
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 12, July 2024, pp 882–906.
Published online in International Academic Press (www.IAPress.org)

The Marshall-Olkin-Topp-Leone-Gompertz-G Family of Distributions with
Applications

Broderick Oluyede 1, Morongwa Gabanakgosi 1,*, Gayan Warahena-Liyanage 2

1Department of Mathematics and Statistical Sciences, Botswana International University of Science and Technology, Botswana
2Department of Mathematics, University of Dayton, Dayton, OH, 45469, USA

Abstract A new family of distributions called the Marshall-Olkin-Topp-Leone-Gompertz-G (MO-TL-Gom-G) distribution
is developed and studied in detail. Some mathematical and statistical properties of the new family of distributions are
explored. Statistical properties of the new family of distributions considered are the quantile function, moments and
generating function, probability weighted moments, distribution of the order statistics and Rényi entropy. The maximum
likelihood technique is used for estimating the model parameters and Monte Carlo simulation is conducted to examine the
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1. Introduction

There are many generalizations of the Gompertz [16] distribution in the literature. These new generalizations are
used for modeling data in several areas including reliability, economics, finance, and hydrology among others. The
importance of generalizing those distributions is that they provide a better fit than the existing ones in modeling
real-life data. Some examples of those generalized distributions include, the Marshall-Olkin-Gompertz-G family
of distributions by Chipepa and Oluyede [12], the Marshall-Olkin extended generalized Gompertz distribution by
Lazhar [23], Topp-Leone Gompertz distribution by Nzei et al. [29] and the Gompertz-G family of distributions by
Alizadeh et al. [2].

Some Topp-Leone generalizations in the literature including the Marshall-Olkin Topp-Leone half-logistic-G
family of distributions by Sengweni et al. [33], Topp-Leone odd Burr III-G family of distributions by Moakofi et
al. [28] and Topp-Leone odd Burr X-G Family of distributions by Oluyede et al. [31].

There are very useful generalizations of distributions in the literature via the Marshall-Olkin generator [27].
Some of those generalizations include the beta Marshall-Olkin-G (BMO-G) distribution by Alizadeh et al. [3],
Kumaraswamy Marshall-Olkin-G (KwMO-G) distribution by Alizadeh et al. [4] and Marshall-Olkin Half Logistic-
G (MOHL-G) distribution by Makubate et al. [26]. A new class of distributions called the Marshall-Olkin Log-
logistic Extended Weibull (MOLLEW) family of distributions was proposed by Lepetu et al. [25]. Chakraborty and
Handique [9] presented the generalized Marshall-Olkin Kumaraswamy-G distribution, and the ratio and inverse
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moments of Marshall-Olkin extended Burr Type III distribution based on lower generalized order statistics was
proposed by Kumar [22].

The main motivations for developing the MO-TL-Gom-G family of distributions are as follows:

• To model data with heavy tails,
• To obtain flexible distributions for modeling various types of data in practice, and
• To develop a family of distributions that has both monotonic and non-monotonic hazard rate functions

including bathtub and upside-down bathtub shapes.

This paper is outlined as follows: In Section 2, we define our new model, Marshall-Olkin-Topp-Leone-Gompertz-
G (MO-TL-Gom-G) family of distributions and its sub-models. Section 3 contains some statistical properties of
the MO-TL-Gom-G family of distributions including expansion of the probability density function, hazard rate
and quantile functions, moments, generating functions, stochastic orders, probability weighted moments, order
statistics and Rényi entropy. Maximum likelihood estimates of the model parameters are given in Section 4.
Examples of the special cases of the new family of distributions are given in Section 5. A Monte Carlo simulation
study to examine the bias and mean square error of the maximum likelihood estimates is presented in Section 6.
Section 7 contains applications of the new model to two real data sets. And lastly, concluding remarks are given in
Section 8.

2. The Model

In this section, we present the proposed model and its sub-models. This distribution offers flexibility in capturing
the skewness present in real-world data, allowing for accurate modeling of a wide range of data. The new
distribution can model data that are right-skewed, left-skewed and symmetric. The Topp-Leone Gompertz-G (TL-
Gom-G) distribution was introduced by Oluyede et al. [30] with the cumulative distribution function (cdf) and
probability density function (pdf) given by

F
TL−Gom−G

(x; b, θ, ξ) =

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b

(1)

and

f
TL−Gom−G

(x; b, θ, ξ) = 2bg(x; ξ)(1−G(x; ξ))−θ−1

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2

×

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−1

, (2)

respectively, for x > 0, b, θ > 0 and parameter vector ξ. Marshall and Olkin [27] developed the distribution with
the cdf and pdf given by

F
MO−G

(x; δ, ξ) = 1− δḠ(x; ξ)

1− δ̄Ḡ(x; ξ)
(3)

and

f
MO−G

(x; δ, ξ) =
δg(x; ξ)

[1− δ̄Ḡ(x; ξ)]2
, (4)
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respectively, where δ is the tilt parameter, δ̄ = 1− δ and G(x; ξ) is the baseline cdf which depends on the parameter
vector ξ. Considering the generalization by Marshall and Olkin and inserting equations (1) and (2) into equations
(3) and (4) respectively, we obtain the MO-TL-Gom-G family of distributions with the cdf and pdf given by

F
MO−TL−Gom−G

(x; δ, b, θ, ξ) = 1−
δ

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b)
1− δ̄

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b) (5)

and

f
MO−TL−Gom−G

(x; δ, b, θ, ξ) = 2bδg(x; ξ)(1−G(x; ξ))−θ−1

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2

×

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−1

×
(
1− δ̄

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b))−2

, (6)

for δ, b, θ > 0 and parameter vector ξ.

2.1. Sub-Models

In this subsection, we present some of the sub-models of the MO-TL-Gom-G family of distributions.

• When δ = 1, we obtain the TL-Gom-G family of distributions with the cdf given by

F (x; b, θ, ξ) =

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b

,

for b, θ > 0, and parameter vector ξ. See Oluyede et al. [30] for additional details.
• When b = 1, we obtain the distribution with the cdf given by

F (x; δ, θ, ξ) = 1−
δ
(
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2)
1− δ̄

(
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2) ,
for δ, θ > 0, and parameter vector ξ.

• When δ = b = 1, we get the distribution with the cdf given by

F (x; θ, ξ) = 1−
(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2

for θ > 0 and parameter vector ξ.

In addition, several new distributions can be obtained when the baseline cdf G(x; ξ) is specified.

