
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 10, September 2022, pp 1021–1043.
Published online in International Academic Press (www.IAPress.org)

Non-parametric Multivariate Kernel Regression Estimation to Describe
Cognitive Processes and Mental Representations

Sahar Slama 1,2, Yousri Slaoui 2,*, Gwendoline Le Du 3, Cyril Perret 2,4

1Laboratoire de Mathématiques Modélisation Déterministe et Aléatoire,
Sousse University and ESST Hammam Sousse, Tunisia

2Laboratoire de Mathématiques et Applications, University of Poitiers, Poitiers, France
3UMR-S INSERM 1237- Physiopathology & Imaging of Neurological Disorders (PhIND), Caen Normandie University, France

4Centre de Recherches sur la Cognition et l’Apprentissage (CeRCa), Poitiers University, France

Abstract
In this research paper, we set forward a non-parametric multivariate recursive kernel regression estimator under missing data
using the propensity score approach in order to describe writing word production. Our main objective is to explore cognitive
processes and mental representations mobilized when a human being prepares to write a word according to the idea developed
in [21]. We investigate the asymptotic properties of the proposed recursive estimator and compare them to the well known
Nadaraya-Watson’s regression estimator. We calculate the bias and the variance of the proposed estimator which depend on
the choice of some parameters such as the stepsize and the bandwidth. We examine some data-driven procedures to select
these parameters. Thus, we demonstrate that, under some optimal choices of these parameters, the MSE (Mean Squared
Error) of the proposed estimator can be smaller than the one obtained by using Nadaraya Watson’s regression estimator. The
elaborated estimator is then applied to the behavioral data to classify some participants in groups. This classification may
stand for a departure point to tackle written behavior variations.
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1. Introduction

Research on the handwritten word production aims to describe the cognitive processes and mental
representations mobilized when a human being prepares to hand-write a word from an idea (see [21]). The most
frequently used method to explore this issue relies on relating a behavioral variable, reaction time and a set of
factors aiming at predicting different cognitive treatments (e.g., [3], [20]). It is possible to imagine some variations
in the cognitive treatments performed by participants. This could result in variations in the relationship between the
behavioral variables and the explanatory factors. The intrinsic target lies in being able to group participants with
similar degrees of variation.
In order to achieve our purpose, we resort to regression analysis, which corresponds to the study of how a response
variable depends on one or more predictors. In fact, it is a reliable method for identifying which variables have
impact on a topic of interest. The process of performing a regression allows us to confidently determine which
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factors matter most, which factors can be ignored, and how these factors influence each other. Regression problems
can be usefully summarized using non-parametric regression methods which represent a category of regression
analysis in which the predictor does not take a predetermined form but is constructed according to information
derived from the data. Since we ignore the behavior of our data, and we don’t have the normality (see [14], [13]
and [12]), we resorted to non-parametric approach. In this paper, we shall focus on Kernel regression which is
a non-parametric technique in statistics to estimate the conditional expectation of a random variable. The main
objective is to find a non-linear relation between a pair of random variables X and T .
In addition to the non-parametric fact, we introduce the recursive approach of estimation using stochastic
approximation method. The use of stochastic approximation algorithms for regression function estimation was first
introduced by [24] and [11] and then extended with [18,36], [23], [8], [16] for univariate framework. Subsequently,
a generalization in a multivariate case of this estimator was carried out by [17].
More recently, [29] developed a new recursive kernel estimator to estimate a regression function. The missing
data question is a former problem in psychology, which can contaminate the results and disrupt them. In order to
settle the missing data problem, multiple ’naive’ methods have been incorporated to solve this problem, such as
the replacement of the missing value by the mean/median or complete outliers detection and treatment (see [5]).
Recently, [30] used the propensity score probability technique and constructed an estimator of the density function
under missing data. Our central focus resides in building up a multivariate kernel regression estimator under missing
data.

Presentation of the method

Consider a couple (X,T ) of random variables defined in Rd ×R to be independent random vectors identically
distributed as (X,T ) with joint density function g(x, t) and let f denote the probability density of X . Assuming
that T1, . . . , Tn are subjects to missing data, the observed random variables are then Yi and δi, where

δi = 1{Ti is observed} and Yi = Ti ∗ δi, ∀i ∈ {1, . . . , n}.

Accordingly, when some Ti are missing, we introduce the propensity score, a probability elaborated by Rosenbaum
and Rubin (1983) [25] and defined as followed

ψi = P[δi = 1|Ti], ∀i ∈ {1, . . . , n}.

In the remainder, Y is considered as the response variable of interest and X its associated regressor vector variable.
Our basic purpose in this paper is to propose a recursive estimator to estimate recursively the regression function
p (x) = E [T |X = x] under censoring data. Our aim then resides in building up a stochastic algorithm, which

approaches the regression function m : x 7−→ E[T |X = x]f(x) =

∫
R
yg(x, y)dy at a given vector x. For this

reason, we define an algorithm of search of the zero function ϕ : y 7−→ m (x)− y. We therefore proceed as follows:
we fix m0(x) ∈ R, and then we set for all n ≥ 1,mn(x) = mn−1(x) + βnUn(x), where (βn) is a positive sequence
of real numbers decreasing towards zero and Un(x) is an observation of the function ϕ at the point mn−1(x). In
order to construct Un(x), we adopt the approach considered first by [23], [34] and more recently by [31] and we

introduce a multivariate kernel K, which is a function satisfying
∫
Rd

K(t)dt = 1, and a bandwidth (hn), which is a

sequence of positive real numbers that tends to zero. By assuming Un(x) = Ynψ
−1
n h−d

n K

(
x−Xn

hn

)
−mn−1(x),

the stochastic approximation algorithm that we consider to estimate recursively the regression function m at a
vector x can be expressed as follows :

mn(x) = (1− βn)mn−1(x) + βn Ynψ
−1
n h−d

n K

(
x−Xn

hn

)
. (1)
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Throughout this paper, we consider that m0(x) = 0 and we set Qn =
n∏

j=1

(1− βj). It follows that

mn(x) = Qn

n∑
k=1

Q−1
k βk Ykψ

−1
k h−d

k K

(
x−Xk

hk

)
. (2)

Moreover, we use the recursive multivariate probability density estimator of the density function f defined in [15]
which was constructed with the same tools of stochastic approximation algorithm and under the condition that
f0(x) = 0, it follows that

fn(x) = Qn

n∑
k=1

Q−1
k βk h

−d
k K

(
x−Xk

hk

)
. (3)

In this paper, we consider the following recursive estimator of the regression function p : x 7−→ E[T |X = x] at the
vector x

pn(x) =


mn(x)

fn(x)
if fn(x) 6= 0

0 if fn(x) = 0
. (4)

We explore the asymptotic properties of our proposed multivariate recursive kernel regression estimator.
Afterwards, we compare our proposed estimator to the multivariate non-recursive Nadaraya-Watson’s regression
estimator (see [18] and [36]) p̃n indicated by

p̃n(x) =


m̃n(x)

f̃n(x)
if f̃n(x) 6= 0

0 if f̃n(x) = 0.

