (0.9347)[0.9476]

SX(2) (-0.0171)[-0.0297] (-0.0029)[-0.0024] (0.2100)[0.0728] (0.0012)[0.0016]
(0.0016)[0.0014] (0.0014)[0.0008] (0.0448)[0.0058] (0.0075)[0.0105]
(0.1326)[0.0797] (0.1393)[0.1106] (0.3086)[0.1823] (0.0126)[0.0109]
(0.7023)[0.5360] (0.8956)[0.9145] (0.0144)[0.6977] (0.9356)[0.9397]

qX(0.9) (-0.1514)[-0.2308] (-0.0701)[-0.0417] (1.3526)[1.1527] (0.0592)[0.0501]
(0.1056)[0.0880] (0.0895)[0.0469] (1.7895)[1.0256] (0.0487)[0.0415]
(1.0426)[0.6599] (1.1441)[0.8184] (2.0147)[1.8624] (0.0874)[0.0709]
(0.7965)[0.6300] (0.8983)[0.9100] (0.0986)[0.0896] (0.9257)[0.9289]

T=0.902745 hX(0.5) (0.1089)[0.1257] (0.1308)[0.0533] (-0.3753)[-0.1175] (0.0785)[0.0841]
(0.0786)[0.0529] (0.0848)[0.0320] (0.1423)[0.0180] (0.0476)[0.0781]
(0.8798)[0.6549] (0.9866)[0.6479] (0.5368)[0.4520] (0.1124)[0.1135]
(0.9553)[0.9163] (0.9140)[0.9317] (0.1526)[0.8754] (0.9412)[0.9475]

SX(2) (-0.0101)[-0.0227] (-0.0026)[-0.0033] (0.2080)[0.0698] (0.0124)[0.0149]
(0.0016)[0.0011] (0.0014)[0.0008] (0.0440)[0.0054] (0.0135)[0.0198]
(0.1453)[0.0912] (0.1390)[0.1088] (0.3084)[0.1803] (0.0241)[0.0253]
(0.7626)[0.6583] (0.8977)[0.9125] (0.0182)[0.7339] (0.9348)[0.9487]

qX(0.9) (-0.0971)[-0.1694] (-0.0670)[-0.0397] (1.0258)[1.0049] (0.0589)[0.0528]
(0.0936)[0.0664] (0.0903)[0.0452] (1.2185)[1.1795] (0.0417)[0.0498]
(1.0912)[0.7022] (1.1409)[0.8123] (1.8974)[1.9928] (0.0719)[0.0711]
(0.8530)[0.7443] (0.8935)[0.9141] (0.8965)[0.9127] (0.9458)[0.9496]

T=∞ hX(0.5) (0.0618)[0.0243] (0.1310)[0.0523] (-0.3732)[-0.1100] (0.0519)[0.0327]
(0.0597)[0.0262] (0.0867)[0.0314] (0.1407)[0.0165] (0.0512)[0.0328]
(0.8360)[0.5935] (0.9834)[0.6448] (0.5385)[0.4504] (0.4182)[0.2896]
(0.9502)[0.9488] (0.9146)[0.9334] (0.1670)[0.8798] (0.9416)[0.9527]

SX(2) (-0.0019)[-0.0017] (-0.0027)[-0.0031] (0.2066)[0.0655] (0.0149)[0.0105]
(0.0017)[0.0009] (0.0014)[0.0008] (0.0434)[0.0047] (0.0103)[0.0098]
(0.1594)[0.1181] (0.1384)[0.1079] (0.3083)[0.1773] (0.1102)[0.0982]
(0.8260)[0.8759] (0.9125)[0.9183] (0.0181)[0.7888] (0.9412)[0.9508]

qX(0.9) (-0.0266)[-0.0197] (0.0785)[0.0618] (0.9851)[0.9816] (-0.0127)[-0.0109]
(0.0905)[0.0435] (0.0762)[0.0416] (0.9125)[0.9781] (0.0352)[0.0325]
(1.1586)[0.8066] (1.0125)[1.002] (1.1369)[1.0952] (0.0627)[0.0621]
(0.9059)[0.9201] (0.8982)[0.9113] (0.9016)[0.9113] (0.9417)[0.9508]
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In what follows, we made some conclusions from Tables 3− 6, in accordance with the numerical results of the
provided estimation strategies.