3. Some Statistical Properties

In this section, we present the expansion of the density function, hazard rate and quantile functions, moments,
generating function, stochastic orders, probability weighted moments, distribution of order statistics and Rényi
entropy of the MO-TL-Gom-G family of distributions.
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3.1. Expansion of the Density Function

We apply the general results by Barreto-Souza et al. [7] to obtain the linear representations of the MO-TL-Gom-G
family of distributions in this subsection. Equation (6) can be written as

f
MO−TL−Gom−G

(x; δ, b, θ, ξ) =
f
TL−Gom−G

(x; b, θ, ξ)

δ
[
1− δ−1

δ F
TL−Gom−G

(x; b, θ, ξ)
]2 , (7)

where f
TL−Gom−G

(x; b, θ, ξ) and F
TL−Gom−G

(x; b, θ, ξ) are given in equations (2) and (1), respectively.

If δ ∈ (0, 1), we obtain the pdf of the MO-TL-Gom-G family of distributions as

f
MO−TL−Gom−G

(x; δ, b, θ, ξ) = 2b

∞∑
j,i,k,l,m=0

j∑
q=0

(−1)i+l+m(2i+ 2)k

θkk!(m+ 1)
γj,q

(
b(j − q + 1)− 1

i

)
×

(
−θ(l + 1)− 1

m

)(
k

l

)
(m+ 1)g(x; ξ)Gm(x; ξ)

=

∞∑
m=0

Vm+1h(m+1)(x; ξ), (8)

where

Vm+1 = 2b

∞∑
j,i,k,l=0

j∑
q=0

(−1)i+l+m(2i+ 2)k

θkk!(m+ 1)
γj,q

(
b(j − q + 1)− 1

i

)(
−θ(l + 1)− 1

m

)(
k

l

)
, (9)

and h(m+1)(x; ξ) = (m+ 1)g(x; ξ)Gm(x; ξ). It follows that for δ ∈ (0, 1), the MO-TL-Gom-G family of
distributions can be expressed as a linear combination of the exponentiated-G (Exp-G) densities with power
parameter (m+1).

For δ > 1, the series representation of the pdf of the MO-TL-Gom-G family of distributions is given by

f
MO−TL−Gom−G

(x; δ, b, θ, ξ) = 2b

∞∑
j,i,k,l,q=0

(−1)i+l+q(2i+ 2)k

θkk!(q + 1)
ej

(
b(j + 1)− 1

i

)
×

(
−θ(l + 1)− 1

q

)(
k

l

)
(q + 1)g(x; ξ)Gq(x; ξ)

=

∞∑
q=0

Wq+1h(q+1)(x; ξ), (10)

where

Wq+1 = 2b

∞∑
j,i,k,l=0

(−1)i+l+q(2i+ 2)k

θkk!(q + 1)
ej

(
b(j + 1)− 1

i

)(
−θ(l + 1)− 1

q

)(
k

l

)
, (11)

and h(q+1)(x; ξ) = (q + 1)g(x; ξ)Gq(x; ξ). Again, for δ > 1, the MO-TL-Gom-G family of distributions can be
expressed as an infinite linear combination of the Exp-G densities with power parameter (q+1). See Appendix
section for more details of the derivations.
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3.2. Hazard Rate and Quantile Functions

In this subsection, we present the hazard rate and quantile functions of the MO-TL-Gom-G family of distributions.
The hazard rate function (hrf) is given by

h
MO−TL−Gom−G

(x; δ, b, θ, ξ) = 2bδg(x; ξ)(1−G(x; ξ))−θ−1

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])

×

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−1

×

1− δ̄

1−

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−2

×

 δ

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b)
1− δ̄

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b)


−1

.

We obtain the quantile function of the MO-TL-Gom-G family of distributions by inverting the non-linear equation

1−
δ

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b)
1− δ̄

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b) = u,

for 0 ⩽ u ⩽ 1, so that

ln

1−(1−( (1− u)

δ + (1− u)δ̄

) 1
b

) 1
2

 =
1

θ
(1− (1−G(x; ξ))−θ).

Consequently, the quantile function of the MO-TL-Gom-G family of distributions is given by

QG(u) = G−1

1−
1−

θ ln

[
1−

(
1− (1− u)

δ + (1− u)δ̄

) 1
b

] 1
2

− 1
θ

 . (12)

3.3. Moments and Generating Function

In this subsection, we present the moments and the generating function of the MO-TL-Gom-G family of
distributions.

• For δ ∈ (0, 1), we obtain the nth moment of the MO-TL-Gom-G family of distributions as

E(X
n

) =

∫ ∞

−∞
xnf

MO−TL−Gom−G
(x; δ, b, θ, ξ)dx =

∞∑
m=0

Vm+1E(Y
n

m+1), (13)

where E(Y
n

m+1) is the nth moment of Ym+1 which follows an Exp-G distribution with power parameter
(m+1) and Vm+1 is given in equation (9).
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• For δ > 1, the nth moment of the MO-TL-Gom-G family of distributions is given by

E(X
n

) =

∫ ∞

−∞
xnf

MO−TL−Gom−G
(x; δ, b, θ, ξ)dx =

∞∑
q=0

Wq+1E(Y
n

q+1), (14)

where E(Y
n

q+1) is the nth moment of Yq+1 which follows an Exp-G distribution with power parameter (q+1)
and Wq+1 is given in equation (11). The generating function of the MO-TL-Gom-G family of distributions
can be obtained as follows:

• For δ ∈ (0, 1), the moment generating function (MGF) of the MO-TL-Gom-G family of distributions is

MX(h) = E
(
ehX

)
=

∞∑
m=0

Vm+1E
(
ehYm+1

)
,

where E
(
ehYm+1

)
is the mgf of the Exp-G family of distributions with power parameter (m+1).

• For δ > 1, the MGF of the MO-TL-Gom-G family of distributions is

MX(h) = E
(
ehX

)
=

∞∑
q=0

Wq+1E
(
ehYq+1

)
,

where E
(
ehYq+1

)
is the mgf of the Exp-G family of distributions with power parameter (q+1).

3.4. Stochastic Ordering

Stochastic orders for the MO-TL-Gom-G family of distributions are presented in this subsection. Suppose we have
two random variables Z and T with distribution functions FZ(r) and FT (r), respectively, and FZ(r) = 1− FZ(r)
the survival function. Note that Z is stochastically smaller than T if FZ(r) ≤ FT (r) for all r or FZ(r) ≥ FT (r)
for all r. This is denoted by Z <s T . Hazard rate order and likelihood ratio order are stronger and are given by
Z <hr T if hZ(r) ≥ hT (r) for all r, and Z <lr T if fZ(r)

fT (r) is decreasing in r, (Shaked and Shanthikumar [34]). We
know that Z <lr T ⇒ Z <hr T ⇒ Z <s T .