, (5)

with

m̃n(x) =
1

nhdn

n∑
k=1

Ykψ
−1
k K

(
x−Xk

hn

)
and f̃n(x) =

1

nhdn

n∑
k=1

K

(
x−Xk

hn

)
.

2. Notations and assumptions

Throughout this paper, we invest the following useful notations:

ξβ = lim
n→+∞

(nβn)
−1, ψ = lim

n→+∞
ψn, R(K) =

∫
Rd

K2 (z) dz, µi(K) =

∫
Rd

z2iK(z)dz,

I1 =

∫
Rd

(
d∑

j=1

µj(K)m
(2)
jj (x)

)2

f(x)dx, I2 =

∫
Rd

(
d∑

j=1

µj(K)m
(2)
jj (x)

)(
d∑

j=1

µj(K)f
(2)
jj (x)

)
p(x)f(x)dx,

I3 =

∫
Rd

(
d∑

j=1

µj(K)f
(2)
jj (x)

)2

p2(x)f(x)dx, I4 =

∫
Rd

E[T 2|X = x]f2(x)dx, I5 =

∫
Rd

p2(x)f2(x)dx.

Before stating our assumptions, let us recall the definition of class of regularly varying sequences introduced by
Galambos and Seneta in [7].

Definition 1
Let (vn)n≥1 be a non-random positive sequence and γ ∈ R. We state that

(vn)n≥1 ∈ GS(γ) if lim
n→+∞

n

[
1− vn−1

vn

]
= γ.
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In what follows, we exhibit a lemma that will be widely used for the study of our estimator pn. The proof of this
lemma was introduced in [15].

Lemma 1
Let (vn)n≥1 ∈ GS(v∗), (γn)n≥1 ∈ GS(−α) and let m > 0 such that m− v∗ξ > 0. Then,

lim
n→+∞

vnΠ
m
n

n∑
k=1

Π−m
k

γk
vk

=
1

m− v∗ξ
.

Moreover, for any positive sequence (αn)n≥1 such that lim
n→+∞

αn = 0 and all C ∈ R,

lim
n→+∞

vnΠ
m
n

[
n∑

k=1

Π−m
k

γk
vk
αk + C

]
= 0.

The assumptions upon which we shall rely are the following.

Assumptions:

(A1) K : Rd −→ R is a continuous bounded function satisfying:∫
Rd

K(u)du = 1 , ∀j ∈ {1, . . . , d},
∫
R
ujK(u)duj = 0 and

∫
Rd

u2jK(u)du <∞.

(A2) (i) (βn)n≥1 ∈ GS(−β), with β ∈
(
1
2 , 1
]
.

(ii) (hn)n≥1 ∈ GS(−a), with a ∈ (0, 1).

(iii) lim
n→+∞

(nβn) ∈
(
min{2a, β−ad

2 },∞
]
.

(A3) (i) f is bounded, twice differentiable and ∀i, j ∈ {1, . . . , d}, f (2)ij :=
∂2f

∂xi∂xj
is bounded.

(ii) m is bounded, twice differentiable and ∀i, j ∈ {1, . . . , d},m(2)
ij :=

∂2m

∂xi∂xj
is bounded.

(iii) g(s, t) is twice continuously differentiable with respect to s.

(iv) For q ∈ {0, 1, 2}, s 7−→
∫
R
tqg(s, t)dt is a bounded function continuous at s = x.

For q ∈ [2, 3], s 7−→
∫
R
|t|qg(s, t)dt is a bounded function.

(v) For q ∈ {0, 1}, i, j ∈ {1, . . . , d},
∫
R
|t|q
∣∣∣∣ ∂g∂xi (x, t)

∣∣∣∣ dt <∞, and s 7−→
∫
R
tq

∂2g

∂si∂sj
(s, t)dt is a

bounded function continuous at s = x.

3. Main results

In order to investigate the asymptotic properties of our estimator pn, we first need to introduce the following two
propositions which provide the bias and the variance of mn as well as those of fn.
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3.1. Bias and variance of fn

Proposition 1
Let assumptions (A1)− (A3) hold and assume that, for all i, j ∈ {1, . . . , d}, f (2)ij is continuous at x. We therefore
get

1. If a ∈
(
0, β

d+4

]
, then

E[fn(x)]− f(x) =
h2n

2(1− 2aξβ)

d∑
j=1

µj(K)f
(2)
jj (x) + o

(
h2n
)
. (6)

If a ∈
(

β
d+4 , 1

)
, then

E[fn(x)]− f(x) = o

(√
βnh

−d
n

)
. (7)

2. If a ∈
(
0, β

d+4

)
, then

V ar[fn(x)] = o
(
h4n
)
. (8)

If a ∈
[

β
d+4 , 1

)
, then

V ar[fn(x)] =
βn
hdn

1

2− (β − ad)ξβ
f(x)R(K) + o

(
βnh

−d
n

)
. (9)

3.2. Bias and variance of mn

Proposition 2
Let assumptions (A1)− (A3) hold and assume that, for all i, j ∈ {1, . . . , d}, m(2)

ij is continuous at x, we hence
obtain

1. If a ∈
(
0, β

d+4

]
, then

E[mn(x)]−m (x) =
h2n

2(1− 2aξβ)

d∑
j=1

µj(K)m
(2)
jj (x) + o

(
h2n
)
. (10)

If a ∈
(

β
d+4 , 1

)
, then

E[mn(x)]−m (x) = o

(√
βnh

−d
n

)
. (11)

2. If a ∈
(
0, β

d+4

)
, then

V ar[mn(x)] = o
(
h4n
)
. (12)

If a ∈
[

β
d+4 , 1

)
, then

V ar[mn(x)] =
βn
hdn
ψ−1
n

E[T 2|X = x]

2− (β − ad)ξβ
f(x)R(K) + o

(
βnh

−d
n

)
. (13)

Proof
Throughout this proof, we use the following notations:

Zn(x) = h−d
n Ynψ

−1
n K

(
x−Xn

hn

)
and Wn(x) = h−d

n K

(
x−Xn

hn

)
.
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We have

mn(x)−m (x) = (1− βn)mn−1(x) + βnZn(x)−m (x)

= (1− βn)[mn−1(x)−m (x)] + βn[Zn(x)−m (x)]

=

n∏
i=1

(1− βi)[m0(x)−m (x)] +

n−1∑
k=1

n∏
i=k+1

(1− βi)βk(Zk(x)−m (x)) + βn(Zn(x)−m (x))

= Qn

n∑
k=1

Q−1
k βk(Zk(x)−m (x)) +Qn[m0(x)−m (x)].

It follows that,

E[mn(x)]−m (x) = Qn

n∑
k=1

Q−1
k βk(E[Zk(x)]−m (x)) +Qn[m0(x)−m (x)]. (14)

Moreover, we have

E[Zk(x)] = h−d
k ψ−1

k E
[
YkK

(
x−Xk

hk

)]
= h−d

k ψ−1
k E

[
Tk1{Tk=Yk}K

(
x−Xk

hk

)]
= h−d

k ψ−1
k E[1{Tk=Yk}]

∫
Rd

E[T |X = y]K

(
x− y

hk

)
f(y)dy

= h−d
k

∫
Rd

K

(
x− y

hk

)
m (y) dy.