• The threshold T clearly affects the values of all criteria. This means that in each table and for any estimating
methods, there exists a specific T that has better performances. The advantages of feature and optimization
necessaries finding the best threshold are also consequences. The optimization problem is exhaustively
assessed for the real data set in the next section.

• Large sample sizes (m and n) clearly improve the performance of all estimation strategies.
• The MLE, for small threshold (T placed at the beginning of variables domain), has the fragile deed, especially

for non-increasing hazard rate or whenever the shape parameter is less than 1. Moreover, it can be shown
that by increasing the scale parameter, this capability also becomes much weaker. Consequently, utilizing the
MLE in the above situations does not make sense at all. Despite the fact that Bayesian and bootstrap ways
perform better than MLE, but it worth mentioning that these strategies also have poor actions and they are
not reliable in that positions. Here, the advantages of the conditional estimation arise. In the aforementioned
cases, the performances of the conditional estimating method are clearly understood through the tables.

• As we expected, the conditional method has stable performance in all cases, even in positions that other
statistical inferences have strong or weak actions. This strategy has logical estimates in accordance with any
of mentioned criteria and seems to be a reasonable way instead of MLE, AMLE, bootstrap, and Bayesian
method.

9. Application in Wind Speed Data

In this section, the mentioned algorithms have been considered on a real data set. In practice, when we deal with a
data set, in contrast to simulation procedures, the reputation of MLE is not possible. Moreover, for a small sample
size, the performances of MLE may lead to biasedness. Besides, in a generation PCOS-II from a fixed sample, it
is obvious that the result can change in every process. If we aim to discuss a prefixed CS on this sample, then the
reputation of these newly generated samples can provide stable results. As mentioned previously, the Bootstrap
method solves the reputation problem for a fixed data set. Here, a real data set of 30 monthly averaged wind speed
values from 2006 and 2008 is available. The data set is presented in Table (7).

The Weibull distribution is used to model a wide range of data types. One of these disciplines is wind speed data
that arises in wind energy, linked to power generation. Investigation around the sustainable energy source seems
to be substantial due to making a better balance between energy demands and environmental protection rather
than the conventional sources. It is clear that the reliable wind energy data and good inferential methods can be
so useful with respect to the performing wind potential projects as soon as possible. One of the most important
and frequently measured quantities dealing with wind energy is wind speed data. Implementation of statistical
inference according to progressively censoring may be beneficial and effective, regarding the fact that accessing
these data is often problematic and also costly. At the same time, the test time also plays an important role in the
sampling process, cost of test, and so forth. Both of the mentioned justification leads us to utilize APCOS-II in
this situation. In continue, for the wind speed data collected in [1], the comparison of confidence bounds for the
survival, quantile and hazard rate functions based on the presented inferential methods is provided. In addition, a
cost-time function is introduced. Consequently, the best choice of CS and threshold are derived, given a random
sample of size 14 coming from these data.

The use of Weibull distribution or various types of its modified distributions is widespread to analyze wind
speed data among researchers. Garcia et. al., [16] investigated the Weibull assumption for these kinds of data.
According to their research “Results reveal that the use of a Weibull probability distribution has a moderate impact
in the energy calculation as the largest estimation errors are, on average, no larger than 10 percent of the total
monthly energy produced”. Wais [40] studied two and three parameters Weibull model for such data. The Weibull
assumption in the same cases were also considered in [4,11,35].

Abd-Elfattah [1] showed that the fitting generalized Rayleigh distribution with shape parameter one on this data
at five percent significant level is reasonable. This data is analyzed under the same assumption in [44]. On the
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Table 7.
Monthly average wind speed values recorded by [1].

2.0 2.0 2.5 2.5 2.6 2.6 2.7 2.8 2.8 2.9 3.2 3.3 3.3 3.4 3.5
3.7 3.8 3.8 3.9 4.0 4.0 4.1 4.1 4.7 5.3 5.4 5.5 5.7 6.7 6.9

other hand, the generalized Rayleigh distribution with shape parameter one is a special case of Rayleigh and even
Weibull distribution. The q − q plot of this data under the Weibull assumption is given in Figure (1). In addition,
the corresponding p-value of the Kolmogorov–Smirnov test is equal to 0.372. Consequently, the proposed Weibull
assumption also provides a good fit for this data.