Suppose we let X1 and X2 to be two independent random variables following MO-TL-Gom-G(δ1, b, θ, ξ) and
MO-TL-Gom-G (δ2, b, θ, ξ) distributions, then

f1(x; δ1, b, θ, ξ) = 2bδ1g(x; ξ)(1−G(x; ξ))−θ−1

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2

×

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−1

×

1− δ̄1

1−

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−2

,

and
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f2(x; δ2, b, θ, ξ) = 2bδ2g(x; ξ)(1−G(x; ξ))−θ−1

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2

×

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−1

×

1− δ̄2

1−

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−2

.

Note that

f1(x; δ1, b, θ, ξ)

f2(x; δ2, b, θ, ξ)
=

δ1
δ2

1− δ̄1

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b)
1− δ̄2

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b)


−2

, (15)

and upon differentiating equation (15) with respect to x, we get

d

dx

(
f1(x; δ1, b, θ, ξ)

f2(x; δ2, b, θ, ξ)

)
=

1− δ̄2

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b)
[
1− δ̄1

(
1−

[
1−

(
exp

[
1
θ (1− (1−G(x; ξ))−θ)

])2]b)]3
× δ1

δ2
(δ1 − δ2)

[
1−

(
exp

[
1

θ
(1− (1−G(x; ξ))−θ)

])2
]b−1

× 2bg(x; ξ)(1−G(x; ξ))−θ−1 exp

[
1

θ
(1− (1−G(x; ξ))−θ)

]
(16)

which is ≤ 0 if δ1 ≤ δ2. Therefore, X1 <lr X2, X1 <hr X2 and X1 <s X2. This proofs that the random variables
X1 and X2 are stochastically ordered.

3.5. Probability Weighted Moments

The probability weighted moments (PWMs) for the MO-TL-Gom-G family of distributions are presented in this
subsection. The PWMs were introduced by Greenwood et al. [17]. The PWMs for a random variable X following
the MO-TL-Gom-G distributions is given by

ηa,r = E(Xa[F (X)]r) =

∫ ∞

−∞
xaf

MO−TL−Gom−G
(x)[F

MO−TL−Gom−G
(x)]rdx. (17)

If δ ∈ (0, 1), we can write

f(x)[F (x)]r =

∞∑
m=0

V ∗
m+1g

∗
(m+1)(x; ξ), (18)
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where

V ∗
m+1 = 2b

∞∑
j,r,i,k,l=0

j∑
q=0

(−1)i+l+m(2i+ 2)k

θkk!(m+ 1)
Bj,r,q

(
b(j + r − q + 1)− 1

i

)(
−θ(l + 1)− 1

m

)(
k

l

)
,

and g∗(m+1)(x; ξ) = (m+ 1)g(x; ξ)Gm(x; ξ) is the Exp-G density with the power parameter (m+1) and parameter
vector ξ. Therefore, the PWMs of the MO-TL-Gom-G family of distributions is given by

ηa,r =

∞∑
m=0

V ∗
m+1

∫ ∞

−∞
xag∗(m+1)(x; ξ)dx. (19)

Note that for δ > 1, we have

f(x)[F (x)]r =

∞∑
m=0

a∗m+1g
∗
(m+1)(x; ξ),

where

a∗m+1 = 2b

∞∑
j,r,i,k,l=0

(−1)i+l+m(2i+ 2)k

θkk!(m+ 1)
Aj,r

(
b(j + r + 1)− 1

i

)(
−θ(l + 1)− 1

m

)(
k

l

)
,

and g∗(m+1)(x; ξ) = (m+ 1)g(x; ξ)Gm(x; ξ) is the Exp-G density with the power parameter (m+1) and parameter
vector ξ. Therefore, the PWMs of the MO-TL-Gom-G family of distribution is given by

ηa,r =

∞∑
m=0

a∗m+1

∫ ∞

−∞
xag∗(m+1)(x; ξ)dx. (20)

Derivations follow in the Appendix section.

3.6. Distribution of Order Statistics and Rényi Entropy

In this subsection, we present the pdf of the ith order statistic and Rényi entropy for the MO-TL-Gom-G family of
distributions.

3.6.1. Distribution of Order Statistics Let X1, .....Xn be independent identically distributed (iid) sample from
MO-TL-Gom-G family of distributions, then the pdf of the ith order statistic is given by

fi:n(x) = δn!f
TL−Gom−G

(x; b, θ, ξ)

n−i∑
r=0

(−1)r

(i− 1)!(n− i)!

F r+i−1
TL−Gom−G

(x; b, θ, ξ)[
1− δ̄F

TL−Gom−G
(x; b, θ, ξ)

]r+i−1
.

For δ ∈ (0, 1), we obtain the pdf of the ith order statistic as

fi:n(x) =

∞∑
m=0

Ωm+1g
∗
(m+1)(x; ξ), (21)

where
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Ωm+1 = 2b

∞∑
j,q,p=0

n−i∑
r=0

j∑
k=0

(−1)q+l+m(2q + 2)p

θpp!(m+ 1)
ωj,r,k

(
b(j + r − k + i)− 1

q

)(
−θ(l + 1)− 1

m

)(
p

l

)
,

and g∗(m+1)(x; ξ) = (m+ 1)g(x; ξ) [G(x; ξ)]
m is the Exp-G pdf with power parameter (m+1) and parameter vector

ξ.

If δ > 1, we have

fi:n(x) =

∞∑
m=0

Dm+1g
∗
(m+1)(x; ξ), (22)

where g∗(m+1)(x; ξ) = (m+ 1)g(x; ξ)Gm(x; ξ) and

Dm+1 = 2b

∞∑
j,q,p=0

n−i∑
r=0

(−1)q+l+m(2q + 2)p

θpp!(m+ 1)
Dj,r

(
b(j + r + i)− 1

q

)(
−θ(l + 1)− 1

m

)(
p

l

)
.

Also for δ > 1, the pdf of the ith order statistic of the MO-TL-Gom-G family of distributions can also be expressed
as an infinite linear combination of the Exp-G densities with power parameter (m+1)and parameter vector ξ. See
Appendix section for derivations.