Since we have
∫
Rd

K(z)dz = 1, we infer that

E[Zk(x)]−m (x) =

∫
Rd

h−d
k K

(
x− y

hk

)
m (y) dy −

∫
Rd

K (y)m (x) dy

=

∫
Rd

K (z) [m (x− zhk)−m (x)] dz.

A Taylor expansion of m around x ensures that

E[Zk(x)]−m (x) =

∫
Rd

K(z) [m(x− zhk)−m (x)] dz

=

∫
Rd

K(z)

[
d∑

i=1

∂m

∂xi
(x)zihk +

∫ 1

0

(1− t)

d∑
i,j=1

∂2m

∂xi∂xj
(x− tzhk)zizjh

2
kdt

]
dz

= hk

d∑
i=1

∂m

∂xi
(x)

∫
Rd

K(z)zidz + h2k

d∑
i,j=1

∫
Rd

∫ 1

0

(1− t)
∂2m

∂xi∂xj
(x− tzhk)zizjK(z)dtdz

=
h2k
2

d∑
j=1

µj(K)m
(2)
jj (x) + h2kηk(x).
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where ηk(x) =
d∑

i,j=1

∫
Rd

∫ 1

0

(1− t)
[
m

(2)
ij (x− tzhk)−m

(2)
ij (x)

]
zizjK(z)dtdz.

Owing to the fact that m(2)
ij is bounded and continuous at x for all i, j ∈ {1, . . . , d}, we thus get

E[mn(x)]−m (x) = Qn

n∑
k=1

Q−1
k βk(E[Zk(x)]−m (x)) +Qn[m0(x)−m (x)]

= Qn

n∑
k=1

Q−1
k βk

(
h2k
2

d∑
j=1

µj(K)m
(2)
jj (x) + h2kηk(x)

)
+Qn[m0(x)−m (x)]

=
1

2

d∑
j=1

µj(K)m
(2)
jj (x)Qn

n∑
k=1

Q−1
k βkh

2
k +Qn

n∑
k=1

Q−1
k βkh

2
kηk(x) +Qn[m0(x)−m (x)].

For the case a ≤ β/(d+ 4), we have limn→∞ (nβn) > 2a and then 1− 2aξβ > 0. The application of lemma 1
ensures that

E[mn(x)]−m (x) =
1

2

d∑
j=1

µj(K)m
(2)
jj (x)Qn

n∑
k=1

Q−1
k βkh

2
k +Qn

n∑
k=1

Q−1
k βko

(
h2k
)
+O (Qn)

=
h2n

2(1− 2aξβ)

d∑
j=1

µj(K)m
(2)
jj (x) + o

(
h2n
)
.

We infer that

E[mn(x)]−m (x) =
1

2(1− 2aξβ)
h2n

d∑
j=1

µj(K)m
(2)
jj (x) + o

(
h2n
)
.

For the case a > β/(d+ 4), we have lim
n→∞

(nβn) >
β−a
2 , which yields h2n = o

(√
βnh

−d
n

)
. Hence, the application

of lemma 1 ensures that

E[mn(x)]−m (x) =
1

2

d∑
j=1

µj(K)m
(2)
jj (x)Qn

n∑
k=1

Q−1
k βko

(√
βkh

−d
k

)
+Qn

n∑
k=1

Q−1
k βko

(√
βkh

−d
k

)
= o

(√
βnh

−d
n

)
.

As a matter of fact, the result can be expressed as

E[mn(x)]−m (x) = o

(√
βnh

−d
n

)
.

Let us now compute the variance of mn (x). We state

V ar[mn(x)] = V ar[Qn

n∑
k=1

Q−1
k βkZk(x)]

= Q2
n

n∑
k=1

Q−2
k β2

kV ar[Zk(x)]

= Q2
n

n∑
k=1

Q−2
k β2

k

(
E[Z2

k(x)]− E[Zk(x)]
2
)
.
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Moreover, we have

E[Z2
k(x)] =

∫
Rd

h−2d
k ψ−2

k E[T 2|X = y]ψkK
2

(
x− y

hk

)
f(y)dy

=

∫
Rd

h−d
k ψ−1

k K2 (z)E[T 2|X = x− zhk]f(x− zhk)dz.

Hence, the Taylor’s expansion for h : x 7−→ E[T 2|X = x]f(x) =

∫
R
y2g(x, y)dy ensures that

E[Z2
k(x)] = h−d

k ψ−1
k

[
E[T 2|X = x]f(x)

∫
Rd

K2 (z) dz + νk(x)

]
.

Thus,

V ar[mn(x)] = Q2
n

n∑
k=1

Q−2
k β2

k

[
E[T 2|X = x]

∫
Rd

h−d
k ψ−1

k K2 (z) f(x− zhk)dz −
(∫

Rd

K (z)m (x− zhk) dz

)2
]

= Q2
n

n∑
k=1

Q−2
k β2

kh
−d
k ψ−1

k

[
E[T 2|X = x]f(x)

∫
Rd

K2 (z) dz + νk(x)− hdkψkηk(x)

]
,

where

νk(x) =

∫
Rd

K2 (z) [E[T 2|X = x− zhk]f(x− zhk)− E[T 2|X = x]f(x)]dz and ηk(x) =
(∫

Rd

K (z)m (x− zhk) dz

)2

For the case a ⩾ β/(d+ 4), we have lim
n→∞

(nβn) >
β−ad

2 and then 1− 2aξβ > 0. Since we have lim
k→+∞

νk(x) = 0

and lim
k→+∞

hkηk(x) = 0, then the application of lemma 1 ensures that

V ar[mn(x)] = Q2
n

n∑
k=1

Q−2
k β2

kh
−d
k ψ−1

k

[
E[T 2|X = x]f(x)R(K) + νk(x)− hdkηk(x)

]
= Q2

n

n∑
k=1

Q−2
k β2

kh
−d
k ψ−1

k

[
E[T 2|X = x]f(x)R(K) + o (1)

]
=

E[T 2|X = x]

2− (α− ad)ξβ

βn
hn
ψ−1
n [f(x)R(K) + o (1)].

Therefore, the result is provided by

V ar[mn(x)] =
E[T 2|X = x]

2− (α− a)ξβ

βn
hn
ψ−1
n f(x)R(K) + o

(
βn
hn

)
.

For the case a < β/(d+ 4), we have lim
n→∞

(nβn) > 2a which yields βnh−d
n = o

(
h4n
)
. Then, the application of

lemma 1 ensures that

V ar[mn(x)] = Q2
n

n∑
k=1

Q−2
k β2

kh
−d
k ψ−1

k

[
E[T 2|X = x]f(x)R(K) + o (1)

]
= Q2

n

n∑
k=1

Q−2
k βko

(
h4k
)

= o
(
h4n
)
.