The MLE and log-likelihood of this data based on the Weibull assumption are (3.140950, 4.236439) and 49.5134.
Their AMLE and log-likelihood are (3.134850, 4.198256) and 49.5249. Consequently, it is clear that the AMLE
has a little better performance than MLE in this case.

2 3 4 5 6 7

2
3

4
5

6
7

q−q plot of wind speed data

Theoretical quantile

E
m

p
ir

ic
a
l 
q
u
a
n
ti
le

 50 

 52 

 54 

 5
4 

 56 

 5
6
 

 58 

 58 

 60  62 

 64 

 66 

 68 

 70 

 72 

 74 

 76 

 78 

 80 
 82 

 84 

 86 

 88 

 90  92 

 94  96 

 98 

 100 

 102 

 104 

 106 

 108 

 110 

 112 

 114 

 116 

 118  120 

 122 

 124 

 126 

 128 

 130  132 

 136 

 138 

 142 

 144 
 146 

 154 

 158 

 162  176 

 182 

2.0 2.5 3.0 3.5 4.0 4.5 5.0

3
.0

3
.5

4
.0

4
.5

5
.0

AMLE:3.134850,4.198256,49.5249

MLE:3.140950,4.236439,49.5134

Figure 1. The q − q and contour plot of wind speed data with W(3.134850, 4.198256) assumption in left and right,
respectively.

It is problematic and costly to reach real-time wind speed data. Hence, the implementation of the statistical
inference methods can be useful in assessing wind potential. On the other hand, collecting a large sample size is
expensive and even making trouble. Thereby, it is logical to utilize APCOS-II, which helps in deciding according
to both small sample size and the test time. indeed, the problem arises in choosing CS for a fixed sample size.
To overcome these problems, including the cost of sampling, time test, and best possible inference based on an
available data set, we provide a linear cost function (LCF) of these variables, aiming to minimize this function for
each prefixed sample size.

Now, consider a data set d = (d1, d2, . . . , dn). The assumption is d following a Weibull distribution with
unknown shape and scale parameters (γ, λ), respectively. Since for every 1 ≤ m ≤ n,m ∈ N, there exist

(
n−1
m−1

)
different CSs, we are planned to choose the best of them. It also remains to discuss on the threshold of T . Since
T effects on the time test, it is reasonable to consider E(Xm:m:n), which indicates the expected time on test as an
affecting factor of T . Because there exists no information about which threshold can be proper, the element of data
set d can itself be considered as T , and consequently the best of these values can be chosen as the proper threshold.
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The proper threshold for every m is also considered to be T
(m)
α . Afterward the LCF is defined as

LCF (d, α,m,Cm, Ct | R, T ) =α1

∑B
j=1(var(γ̂

j)var(λ̂j)− (cov(γ̂j , λ̂j))2)

B

+ α2Cm + α3Ct

∑B
j=1 x

(j)
m:m:n

B
. (29)

In the end, the optimal CS and threshold based on α, called by R
(m)
α and T

(m)
α , are chosen in such a way that the

minimum of LCF over all possible CSs and Ts should be LCF (D,α,m | R(m)
α , T

(m)
α ), which is called Optimal

LCF. In addition, Cm and Ct indicate the cost of test for a sampling of size m and the cost of testing per unit of

time, respectively. It is also clear that

∑B
j=1(var(γ̂

j)var(λ̂j)− (cov(γ̂j , λ̂j))2)

B
and

∑B
j=1 x

(j)
m:m:n

B
are Bootstrap

estimations of the determinant of observed Fisher information matrix and E(Xm:m:n), respectively (Since the MLE
may not be calculated especially for large B and small m, the AMLE is utilized to fix this problem.). The vector
α is chosen based on the researcher’s desire according to his need for a balance between good estimation (α1),
cost of sampling (α2), and expected time on the test (α3). It is also worth mentioning that Optimal LCF (29) is
nonmonotone and that there is no problem related to finding its minimizing values. The reason is according to the

nonincreasing property of

∑B
j=1(var(γ̂

j)var(λ̂j)− (cov(γ̂j , λ̂j))2)

B
and nondecreasing feature of

∑B
j=1 x

(j)
m:m:n

B
with respect to increasing the m value.