3.6.2. Rényi Entropy Rényi entropy [32] of a random variable X following the MO-TL-Gom-G family of
distributions is given by

IR(ν) = (1− ν)−1 log

[∫ ∞

0

fν
MO−TL−Gom−G(x; δ, b, θ, ξ)dx

]
for ν > 0 and ν ̸= 1.

For δ ∈ (0, 1), we obtain Rényi entropy of the MO-TL-Gom-G family of distributions as

IR(ν) = (1− ν)−1 log

[ ∞∑
p=0

C∗
m exp(1− ν)IREG

]
, (23)

where IREG =
∫∞
0

((
m
ν + 1

)
g(x; ξ)G

m
ν (x; ξ)

)ν
dx is Rényi entropy of Exp-G densities with power parameter

(mν + 1) and

C∗
m =

∞∑
j,s,q,p,l=0

Cj

∫ ∞

0

(2b)ν(−1)s+q+l+m

(
j

s

)(
b(s+ ν)− ν

q

)
(2q + 2ν)p

θpp!(mν + 1)ν

(
p

l

)(
−θ(l + ν)− ν

m

)
.

If δ > 1, the Rényi entropy is given by

IR(ν) = (1− ν)−1 log

[ ∞∑
p=0

e∗m exp(1− ν)IREG

]
, (24)

where IREG =
∫∞
0

((
m
ν + 1

)
g(x; ξ)G

m
ν (x; ξ)

)ν
dx is Rényi entropy of Exp-G densities with power parameter

(mν + 1) and
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e∗m =

∞∑
j,q,p,l,m=0

ej

∫ ∞

0

(2b)ν(−1)q+l+m

(
b(j + ν)− ν

q

)
(2q + 2ν)p

θpp!(mν + 1)ν

(
p

l

)(
−θ(l + ν)− ν

m

)
.

The full derivations are given in the Appendix section.

4. Maximum Likelihood Estimation

Let X ∼ MO − TL−Gom−G(δ, b, θ, ξ) and Θ = (δ, b, θ, ξ)T be the parameter vector, then the log-likelihood
function (ℓn) of a random sample of size n from the MO − TL−Gom−G(x; δ, b, θ, ξ) family of distributions is
given by

ℓn(Θ) = n log(2bδ) +

n∑
i=1

log[g(xi; ξ)]− (θ + 1)

n∑
i=1

log[(1−G(xi; ξ))]

+
2

θ

n∑
i=1

[
(1− (1−G(xi; ξ))

−θ)
]

+ (b− 1)

n∑
i=1

log

[
1−

(
exp

[
1

θ
(1− (1−G(xi; ξ))

−θ)

])2
]

− 2

n∑
i=1

log

1− δ̄

1−

[
1−

(
exp

[
1

θ
(1− (1−G(xi; ξ))

−θ)

])2
]b .

Elements of the score vector U(Θ)=
(

∂ℓn
∂δ , ∂ℓn

∂b ,
∂ℓn
∂θ , ∂ℓn

∂ξk

)
can be readily obtained. The maximum likelihood

estimates (mles) of the parameters can be obtained by solving a system of non-linear equations(
∂ℓn
∂δ , ∂ℓn

∂b ,
∂ℓn
∂b ,

∂ℓn
∂ξk

)T
= 0 by numerical methods. Elements of the score vector are presented in the appendix.

5. Some Special cases of the MO-TL-Gom-G Family of Distributions

In this section, we present some of the special models of the MO-TL-Gom-G family of distributions. We consider
when the baseline cdf G(x; ξ) are log-logistic, Weibull and Burr III distributions.

5.1. Marshall-Olkin-Topp-Leone-Gompertz-Log-Logistic (MO-TL-Gom-LLo) Distribution

Suppose the baseline distribution is the log-logistic distribution with the cdf and pdf given by G(x; c) = 1− (1 +
xc)−1 and g(x; c) = cxc−1(1 + xc)−2, respectively, for c, x > 0. Then the cdf and pdf of the MO-TL-Gom-LLo
distribution are given by

F (x; δ, b, θ, c) = 1−
δ

(
1−

[
1−

(
exp

[
1
θ (1− ((1 + xc)−1)−θ)

])2]b)
1− δ̄

(
1−

[
1−

(
exp

[
1
θ (1− ((1 + xc)−1)−θ)

])2]b) ,
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and

f(x; δ, b, θ, c) = 2bδcxc−1(1 + xc)−2((1 + xc)−1)−θ−1

(
exp

[
1

θ
(1− ((1 + xc)−1)−θ)

])2

×

[
1−

(
exp

[
1

θ
(1− ((1 + xc)−1)−θ)

])2
]b−1

×

1− δ̄

1−

[
1−

(
exp

[
1

θ
(1− ((1 + xc)−1)−θ)

])2
]b−2

,

respectively, for δ, b, θ, c > 0.
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Figure 1. Pdf and hrf plots for the MO-TL-Gom-LLo distribution

Figure 1 gives the plots of the pdf and hrf of the MO-TL-Gom-LLo distribution. The pdf can take several shapes
including right-skewed, left-skewed and almost symmetric shapes whereas the hrf displays decreasing, J-shape,
upside-down bathtub and bathtub shapes. In Tables 1 and 2, some quantile values and moments for MO-TL-Gom-
LLo distribution are presented for different parameter values. The 3D plots for MO-TL-Gom-LLo distribution are
given in Figures 2 and 3. The plots indicate that MO-TL-Gom-LLo distribution can model data with different levels
of kurtosis and that the skewness can either be positive and negative. Some moments for selected parameters values
are given in Table 2
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Table 1. Quantiles for MO-TL-Gom-LLo distribution

(δ, b, θ, c)

u (1, 2, 1.3, 0.2) (0.7, 1, 3, 1.5) (2.4, 1, 1, 2) (2.1, 1, 1.9, 1) (1.5, 1, 1.2, 3)

0.1 0.0009 0.1092 0.3439 0.1004 0.4244
0.2 0.0017 0.1778 0.4849 0.1943 0.5394
0.3 0.0078 0.2391 0.5949 0.2848 0.6236
0.4 0.0231 0.2987 0.6912 0.3751 0.6953
0.5 0.0605 0.3597 0.7822 0.4685 0.7609
0.6 0.1491 0.4237 0.8735 0.5685 0.8251
0.7 0.3700 0.4952 0.9714 0.6822 0.8917
0.8 0.9973 0.5809 1.0865 0.8226 0.9672
0.9 3.5238 0.6996 1.2486 1.0304 1.0686

Table 2. Moments for MO-TL-Gom-LLo distribution

(δ, b, θ, c)