Our main result rests on the following theorem, which provides us the bias and the variance of pn.
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3.3. Bias and variance of pn

Theorem 1
Let assumptions (A1)− (A3) hold and assume that, for all i, j ∈ {1, . . . , d}, m(2)

ij and f (2)ij are continuous at x, we
obtain

1. If a ∈
(
0, β

d+4

]
, then

E[pn(x)]− p(x) =
1

2(1− 2aξβ)

h2n
f(x)

d∑
j=1

µj(K)
(
m

(2)
jj (x)− p(x)f

(2)
jj (x)

)
+ o

(
h2n
)
. (15)

If a ∈
(

β
d+4 , 1

)
, then

E[pn(x)]− p(x) = o

(√
βnh

−d
n

)
. (16)

2. If a ∈
(
0, β

d+4

)
, then

V ar[pn(x)] = o
(
h4n
)
. (17)

If a ∈
[

β
d+4 , 1

)
, then

V ar[pn(x)] =
βn

hdn

ψ−1
n

2− (β − ad)ξβ

R(K)

f(x)

(
E[T 2|X = x]− ψp2(x)

)
+ o

(
βn

hdn

)
. (18)

The bias and the variance of the estimator pn defined by the stochastic approximation algorithm (4) then heavily
depend on the choice of the stepsizes (βn).

Proof
For this proof, let us note that for fn 6= 0, we have

pn(x)− p(x) = An(x)
f(x)

fn(x)
, (19)

with

An(x) =
1

f(x)
(mn(x)−m (x))− p(x)

f(x)
(fn(x)− f(x)) . (20)

It follows from (19) that the asymptotic behavior of pn(x)− p(x) can be deduced from the one of An(x). Hence,
we can state

E[An(x)] =
1

f(x)
(E[mn(x)]−m (x))− p(x)

f(x)
(E[fn(x)]− f(x)) .

Since we already have the bias of mn(x) as well as that of fn(x), and considering the fact that m (x) = p(x)f(x),
then we just need to combine the results (10), (11), (6) and (7) in order to obtain (15) and (16). Now, we have

V ar[An(x)] =
1

(f(x))2
V ar[mn(x)]−

(p(x))2

(f(x))2
V ar[fn(x)]− 2

p(x)

(f(x))2
Cov(mn(x), fn(x)).
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Let us now compute the covariance between mn(x) and fn(x). Indeed, we have

Cov(mn(x), fn(x)) = Cov

(
Qn

n∑
k=1

Q−1
k βk Ykψ

−1
k h−d

k K

(
x−Xk

hk

)
, Qn

n∑
i=1

Q−1
i βih

−d
i K

(
x−Xi

hi

))

= Qn

n∑
k=1

Q−1
k βkQn

n∑
i=1

Q−1
i βi Cov

(
Ykψ

−1
k h−d

k K

(
x−Xk

hk

)
, h−d

i K

(
x−Xi

hi

))

= Q2
n

n∑
k=1

Q−2
k β2

kCov

(
Ykψ

−1
k h−d

k K

(
x−Xk

hk

)
, h−d

k K

(
x−Xk

hk

))

= Q2
n

n∑
k=1

Q−2
k β2

k

(
E
[
Ykψ

−1
k h−2d

k K2

(
x−Xk

hk

)]
− E

[
Ykψ

−1
k h−d

k K

(
x−Xk

hk

)]
E
[
h−d
k K

(
x−Xk

hk

)])
= Q2

n

n∑
k=1

Q−2
k β2

k

(
E[T |X = x]f(x)R(K)h−d

k − E[T |X = x]f2(x)
)
+ o

(
h−d
k

)
= Q2

n

n∑
k=1

Q−2
k β2

kh
−d
k (p(x)f(x)R(K) + o (1))

=
βnh

−d
n

2− (β − ad)ξβ
p(x)f(x)R(K) + o

(
βnh

−d
n

)
. (21)

Consequently, (17) and (18) follow from the combination of (12), (13), (8), (9) and (21). For the case a ≥
β/(d+ 4), we can deduce

V ar[pn(x)] =
1

f(x)

βn
hdn
ψ−1
n

E[T 2|X = x]

2− (β − ad)ξβ
R(K) +

p(x)2

f(x)

βn
hdn

1

2− (β − ad)ξβ
R(K)

− 2
p(x)

f(x)2
βnh

−d
n

2− (β − ad)ξβ
p(x)f(x)R(K) + o

(
βnh

−d
n

)
=
βn
hdn

ψ−1
n

2− (β − ad)ξβ

R(K)

f(x)

(
E[T 2|X = x]− ψp(x)2

)
+ o

(
βnh

−d
n

)
.

Now, let us state the following theorem which yields the asymptotic normality of the proposed multivariate
recursive regression estimator under missing data pn denoted in (4).

3.4. Asymptotic normality of pn

Theorem 2
Let assumptions (A1)− (A3) hold and assume that, for all i, j ∈ {1, . . . , d}, m(2)

ij and f (2)ij are continuous at x. We
therefore have:
If there exists c ≥ 0 such that β−1

n hd+4
n −→

n→+∞
c, then√

β−1
n hdnψn (pn(x)− p(x))

D−→
n→+∞

N
(√

cM(x) , Σ(x)

)
. (22)

with

M(x) =
1

2(1− 2aξβ)f(x)

d∑
j=1

µj(K)
(
m

(2)
jj (x)− p(x)f

(2)
jj (x)

)
Stat., Optim. Inf. Comput. Vol. 10, September 2022



S. SLAMA, Y. SLAOUI, G. LE DU AND C. PERRET 1031

and
Σ(x) =

1

2− (β − ad)ξβ

R(K)

f(x)

(
E[T 2|X = x]− ψp2(x)

)
,

where D−→
n→+∞

represents convergence in distribution and N denotes the Gaussian distribution.

Proof
We have

An(x)− E[An(x)] =
1

f(x)
[mn(x)− E[mn(x)]]−

p(x)

f(x)
[fn − E[fn]]

=
1

f(x)
Qn

n∑
k=1

(Lk(x)− E[Lk(x)]) ,

with
Lk(x) = Q−1

k βk (Zk(x)− p(x)Wk(x)) .

In this proof, we note
Sk(x) = Lk(x)− E[Lk(x)].

On the one hand, it’s obvious that

pn(x)− E[pn(x)] =
1

f(x)
Qn

n∑
k=1

Sk(x). (23)

On the other hand, we attempt to apply Lyapunov’s theorem for Sk(x). For this reason, we consider

υ2n =

n∑
k=1

V ar[Sk(x)]

=

n∑
k=1

V ar[Lk(x)]

=

n∑
k=1

Q−2
k β2

k

(
V ar [Zk(x)] + p(x)2V ar [Wk(x)]− 2p(x)cov (Zk(x),Wk(x))

)
.

Moreover, we have
V ar [Zk(x)] = h−d

k ψ−1
k

(
E[T 2|X = x]f(x)R(K) + o(1)

)
.