Table 8. Optimal choice of CS and threshold based on a random sample of size 14 comes from wind speed data with
α = (100, 0, 10)

m R
(m)
α T

(m)
α Optimal LCF Optimal LCF+m

1 13 3.8 545.4813 546.4813
2 12, 0 2 115.5552 117.5552
3 10, 1, 0 2 71.36596 74.36596
4 2, 8, 0(2) 2.8 53.42253 57.42253
5 0, 9, 0(3) 2.9 45.2951 50.2951
6 0, 8, 0(4) 3.2 43.40121 49.40121
7 0, 7, 0(5) 3.7 43.60255 50.60255
8 0, 6, 0(6) 4.1 44.7038 52.7038
9 0, 5, 0(7) 5.3 45.62643 54.62643
10 0(2), 3, 1, 0(6) 5.4 47.41706 57.41706
11 0(2), 3, 0(8) 6.7 50.64084 61.64084
12 0(2), 1(2), 0(8) 2 55.0956 67.0956
13 0(7), 1, 0(5) 2.5 61.56019 74.56019
14 0(14) 6.9 69.52823 83.52823

In continue, a proposed optimal plan (29) is applied for some different m. Since we are going to choose the
best CS in the present case, the cost of sampling Cm has been omitted. Because the values of observed fisher
information matrix are small, α1 has been considered to be 100 . In addition α3 = 10 and Ct = 1 are deemed. The
number of Bootstrap iteration is also 1000. According to these assumptions, the optimal choice of CS and threshold
are available in Table 8.

Finally, it is clear that for m = n, there is only one CS R = (0(30)) and that no threshold can affect this censoring
plan. Moreover, as mentioned previously, APCOS-II, in this case, results in complete sampling. Here, based on
the wind speed data, the comparison of asymptotic (based on AMLE), percentile Bootstrap, HPD credible, and
conditional intervals for its hazard rate, survival and quantile functions is provided, respectively, in Figure (3).

For constructing HPD credible intervals, first of all, we should choose a prior and also a loss function. As a result,
it is clear that the Bayes estimator is close to the MLE. In addition, the conjugate prior performs better, and for this
latter, all the loss functions end up with similar estimators. Hence in continue, we utilize HPD credible intervals
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based on the conjugate prior and SEL function. It is also worth mentioning that the method of constructing HPD
credible intervals is taken from Theorem 2 of [25].
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Figure 2. Optimal LCF and Optimal LCF+m of any m and all Threshold, respectively, in right and left
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Figure 3. The confidence interval for the quantile and survival functions of wind speed data, respectively, in left and right
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10. Conclusion

The paper dealt with the estimation problem of survival, quantile, and hazard rate functions of the Weibull
distribution under an APC-II scheme. This censoring method covers the ordinary and progressive Type-I and Type
II censoring plans as well as complete sample. For the estimation problems, the classical method including MLE,
AMLE, and percentile bootstrap were investigated. Besides, the Bayesian method was provided under some kinds
of symmetric and asymmetric loss functions. The weaknesses of the mentioned approaches were demonstrated via
extensive numerical studies. However, the mentioned methods don’t have the same and stable performance. These
strategies may work well in estimating survival and quantile functions, but not so well for estimation of hazard
rate function. Furthermore, the extreme quantile values don’t work well in classical and Bayesian estimation,
and consequently, the corresponding estimators have quite large errors. In contrast, we introduced conditional
estimating for all of these target parameters (survival, quantile, and hazard rate function). The superiority of
the proposed method over the other approaches were clearly demonstrated through a comparison study. The
comparision has been conducted based on the following benchmarks: the mean of bias, square error, absolute
error, and coverage probability. Finally, these estimation methods were applied to a set of wind speed data. The
survival, quantile, and hazard rate functions of this data set were estimated, and moreover, their confidence bounds
were also calculated. The excellent behavior of the conditional strategy goes without saying regarding the provided
figures.
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