µ′
s (1, 0.5, 0.3, 1.2) (0.5, 1.5, 0.5, 1.5) (1.3, 0.1, 1.8, 0.6) (1.1, 1, 0.1, 2) (0.2, 0.8, 0.6, 0.9)

µ′
1 0.4249 0.6168 0.0493 0.7819 0.1679

µ′
2 0.5715 0.5877 0.0360 0.9116 0.1812

µ′
3 1.5646 0.7969 0.0499 1.5415 0.4835

µ′
4 7.6037 1.4462 0.1006 3.9038 2.2387

µ′
5 60.8931 3.3474 0.2652 15.9183 15.5135

µ′
6 760.8010 9.5244 0.8615 114.2684 148.7158

SD 0.6253 0.4553 0.1832 0.5479 0.3912
CV 1.4716 0.7381 3.7164 0.7008 2.3297
CS 4.0479 1.8943 7.2863 2.1836 6.7115
CK 35.7593 9.0185 80.9886 14.4801 82.9597
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Figure 2. Plots of Skewness and Kurtosis for MO-TL-Gom-LLo distribution.
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Figure 3. Plots of Skewness and Kurtosis for MO-TL-Gom-LLo distribution.

5.2. Marshall-Olkin-Topp-Leone-Gompertz-Weibull (MO-TL-Gom-W) Distribution

If we take the baseline distribution to be the Weibull distribution with the cdf and pdf given by G(x;λ) = 1− e−xλ

and g(x;λ) = λxλ−1e−xλ

, for λ, x > 0, then we obtain the cdf and pdf of the MO-TL-Gom-W distribution as

F (x; δ, b, θ, λ) = 1−
δ

(
1−

[
1−

(
exp

[
1
θ (1− eθx

λ

)
])2]b)

1− δ̄

(
1−

[
1−

(
exp

[
1
θ (1− eθxλ)

])2]b) ,

and

f(x; δ, b, θ, λ) = 2bδλxλ−1e−xλ

(e−xλ

)−θ−1

(
exp

[
1

θ
(1− eθx

λ

)

])2

×

[
1−

(
exp

[
1

θ
(1− eθx

λ

)

])2
]b−1

×

1− δ̄

1−

[
1−

(
exp

[
1

θ
(1− eθx

λ

)

])2
]b−2

,

respectively, for δ, b, θ, λ > 0.

Stat., Optim. Inf. Comput. Vol. 12, July 2024



B. OLUYEDE, M. GABANAKGOSI AND G. WARAHENA-LIYANAGE 895

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

x

d
e

n
s
it
y

δ=1.0,b=1.9,θ=0.5,λ=3.0

δ=1.0,b=2.0,θ=3.0,λ=0.8

δ=15.5,b=5.2,θ=1.0,λ=1.2

δ=1.0,b=0.1,θ=1.5,λ=2.2

δ=6.0,b=0.2,θ=2.0,λ=2.1

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

x

h
(x

)

δ=1.0,b=1.9,θ=0.2,λ=3.0

δ=2.0,b=1.5,θ=0.8,λ=0.1

δ=5.0,b=0.9,θ=0.7,λ=0.8

δ=1.5,b=1.0,θ=0.2,λ=1.2

δ=3.0,b=0.2,θ=2.0,λ=2.0

Figure 4. Plots of pdf and hrf for the MO-TL-Gom-W distribution

Table 3. Quantiles for MO-TL-Gom-W distribution

(δ, b, θ, λ)

u (1, 2, 1.3, 0.2) (0.7, 1, 3, 1.5) (2.4, 1, 1, 2) (2.1, 1, 1.9, 1) (1.5, 1, 1.2, 3)

0.1 0.0005 0.1079 0.3342 0.0957 0.4193
0.2 0.0009 0.1734 0.4595 0.1774 0.5263
0.3 0.0035 0.2307 0.5503 0.2505 0.6011
0.4 0.0083 0.2839 0.6247 0.3185 0.6618
0.5 0.0187 0.3365 0.6909 0.3841 0.7146
0.6 0.0382 0.3901 0.7530 0.4501 0.7638
0.7 0.0769 0.4473 0.8151 0.5200 0.8123
0.8 0.1597 0.5121 0.8831 0.6003 0.8639
0.9 0.3870 0.5964 0.9692 0.7082 0.9274

Table 4. Moments for MO-TL-Gom-W distribution

(δ, b, θ, λ)

µ′
s (0.1, 1.5, 0.5, 1.5) (1.1 ,0.1, 0.2, 1.5) (3, 1.2, 0.1, 3) (0.5, 0.2, 0.7, 0.9) (0.5, 1.5, 3, 0.6)

µ′
1 0.3233 0.1360 1.0740 0.0837 0.1733

µ′
2 0.1929 0.1274 1.3238 0.0906 0.0699

µ′
3 0.2000 0.2490 1.8508 0.2110 0.0439

µ′
4 0.3192 0.8665 2.9370 0.7864 0.0366

µ′
5 0.6986 5.1000 5.3433 4.1553 0.0375

µ′
6 1.9404 49.2592 11.3559 29.0809 0.0449

SD 0.2973 0.3300 0.4127 0.2891 0.1997
CV 0.9195 2.4265 0.3843 3.4543 1.1521
CS 3.0636 5.6221 0.8988 7.8373 2.2573
CK 19.0461 62.7446 5.3868 102.9504 10.1035
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The pdf of the MO-TL-Gom-W distribution can be right-skewed, left-skewed and almost symmetric, whereas
the hrf displays bathtub, decreasing and decreasing shapes. In Tables 3 and 4, some quantile values and moments
for MO-TL-Gom-W distribution are presented for different parameter values. Figures 5 and 6 shows that MO-TL-
Gom-W distribution can model data sets with different levels of skewness and kurtosis.
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Figure 5. Plots of Skewness and Kurtosis for MO-TL-Gom-W distribution
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Figure 6. Plots of Skewness and Kurtosis for MO-TL-Gom-W distribution

5.3. Marshall-Olkin-Topp-Leone-Gompertz-Burr III (MO-TL-Gom-BIII) Distribution

Suppose the baseline distribution is Burr III distribution with the cdf and pdf given by G(x;λ, β) = (1 + x−β)−λ

and g(x;λ, β) = βx−β−1(1 + x−β)−λ−1, for λ, β, x > 0, then the cdf and pdf of the MO-TL-Gom-BIII distribution
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are given by

F (x; δ, b, θ, λ, β) = 1−
δ

(
1−

[
1−

(
exp

[
1
θ (1− (1− (1 + x−β)−λ)−θ)