V ar [Wk(x)] = h−d
k

(
f(x)R(K) + o(1)

)
.

cov (Zk(x),Wk(x)) = h−d
k

(
p(x)f(x)R(K) + o(1)

)
.

Hence, by applying lemma 1 , it can be inferred that

υ2n =

n∑
k=1

Q−2
k β2

kh
−d
k ψ−1

k

(
E[T 2|X = x]f(x)R(K) + o(1)

)
+p(x)2

n∑
k=1

Q−2
k β2

kh
−d
k

(
f(x)R(K) + o(1)

)
− 2p(x)

n∑
k=1

Q−2
k β2

kh
−d
k

(
p(x)f(x)R(K) + o(1)

)
=

βn
hdn
ψ−1
n

f(x)2

Q2
n

[Σ + o (1)]. (24)
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In addition, we have

∀p > 0, E[|Lk(x)|2+p] = O

(
1

h
d(1+p)
k

)
.

Therefore,

E
[
|Sk(x)|2+p

]
= E

[
|Lk(x)− E[Lk(x)]|2+p]

≤ 2Q−2−p
k β2+p

k E
[
|Lk(x)|2+p

]
.

Hence,
E
[
|Sk(x)|2+p

]
= O

(
Q−2−p

k β2+p
k E

[
|Lk(x)|2+p

])
.

We then deduce that

n∑
k=1

E[|Sk(x)|2+p] = O

(
n∑

k=1

Q−2−p
k β2+p

k E
[
|Lk(x)|2+p

])

= O

(
n∑

k=1

Q−2−p
k β2+p

k h
−d(1+p)
k

)
.

In the following, let us assume that there is p > 0, such that

lim
n→+∞

nβn >
1 + p

2 + p
(β − ad).

By applying lemma 1 , we obtain

n∑
k=1

E[|Sk(x)|2+p] = O

(
β1+p
n

Q2+p
n h

d(1+p)
k

)
.

Thus,
1

υ2+p
n

n∑
k=1

E[|Sk(x)|2+p] = O

(
β1+p
n

υ2+p
n Q2+p

n h
d(1+p)
n

)
.

Then, it follows that
1

υ2+p
n

n∑
k=1

E[|Sk(x)|2+p] = O

((
βn
hdn

)p/2
)

= o (1) .

Moreover, since we have

lim
n→+∞

1

υ2+p
n

n∑
k=1

E
[
|Sk(x)− E[Sk(x)]|2+p

]
= lim

n→+∞

1

υ2+p
n

n∑
k=1

E[|Sk(x)|2+p] = 0,

by applying the Lyapunov theorem, we get

1√
υ2n

n∑
k=1

(Sk(x)− E[Sk(x)])
D−→

n→+∞
N (0 , 1) ,

which implies
1

υn

n∑
k=1

Sk(x)
D−→

n→+∞
N (0 , 1) .
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Moreover, (23) ensures that

f(x)Q−1
n υ−1

n (pn(x)− E[pn(x)])
D−→

n→+∞
N (0 , 1) . (25)

Then, the combination of (24) and (25) ensures that√
β−1
n hdnψn (pn(x)− E[pn(x)])

D−→
n→+∞

N (0 ,Σ) . (26)

Hence, the application of Lyapounov’s Theorem coupled with the combination of (15), (16) and (26) ensures the
convergence in (22).

In order to measure the asymptotic performance of the proposed recursive kernel regression estimator under
missing data pn and to be able to use a data-driven bandwidth selection procedure, through proposing an
asymptotic unbiased estimators of the unknown quantities, we consider the Mean Weighted Integrated Squared
Error (MWISE), where the weight function is selected to be equal to f3 (x). This choice was motivated by the
fact that we can propose an asymptotic unbiased kernel estimator for the unknown quantities, which will appear in
the MWISE as reported previously in [29], and which shall be detailed later.

3.5. Asymptotic expressions of MWISE of pn

The MWISE of the estimator pn is determined by,

MWISE[pn] =

∫
Rd

(E[pn(x)]− p(x))
2
f3(x)dx+

∫
Rd

V ar[pn(x)]f
3(x)dx. (27)

For simplicity, we set

C1 =
I1 − 2I2 + I3

(1− 2aξβ)
2 and C2 =

I4 − ψI5
2− (β − ad)ξβ

.

It follows that

MWISE[pn] =


1

4
C1h

4
n + o(h4n) if a ∈

(
0, β

d+4

)
C2R(K)βnh

−d
n ψ−1

n +
1

4
C1h

4
n + o(h4n) if a = β

d+4

C2R(K)βnh
−d
n ψ−1

n + o
(
βnh

−d
n

)
if a ∈

(
β

d+4 , 1
) .

The corollary bellow ensures that the bandwidth which minimizes the MWISE of pn depends on the choice of
the stepsizes (βn) and then the corresponding MWISE depends in turn on (βn).

Corollary 1
Let assumptions (A1)− (A3) hold. To minimize the MWISE of pn, the bandwidth (hn) must be equal to(

d
1

d+4

(
C2

C1

) 1
d+4

R(K)
1

d+4 β
1

d+4
n ψ

−1
d+4
n

)
.

Then, the corresponding MWISE is estimated in terms of

MWISE[pn] =
(d+ 4)

4d
d

d+4

C
d

d+4

1 C
4

d+4

2 R(K)
4

d+4 β
4

d+4
n ψ

−4
d+4
n + o

(
β

4
d+4
n

)
.

The following corollary is presented in the special case, where (βn) is chosen as (βn) = (β0n
−1). We can check

easily that the optimal choice of β0 is obtained by getting β0 equal to 1.
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Corollary 2
Let assumptions (A1)− (A3) hold. To minimize the MWISE of pn, we must choose the stepsize (βn) in GS(−1)
such that lim

n→∞
(nβn) = 1. Consequently, the optimal bandwidth (hn) must be equal to((

d(d+ 2)

2(d+ 4)

) 1
d+4
(

I4 − ψI5
I1 − 2I2 + I3

) 1
d+4

R(K)
1

d+4n
−1
d+4ψ

−1
d+4
n

)
. (28)

Thus, the corresponding MWISE is provided by

MWISE[pn] =
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4 (d+ 2)

d+6
d+4

(I1 − 2I2 + I3)
d

d+4 (I4 − ψI5)
4

d+4 R(K)
4

d+4n
−4
d+4ψ

−4
d+4
n

+ o

(
n

−4
d+4ψ

−4
d+4
n

)
.

3.6. Asymptotic properties of p̃n

The main properties of the generalized non-recursive regression function estimator p̃n are displayed in the
following proposition.

Proposition 3
Let assumptions (A1) and (A3) hold and assume that, for all i, j ∈ {1, . . . , d}, m(2)

ij and f (2)ij are continuous at x.
Therefore, the bias and variance of Nadaraya-Watson’s regression estimator are equal to:

E[p̃n(x)]− p(x) =
1

2f(x)
h2n

(
d∑

j=1

µj(K)m
(2)
jj (x)− p(x)

d∑
j=1

µj(K)f
(2)
jj (x)

)
+ o

(
h2n
)
.