])2]b)
1− δ̄

(
1−

[
1−

(
exp

[
1
θ (1− (1− (1 + x−β)−λ)−θ)

])2]b) ,

and

f(x; δ, b, θ, λ, β) = 2bδλβx−β−1(1 + x−β)−λ−1(1− (1 + x−β)−λ)−θ−1

×
(
exp

[
1

θ
(1− (1− (1 + x−β)−λ)−θ)

])2

×

[
1−

(
exp

[
1

θ
(1− (1− (1 + x−β)−λ)−θ)

])2
]b−1

×

1− δ̄

1−

[
1−

(
exp

[
1

θ
(1− (1− (1 + x−β)−λ)−θ)

])2
]b−2

,

respectively, for δ, b, θ, λ, β > 0.
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Figure 7. Plots of pdf and hrf for the MO-TL-Gom-BIII distribution

The MO-TL-Gom-BIII distribution has the pdf that displays right-skewed, left-skewed, and reverse-J shapes,
whereas the hrf exhibit bathtub, upside-down bathtub, increasing and decreasing shapes. In Tables 5 and 6, some
quantile values and moments for MO-TL-Gom-BIII distribution are presented for different parameter values.
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Table 5. Quantiles for MO-TL-Gom-BIII distribution

(δ, b, θ, λ, β)

u (1, 2, 1.3, 0.2, 2) (0.7, 1, 3, 1, 1.5) (2.4, 1, 1, 2.5, 2) (2.1, 1, 2, 1.9, 1) (1.5, 1, 2, 1.2, 3)

0.1 0.0097 0.1092 0.8285 0.3945 0.4946
0.2 0.0232 0.1778 1.0303 0.6205 0.6055
0.3 0.0392 0.2391 1.1862 0.8191 0.6839
0.4 0.0579 0.2987 1.3234 1.0073 0.7486
0.5 0.0798 0.3597 1.4537 1.1954 0.8059
0.6 0.1058 0.4237 1.5853 1.3925 0.8607
0.7 0.1375 0.4952 1.7273 1.6118 0.9164
0.8 0.1796 0.5809 1.8959 1.8790 0.9772
0.9 0.2444 0.6996 2.1356 2.2669 1.0561

Table 6. Moments for MO-TL-Gom-BIII distribution

(δ, b, θ, λ, β)

µ′
s (0.8, 1, 2, 0.5, 2) (2, 0.5, 1, 1.5, 3, 1) (1, 2, 0.8, 0.4, 0.8) (0.5, 0.5, 0.3, 0.2, 0.9) (1.5, 2, 1.3, 3, 2.5)

µ′
1 0.2391 0.8348 0.1383 0.0100 1.5255

µ′
2 0.0860 0.7966 0.0633 0.0051 2.4252

µ′
3 0.0375 0.8318 0.0553 0.0083 4.0023

µ′
4 0.0188 0.9297 0.0758 0.0313 6.8343

µ′
5 0.0103 1.0977 0.1470 0.2345 12.0417

µ′
6 0.0061 1.3575 0.3784 3.2109 40.7003

SD 0.1698 0.3158 0.2102 0.0707 0.3131
CV 0.7102 0.3783 1.5197 7.0711 0.2053
CS 0.6435 0.0103 3.6975 23.0489 0.1142
CK 3.1631 2.6195 26.3291 1238.8412 2.9343

6. Simulation Results

The performance of the MO-TL-Gom-LLo distribution is examined by conducting various simulations for
different sizes (n=25, 50, 100, 200, 400, 800, 1000) via the R package. We simulate N = 1000 samples for the true
parameters values given in Table 7. Additional simulation results are available upon request or in the appendix.
The tables list the mean MLEs of the model parameters along with the respective average bias (ABIAS) and root
mean squared errors (RMSEs). The average bias and RMSE for the estimated parameter, say, θ̂, say, are given by:

ABIAS(θ̂) =
∑N

i=1 θ̂i
N − θ, and RMSE (θ̂) =

√∑N
i=1(θ̂i−θ)2

N ,

respectively. As we can see from the results, RMSEs and ABIAS decrease as the sample size n increases, and
the mean estimates of the parameter are closer to the true parameter values.
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Table 7. Monte Carlo simulation results for MO-TL-Gom-LLo distribution: mean, average bias and RMSE

δ = 1.5, b = 0.2, θ = 1.0, c = 0.1 δ = 0.9, b = 0.2, θ = 0.2, c = 2.0

Parameter n Mean ABIAS RMSE Mean ABIAS RMSE
δ 25 1.7891 0.2891 2.1656 1.1146 0.2146 1.4260

50 1.7868 0.2868 2.0244 0.9730 0.0730 0.8375
100 1.5696 0.0696 0.6909 0.8871 -0.0129 0.2656
200 1.5205 0.0205 0.3177 0.8926 -0.0074 0.1610
400 1.4939 -0.0061 0.1312 0.8932 -0.0068 0.0677
800 1.4949 -0.0051 0.0830 0.8998 -0.0002 0.0390
1000 1.4994 -0.0006 0.0698 0.9000 0.0000 0.0304

b 25 0.4356 0.2356 0.3218 0.7657 0.5657 3.1847
50 0.4068 0.2068 0.3041 0.4294 0.2294 0.6390

100 0.3384 0.1384 0.2306 0.2965 0.0965 0.2003
200 0.2582 0.0582 0.1344 0.2231 0.0231 0.0821
400 0.2282 0.0282 0.0844 0.2050 0.0050 0.0396
800 0.2089 0.0089 0.0404 0.2011 0.0011 0.0217
1000 0.2055 0.0055 0.0346 0.2010 0.0010 0.0205

θ 25 1.2173 0.2173 0.7363 1.2219 1.0219 1.7382
50 1.1851 0.1851 0.6504 0.8872 0.6872 1.1212

100 1.1452 0.1452 0.4890 0.5015 0.3015 0.5559
200 1.0595 0.0595 0.2990 0.2716 0.0716 0.2441
400 1.0205 0.0205 0.1638 0.2158 0.0158 0.1035
800 1.0040 0.0040 0.0977 0.2028 0.0028 0.0419
1000 0.9992 -0.0008 0.0873 0.2014 0.0014 0.0312

c 25 0.5795 0.4795 0.6727 1.3333 -0.6667 0.9528
50 0.5393 0.4393 0.6431 1.4927 -0.5073 0.8137
100 0.3763 0.2763 0.5010 1.7227 -0.2773 0.5343
200 0.1973 0.0973 0.2588 1.9327 -0.0673 0.2608
400 0.1337 0.0337 0.1150 1.9969 -0.0031 0.1157
800 0.1075 0.0075 0.0350 2.0022 0.0022 0.0517
1000 0.1033 0.0033 0.0166 1.9999 -0.0001 0.0121

7. Applications

This section provides illustrations of the flexible nature and usefulness of the MO-TL-Gom-LLo distribution
in data modeling. We fit the MO-TL-Gom-LLo distribution to the data set in subsections 7.1 and 7.2. These
fits are contrasted with several competing non-nested distributions with the same number of parameters. The
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MO-TL-Gom-LLo distribution is compared with Topp-Leone generated Weibull (TLGW) (Aryal et al. [5]),
Topp-Leone-Marshall-Olkin Weibull (TLMOW) (Chipepa et al. [13]), beta-Gompertz (BGom) (Jafari et al.
[19]), Kumaraswamy Gompertz (KGom) (Silva et al. [35]), Marshall-Olkin extended generalized Gompertz
(MOEGGom) (Benkhelifa [8]), generalized Weibull Gompertz (GWGom) (El-Damcese et al. [15]), extended
generalized Gompertz (EGGom) (Karamikabir et al. [20]) and odd generalized exponential Gompertz (OGEGom)
(El-Damcese et al. [14]) distributions. The pdfs of the TLGW, TLMOW, BGom, KGom, MOEGGom, GWGom,
EGGom and OGEGom distributions are given in appendix.

Our model parameters were estimated using NLmixed in SAS and our goodness-of-fit test was conducted using
the package AdequacyModel in R software. The estimated values of the parameters (standard error in parenthesis),
-2log-likelihood statistic (−2 ln(L)), Akaike Information Criterion (AIC = 2p− 2 ln(L)), Bayesian Information
Criterion (BIC = p ln(n)− 2 ln(L)) and Consistent Akaike Information Criterion

(
AICC = AIC + 2 p(p+1)

n−p−1

)
,

where L = L(Θ̂) is the value of the likelihood function evaluated at the parameter estimates, n is the number of
observations, and p is the number of estimated parameters are presented.

We also obtain the following goodness-of-fit statistics: Crameŕ-von Mises (W ∗) and Anderson-Darling (A∗)
statistics described by Chen and Balakrishnan [11], as well as Kolmogorov-Smirnov (K-S) statistic and its P-value.
Note that for the value of the log-likelihood function at its maximum (ℓn), larger value is good and preferred, and
for AIC, AICC, BIC, and the goodness-of-fit statistics W ∗, A∗ and K-S, smaller values are preferred. The results
are shown in Tables 8 and 9.

Plots of the fitted densities, the histogram of the data and probability plots (Chambers et al [10]) are
given for each example to show how well the new model fits the observed data sets. For the probability

plot, we plotted FMO−TL−Gom−G(x(j); δ̂, b̂, θ̂, ξ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are the

ordered values of the observed data. The measures of closeness are given by the sum of squares SS =∑n
j=1

[
FMO−TL−Gom−G(x(j); δ̂, b̂, θ̂, ξ̂)−

(
j − 0.375

n+ 0.25

)]2
. These plots are shown in Figures 8 and 10.

7.1. Fatigue Fracture Data

The first data set represents the life of fatigue fracture of Kevlar 373/ epoxy subjected to constant pressure at 90%
stress level until all had failed. The data set has previously been used by Barlow et al. [6]. The observations are as
follows:
0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696,
0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766,
1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275,
1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460,
2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143,
4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

The estimated variance-covariance matrix for MO-TL-Gom-LLo model on fatigue fracture data set is given by


0.0726 6.3647 0.2039 −0.0192
6.3647 558.1588 17.8829 −1.6819
0.2039 17.8829 0.5781 −0.0547
−0.0192 −1.6819 −0.0547 0.0053

 ,

and the 95% two-sided asymptotic confidence intervals for δ, b, θ and c are given by 119.39± 0.5280, 10.5298±
46.3058, 3.6039± 1.4902 and 0.1531± 0.1431, respectively.
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Table 8. Parameter estimates and goodness-of-fit statistics for various models fitted for fatigue fracture data

Estimates Statistics
Model δ̂ b̂ θ̂ ĉ −2 log L AIC AICC BIC W ∗ A∗ K − S p-value

MO-TL-Gom-LLo 119.39 10.5298 3.6039 0.1531 240.2 248.2 248.8 257.7 0.0575 0.3359 0.0754 0.7513
(0.2694) (23.6254) (0.7603) (0.0730)

α̂ θ̂ β̂ η̂
TLGW 0.8382 1.9633 0.9636 0.4227 244.2 252.2 252.7 261.5 0.1144 0.6778 0.0976 0.4358

(1.1722) (3.3561) (0.3835) (0.3173)
b̂ δ̂ λ̂ γ̂

TLMOW 0.6326 0.0006 4.48 ×10−5 2.2203 242.1 250.1 250.7 259.4 0.0785 0.4713 0.0813 0.6661
(7.46 ×10−10) (7.05 ×10−7) (8.68 ×10−6) (3.09 ×10−10)

α̂ β̂ γ̂ θ̂
BGom 1.6797 1.5086 7.06 ×10−8 0.4849 244.5 252.5 253.0 261.8 0.1169 0.6938 0.0957 0.4608

(0.3153) (0.0020) (0.0409) (1.2715)
â b̂ γ̂ θ̂

KGom 1.5869 2.0031 1.48 ×10−8 0.3896 244.2 252.2 252.8 261.5 0.1146 0.6791 0.0975 0.4374
(0.3708) (3.9509) (0.0217) (0.6509)

α̂ β̂ λ̂ θ̂
MOEGGom 1.4534 0.0084 0.4669 0.0033 242.3 250.3 250.8 259.6 0.0900 0.5318 0.0875 0.5756

(0.2919) (0.0242) (0.2195) (0.0114)
â b̂ ĉ d̂

GWGom 0.4482 1.3256 0.5974 1.25 ×10−7 245.0 253.0 253.6 262.4 0.1306 0.7672 0.1099 0.2953
(0.0380) (0.7974) (0.0379) (0.5942)

α̂ β̂ λ̂ σ̂
EGGom 1.2974 0.0173 0.3058 0.0441 242.2 250.2 250.8 259.5 0.0891 0.5251 0.0870 0.5819