V ar[p̃n(x)] =
1

nhdn
ψ−1
n

1

f(x)
V ar[T |X = x]R(K) + o

(
1

nhdn

)
.

It is inferred that

MWISE[p̃n] =
1

4
(I1 − 2I2 + I3)h

4
n +

1

nhdn
ψ−1
n (I4 − ψI5)R(K) + o

(
h4n +

1

nhdnψn

)
.

Corollary 3
Let assumptions (A1) and (A3) hold. To minimize the MWISE of p̃n, the bandwidth (hn) must be equal to(

d
1

d+4

(
I4 − ψI5

I1 − 2I2 + I3

) 1
d+4

R(K)
1

d+4n−
1

d+4ψ
− 1

d+4
n

)
. (29)

Then, the corresponding MWISE is specified by

MWISE[p̃n] =
(d+ 4)

4d
d

d+4

(I4 − ψI5)
4

d+4 (I1 − 2I2 + I3)
d

d+4 R(K)
1

d+4n−
4

d+4ψ
− 4

d+4
n + o

(
n−

4
d+4ψ

− 4
d+4

n

)
.

Clearly, the use of such bandwidth (29), is not possible when we use real data. From this perspective, the next
section is devoted to build up a data-driven bandwidth procedure, which will be helpful in practice.

4. Bandwidth selection

Within the framework of non-parametric kernel estimation, the choice of the smoothing parameter is crucial
for the effective performance of the estimators. There are a myriad of data-driven bandwidth selection methods
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recorded in literature which can be divided into three broad classes: cross-validation techniques, plug-in methods,
and the bootstrap approach. A detailed comparison of the three techniques is exhibited in [6]. In this paper, based
on the previous work conducted by [27–29] for unidimensional data, we propose a second generation Plug-in
bandwidth data-driven procedures in the multivariate data for regression estimation.

4.1. Plug-in bandwidth selection method

A widely used criterion stands for selecting a bandwidth that minimizes the estimate of the mean squared error,
using the density function as a weight function. [2] proposed an efficient method of bandwidth selection, a plug-in
estimate. Since theMWISE depends on unknown quantities Ij , j = 1 . . . 5, we suggest elaborating an asymptotic
unbiased estimator of those quantities.
As a matter of fact, we adopt the approach proposed in [2], called the second generation Plug-in estimation. For
this purpose, we should introduce the so called pilot bandwidth (bn)n≥1 ∈ GS(−δ), δ ∈ (0, 1) .

In practice, we take bn = n−δ min

{
ŝ,
Q3 −Q1

1.349

}
, with, ŝ is the sample standard deviation and Q1, Q3 are the first

and third quartiles. In order to select the parameter δ, we follow the work of [27–29].
First of all, for the sake of simplicity, the kernel K is considered as a product of univariate kernels K satisfying∫
R
K(x)dx = 1. For this purpose, we let µ(K) =

∫
R
z2K(z)dz,

Ij = µ2(K)I ′j , j = 1 . . . 3,

where

I ′1 =

∫
Rd

(
d∑

j=1

m
(2)
jj (x)

)2

f(x)dx,

I ′2 =

∫
Rd

(
d∑

j=1

m
(2)
jj (x)

)(
d∑

j=1

f
(2)
jj (x)

)
p(x)f(x)dx,

I ′3 =

∫
Rd

(
d∑

j=1

f
(2)
jj (x)

)2

p2(x)f(x)dx.

4.1.1. Multivariate recursive kernel regression estimator under missing data pn
Here, we can state

mn(x) = Qn

n∑
k=1

Q−1
k βk h

−d
k Ykψ

−1
k K

(
x−Xk

hk

)
= Qn

n∑
k=1

Q−1
k βkYkψ

−1
k h−d

k

d∏
i=1

K

(
xi −Xki

hk

)

and

fn(x) = Qn

n∑
k=1

Q−1
k βk h

−d
k K

(
x−Xk

hk

)
= Qn

n∑
k=1

Q−1
k βkh

−d
k

d∏
i=1

K

(
xi −Xki

hk

)
.

At this stage of analysis, in order to estimate the optimal bandwidth (28), we need to estimate Ij , j = 1 . . . 5.
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Estimation of I1, I2 and I3: We consider the following kernel estimators to estimate respectively I1, I2 and I3:

Î ′1 =
Q2

n

n

n∑
i,j,k=1
i ̸=j ̸=k

Q−1
j Q−1

k βjβkb
′−(d+2)
j b′

−(d+2)
k

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b
′
j

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bj

)

×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b
′
k

) d∏
l=1
l ̸=t

Kb

(
Xil −Xkl

bk

)Yjψ−1
j Ykψ

−1
k ,

Î ′2 =
QnΠn

n

n∑
i,j,k=1
i ̸=j ̸=k

Q−1
j Π−1

k βjγkb
′−(d+2)
j b′

−(d+2)
k

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b
′
j

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bj

)

×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b
′
k

) d∏
l=1
l≠t

Kb

(
Xil −Xkl

bk

)Yjψ−1
j Yiψ

−1
i ,

Î ′3 =
Π2

n

n

n∑
i,j,k,m=1
i ̸=j ̸=k ̸=m

Π−1
j Π−1

k γjγkb
′−(d+2)
j b′

−(d+2)
k

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b
′
j

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bj

)

×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b
′
k

) d∏
l=1
l≠t

Kb

(
Xil −Xkl

bk

)Yiψ−1
i Ymψ

−1
m ,

where, Kb is a kernel and bn is the associated bandwidth, such that δ = −2/5, and K(2)
b′ is the second derivative of

a kernel Kb′ with the associated bandwidth b
′

n such that δ = −3/14.

Estimation of I4 and I5: We consider the following kernel estimators to estimate respectively I4 and I5:

Î4 =
Πn

n

n∑
i,k=1
i ̸=k

Π−1
k γkb

−d
k

d∏
l=1

Kb

(
Xil −Xkl

bk

)
Y 2
i ψ

−2
i ,

and

Î5 =
Qn

n

n∑
i,k=1
i ̸=k

Q−1
k βkb

−d
k

d∏
l=1

Kb

(
Xil −Xkl

bk

)
Yiψ

−1
i Ykψ

−1
k ,

where,Kb is a kernel and bn is the associated bandwidth, such that δ = −2/5. It follows that, the plug-in bandwidth
selection estimator of (28) is expressed by

(hn) =

(d(d+ 2)

2(d+ 4)

) 1
d+4

(
Î4 − ψÎ5

Î1 − 2Î2 + Î3

) 1
d+4

R(K)
1

d+4n
−1
d+4ψ

− 1
d+4

n

 , (30)

with, Îi = µ2(K)Î ′i, i = 1 . . . 3.
Then, the plug-in estimator of MWISE[pn] is equal to

̂MWISE[pn] =
(d+ 4)

3d+8
d+4

4
d+6
d+4 d

d
d+4 (d+ 2)

d+6
d+4

(
Î1 − 2Î2 + Î3

) d
d+4
(
Î4 − ψÎ5

) 4
d+4

R(K)
1

d+4n
−4
d+4ψ

− 4
d+4

n + o
(
n

−4
d+4ψ

− 4
d+4

n

)
.
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Now, let us examine the asymptotic properties of the multivariate non-recursive Nadaraya-Watson’s regression
estimator under missing data p̃n. First we display the multivariate bias and variance of p̃n.

4.1.2. Multivariate non-recursive kernel regression estimator under missing data p̃n
Here, we can state

m̃n(x) =
1

nhdn

n∑
k=1

Ykψ
−1
k K

(
x−Xk

hn

)
=

1

nhdn

n∑
k=1

Ykψ
−1
k

d∏
i=1

K

(
xi −Xki

hk

)

and

f̃n(x) =
1

nhdn

n∑
k=1

K

(
x−Xk

hn

)
=

1

nhdn

n∑
k=1

d∏
i=1

K

(
xi −Xki

hk

)
.

In order to estimate the optimal bandwidth (29), we need to estimate Ij , j = 1 . . . 5.

Estimation of I1, I2 and I3: We consider the following kernel estimators to estimate respectively I1, I2 and I3:

Ĩ ′1 =
1

n3b′2(d+2)
n

n∑
i,j,k=1
i ̸=j ̸=k

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bn

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xkl

bn

)Yjψ−1
j Ykψ

−1
k ,

Ĩ ′2 =
1

n3b′2(d+2)
n

n∑
i,j,k=1
i ̸=j ̸=k

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bn

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xkl

bn

)Yjψ−1
j Yiψ

−1
i ,

Ĩ ′3 =
1

n4b′2(d+2)
n

n∑
i,j,k,m=1
i ̸=j ̸=k ̸=m

 d∑
t=1

K
(2)
b′

(
Xit −Xjt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xjl

bn

)
×

 d∑
t=1

K
(2)
b′

(
Xit −Xkt

b′n

)
d∏

l=1
l ̸=t

Kb

(
Xil −Xkl

bn

)Yiψ−1
i Ymψ

−1
m ,

where, Kb is a kernel and bn is the associated bandwidth, such that δ = −2/5, and K(2)
b′ is the second derivative of

a kernel Kb′ with the associated bandwidth b
′

n such that δ = −3/14.
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Estimation of I4 and I5: We consider the following kernel estimators to estimate respectively I4 and I5:

Ĩ4 =
1

n2bdn

n∑
i,k=1
i ̸=k

d∏
l=1

Kb

(
Xil −Xkl

bn

)
Y 2
i ψ

−2
i ,

and

Ĩ5 =
1

n2bdn

n∑
i,k=1
i ̸=k

d∏
l=1

Kb

(
Xil −Xkl

bn

)
Yiψ

−1
i Ykψ

−1
k ,

where, Kb is a kernel and bn is the associated bandwidth, such that δ = −2/5. Hence, the plug-in bandwidth
selection estimator of (29) is indicated by

(hn) =

d 1
d+4

(
Ĩ4 − ψĨ5

Ĩ1 − 2Ĩ2 + Ĩ3

) 1
d+4

R(K)
1

d+4n−
1

d+4ψ
− 1

d+4
n

 , (31)

with, Ĩi = µ2(K)Ĩ ′i, i = 1 . . . 3.
It follows that, the plug-in non-recursive estimator of MWISE[pn] is equal to

˜MWISE[p̃n] =
(d+ 4)

4d
d

d+4

5

4

(
Ĩ4 − ψĨ5

) 4
d+4
(
Ĩ1 − 2Ĩ2 + Ĩ3

) 1
d+4

R(K)
1

d+4n−
4

d+4ψ
− 4

d+4
n

+o
(
n−

4
d+4ψ

− 4
d+4

n

)
.

5. Application to the handwritten word production

Research on the handwritten word production aims to describe the cognitive processes and mental
representations mobilized when a human being prepares to handwrite a word from an idea of [21]. One of the
most widely used tasks to experimentally explore these issues is object naming. Participants have to produce words
corresponding to the names of a set of drawings in handwriting as quickly as possible. It is generally accepted
that the handwritten objects naming involves four levels of processing [19]. First, a perceptual analysis of the
visual input is performed, which results in activation of stored structural knowledge about the object. A second
processing level corresponds to the retrieval of semantic/conceptual information. The lexical selection level makes
orthographic word form information available. Eventually, the motoric programming level allows the access to
motoric codes corresponding to each produced letter.

These theoretical propositions concerning the cognitive processes and representations involved in the
handwritten object naming stem from studies aiming at finding predictors of reaction times (RTs hereafter), i.e., the
time between the presentation of the image and the first graphic movement (e.g., [3]; [20]). Four factors have been
reported to significantly influence RTs, each of which allows indexing a specific processing level. Image Agreement
(IA) captures the similarity between structural representations stored in memory and the visual characteristics of
an object’s drawing. This factor has extensive influence in terms of the perceptual analysis. The IA is measured
on a Like rt scale, generally in five points, from ’1 - weakly similar’ to ’5 - strongly similar’. A negative linear
relationship is observed between this variable and the RTs (see [3]; [20]). Image variability (Ivar or Image ability)
is designed to index the ’richness’ of semantic representations. Like AI, it is rated on a 5-point scale, from 1 =
few images to 5 = many images. A negative linear relationship is reported between handwritten RTs and Ivar
(see [3]; [20]).

Name agreement (NA) refers to the degrees of agreement on the use of a specific label for an image, measured
using an entropy measure (h-index). A positive linear relationship is reported between RTs and the h-index
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(see [3]; [20]). NA indexes the influence of the number of correct alternative names existing for an image (e.g.,
couch => sofa). Latencies would be more or less impacted by the time needed to manage the competition between
the higher or lower number of alternatives during lexical access. Finally, the influence of age-limited learning
(Age of Acquisition, AoA) has been systematically emphasized in studies on the predictors of handwritten RTs
(see [3]; [20]). AoA is usually measured using a Like rt scale (from 1 = learned at 0-3 years to 5 = learned at age
+12, with 3-year bands in between), with a population of young adults who are asked to estimate the age at which
they learned the proposed word. A positive linear relationship is observed between the RTs and the rated values
of AoA (see [3]; [20]). Experimental work [22] suggests that this variable influences the orthographic wordform
encoding processes.
The major target of this work is to classify the participants in groups of clusters. From this perspective, we first
have to predict the regression function, i.e the relation between the variable T = RTs and the four covariates
X1 = H , X2 = IA, X3 = Ivar and X4 = AoA. Since the response variable RTs is subject of missing data, we
should introduce a correction variable Y := CRTs defined as Yi = Ti ∗ 1{Ti is observed}.

Here, we have Np individual estimators of each participant Ŷ1, . . . , ŶNp (Ỹ1, . . . , ỸNp) and a general estimator Ŷ g

(Ỹ g) which estimates the whole database of Np participants.
It’s worth noting that, for each participant/covariate behavior test, we invested a different method for bandwidth
selection, namely the plug-in univariate selection for multivariate data.
This implies that, instead of opting for a single value of bandwidth hn, we considered a vector hn1, . . . , hnd, an
individual choice of bandwidth for each covariate. Then, for the recursive case, we have a matrix of bandwidths:

H =

(
h11 . . . h1d

.

.

.
. . .

.

.

.
hn1 . . . hnd

)
.

We denote by p∗i the reference regression vector and by pi the test regression. Thus, we calculate the two

following measures: the Mean Squared Error: MSE =
1

n

n∑
i=1

(pi − p∗i )
2, and the Mean Relative Error: MRE =

1

n

n∑
i=1

∣∣∣pi−p∗
i

p∗
i

∣∣∣.

Figure 1. Participants’ behavior representations, the regression between the reactions time variable Y = CRTs and each
covariate (X1 = H , X2 = IA, X3 = Ivar and X4 = AoA) with the entire database (a total of 137 participants).
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Algorithm 1 X1, . . . , X4 are the covariates such that X1 = H , X2 = IA, X3 = Ivar and X4 = AoA, Y is the
response variable with Y = CRTs, K is the Gaussian kernel n the number of items and Np is the number of
participants.
Input: Y , X1, . . . , X4, K, n and Np.

1: A choice value for the recursive bandwidth vectors h1, . . . , hn. (resp. the non-recursive bandwidth values hn)
// using the plug-in approach provided in (28) (resp. (31)).

2: The choice of the stepsize (βn) =
(
n−1

)
(then, (Qn) =

(
n−1

)
).

3: An arbitrary sampling vectors x1, . . . , x4.
4: The estimation of ψ is carried out according to the algorithm proposed in [30]
5: for l = 1, . . . , Np do

6: Ŷl =

ln∑
k=1+(l−1)n

kβkYkψ
−1
k

4∏
i=1

h−1
ki

4∏
i=1

K

(
xi −Xki

hki

)
ln∑

k=1+(l−1)n

kβk
4∏

i=1

h−1
ki

4∏
i=1

K

(
xi −Xki

hki

) for the multivariate recursive kernel regression

estimator (resp. Ỹl =

ln∑
k=1+(l−1)n

Ykψ
−1
k

4∏
i=1

K

(
xi −Xki

hni

)
ln∑

k=1+(l−1)n

4∏
i=1

K

(
xi −Xki

hni

) for the multivariate non-recursive kernel

regression estimator).
7: end for

output: Ŷ1, . . . , ŶNp and Ỹ1, . . . , ỸNp.

Mean Relative Error Min 1st Qu Median Mean 3rd Qu Max
Recursive 0.0000014 0.1208883 0.2643889 0.3837469 0.5322441 2.4902917
Non-recursive 0.0000103 0.1412407 0.3301375 0.4748705 0.9999976 2.4525833

Table 1. Quantitative comparison between the mean relative error of the multivariate non-recursive Nadaraya-
Watson’s regression estimator (Non-recursive) and the proposed multivariate recursive kernel regression estimator
(Recursive) with stepsize (βn) = (n−1) through a plug-in method.

Let us underline that in order to classify participants in groups, we use the MSE as a reference vector. Thus, we
use the k-means method to specify the maximum number of needed clusters.

Algorithm 2 Participants classification algorithm:
Y is the response variable with Y = CRTs, Ŷ1, . . . , ŶNp are the predicted multivariate recursive kernel regression
estimators and Ỹ1, . . . , ỸNp are the predicted multivariate non-recursive kernel regression estimators.

Input: Y , Ŷ1, . . . , ŶNp and Ỹ1, . . . , ỸNp.
1: Start with writing Y in a matrix form participant per participant.
2: for l = 1, . . . , Np do
3: MSERl =

1

n

n∑
i=1

(Ŷi − Yi)
2. for the recursive estimation (resp. MSETl =

1

n

n∑
i=1

(Ỹi − Yi)
2. for the non-

recursive estimation).
4: end for
5: A classification of the remote distance // through kmeans package in R.

output: The classification list using both considered estimators.
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Figure 2. Box-plot of the relative error estimation of both considered estimators, the recursive one on the left and the non-
recursive one on the right.

Figure 3. The elbowmethod of selecting the optimal number of clusters (k = 3) for K-means clustering on theMSE vector.

Result Analysis:
Departing form figure 2 and table 1, we deduce that the proposed recursive estimator outperforms the non-

recursive one in terms of mean relative error estimation. Meanwhile, figures 1 and 3 indicate that it is advisable
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to consider three clusters. As far as written production behavior is concerned, this implies that the classification
procedure suggests three clusters to measure the distance of each participant from the reference. In other words,
three forms of variation can be observed when participants have to write the label of a drawing. Further exploration
of the available characteristics of the participants suggests that such anthropological factors as the age and gender
do not account for the result of clustering. Descriptive analysis of executive function task data suggests that there are
differences between the three groups of participants. This indicates that the variations would be interpreted in part
by the participants’ cognitive processing ability and by differences in the mobilization of participants’ executive
functions. Studies based upon procedures for fitting reaction time distributions with ex-Gaussian-type probability
density distributions (convolution of a normal and exponential law) have corroborated the role of these executive
functions in simple tasks (e.g., [26]; [35]). Our analyses yield that this result can be extended to more complex
activities such as written production. Eventually, this work confirms the significance of the use of non-parametric
regressions for modeling behavior in experimental psychology area.

6. Conclusion

In this research paper, we elaborated a multivariate recursive regression estimator under missing data. We first
investigated the asymptotic properties of the proposed estimator by providing the bias as well as the variance in
order to demonstrate that our estimator asymptotically follows a normal distribution. Subsequently, we compared
our recursive estimator with the non-recursive multivariate Nadaraya-Watson’s regression estimator using the plug-
in bandwidth selection approach. In our application of real dataset, and for all the cases, the proposed estimator (4)
with stepsize (βn) =

(
n−1

)
yielded smaller MSE and MRE compared to the non-recursive Nadaraya Watson’s

estimator.
As part of the application, it was possible to estimate the response variable RTs (Reaction Times) according to the
other covariates through classifying the participants into clusters of membership according to their approximation
to the real value of RTs.
To conclude, the use of the multivariate recursive kernel regression estimator under missing data enabled us to
obtain better results compared to the multivariate non-recursive kernel regression estimator under missing data.
With an appropriate choice of the bandwidth, we depicted that our proposed estimator is closer to the true regression
function than the non-recursive one.

A future research direction would be to extend our findings to the case of functional data like in [32] and [33].
We can also consider the k nearest neighbours smoothing with functional regressor, see [1] in finite dimensional
data and [10] in the case of functional data. Another direction is to consider same estimators grounded on bias
reduction technique (see [9], [31]), which requires non trivial mathematics and goes therefore beyond the scope of
the present paper. Finally, we can also explore the idea developed in the recent work of [4] through considering
some semi-parametric Bayesian networks approaches based on the current work.
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