(0.2314) (0.0706) (0.2185) (0.1192)
α̂ β̂ λ̂ ĉ

OGEGom 418.97 1.7006 0.0017 1.55 ×10−7 244.5 252.5 253.1 261.8 0.1169 0.6943 0.0946 0.4754
(2.26 ×10−6) (0.3043) (0.0003) (0.0427)
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Figure 8. Histogram, fitted density and probability plots for fatigue fracture data

Table 8 indicates that MO-TL-Gom-LLo distribution has the highest p-value for the K-S statistic and the lowest
values for all goodness-of-fit statistics. Thus, we conclude that the MO-TL-Gom-LLo model performs better on
fatigue fracture data than the non-nested TLGW, TLMOW, BGom, KGom, MOEGGom, GWGom, EGGom and
OGEGom models. Further, Figure 8 shows that our model outperforms the competing non-nested models.
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Figure 9. Estimated cdf, K-M survival, TTT-Transform and estimated hrf plots of the MO-TL-Gom-LLo distribution for
fatigue fracture data

Figure 9 gives the estimated cdf, Kaplan-Meier survival, the scaled TTT-Transform plots and the estimated
hrf plot for fatigue fracture data. We see that the estimated cdf for the MO-TL-Gom-LLo distribution indicated
in green (a) is close to the empirical cdf while the survival function (b) in green is also close to the Kaplan-
Meier(K-M) curve which shows that indeed our model is better in explaining the fatigue fracture data. The scaled
TTT-Transform plot for fatigue fracture with the upside-down bathtub shaped hazard rate function are also given
in (c) and (d), respectively.

7.2. Bladder Cancer Data

For the second example, we consider remission times (in months) of a random sample of 128 bladder cancer
patients reported in Lee and Wang [24]. The observations are as follows:
0.08, 4.98, 25.74, 3.70, 10.06, 2.69, 7.62, 1.26, 7.87, 4.4, 2.02, 21.73, 2.09, 6.97, 0.50, 5.17, 14.77, 4.18, 10.75,
2.83, 11.64, 5.85, 3.31, 2.07, 3.48, 9.02, 2.46, 7.28, 32.15, 5.34, 16.62, 4.33, 17.36, 8.26, 4.51, 3.36, 4.87, 13.29,
3.64, 9.74, 2.64, 7.59, 43.01, 5.49, 1.40, 11.98, 6.54, 6.93, 6.94, 0.40, 5.09, 14.76, 3.88, 10.66, 1.19, 7.66, 3.02,
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19.13, 8.53, 8.65, 8.66, 2.26, 7.26, 26.31, 5.32, 15.96, 2.75, 11.25, 4.34, 1.76, 12.03, 12.63, 13.11, 3.57, 9.47, 0.81,
7.39, 36.66, 4.26, 17.14, 5.71, 3.25, 20.28, 22.69, 23.63, 5.06, 14.24, 2.62, 10.34, 1.05, 5.41, 79.05, 7.93, 4.50,
2.02, 0.20, 7.09, 25.82, 3.82, 14.83, 2.69, 7.63, 1.35, 11.79, 6.25, 3.36, 2.23, 9.22, 0.51, 5.32, 34.26, 4.23, 17.12,
2.87, 18.1, 8.37, 6.76, 3.52, 13.8, 2.54, 7.32, 0.90, 5.41, 46.12, 5.62, 1.46, 12.02, 12.07.

The estimated variance-covariance matrix for MO-TL-Gom-LLo model on remission times data set is given by


6.52× 10−10 1.17× 10−11 −9.54× 10−7 7.47× 10−8

1.17× 10−11 2.08× 10−13 −1.71× 10−8 1.34× 10−9

−9.54× 10−7 −1.71× 10−8 1.40× 10−3 −1.09× 10−4

7.47× 10−8 1.34× 10−9 −1.09× 10−4 1.12× 10−5

 ,

and the 95% two-sided asymptotic confidence intervals for δ, b, θ and c are given by 219.84± 5.00× 10−5, 13074±
8.94× 10−7, 4.9427± 0.0733 and 0.0444± 0.0067, respectively.

Table 9. Parameter estimates and goodness-of-fit statistics for various models fitted for bladder cancer data

Estimates Statistics
Model δ̂ b̂ θ̂ ĉ −2 log L AIC AICC BIC W ∗ A∗ K − S p-value

MO-TL-Gom-LLo 219.84 13074.0 4.9427 0.0444 818.9 826.9 827.2 838.3 0.0140 0.0991 0.0293 0.9999
(2.55 ×10−5) (4.56 ×10−7) (0.0374) (0.0034)

α̂ θ̂ β̂ η̂
TLGW 1.1652 2.9000 0.5427 0.2039 821.2 829.2 829.5 840.6 0.0414 0.2735 0.0444 0.9627

(1.9707) (6.2302) (0.2222) (0.3177)
b̂ δ̂ λ̂ γ̂

TLMOW 1.7215 6516.74 6.5826 0.1371 819.3 827.3 827.6 838.7 0.0190 0.1221 0.0338 0.9986
(0.5055) (5.8 ×10−5) (0.4824) (0.0206)

α̂ β̂ γ̂ θ̂
BGom 1.4485 0.1788 1.27 ×10−9 0.6454 824.7 832.7 833.0 844.1 0.5276 3.3945 0.0674 0.6053

(0.3102) (0.1412) (0.0062) (0.4809)
â b̂ γ̂ θ̂

KGom 1.4165 0.3708 6.58 ×10−7 0.3190 825.1 833.1 833.4 844.5 0.0925 0.5632 0.0705 0.5487
(0.3490) (0.3813) (0.0064) (0.3124)

α̂ β̂ λ̂ θ̂
MOEGGom 1.4920 0.0024 0.0387 0.0022 819.3 827.3 827.7 838.8 0.0218 0.1534 0.0322 0.9994

(0.1772) (0.0067) (0.0215) (0.0084)
â b̂ ĉ d̂

GWGom 0.6474 1.0478 0.1354 5.57 ×10−8 828.2 836.2 836.5 847.6 0.1314 0.7865 0.0701 0.5552
(0.0049) (0.4798) (0.0248) (0.4443)

α̂ β̂ λ̂ σ̂
EGGom 1.2844 0.2173 2.97 ×10−8 0.0600 819.2 827.2 827.5 838.6 0.0189 0.1335 0.0313 0.9996

(0.2531) (1.0982) (0.0502) (0.1756)
α̂ β̂ λ̂ ĉ

OGEGom 45.7510 1.2054 0.0025 3.00×10−10 827.7 835.7 836.1 847.1 0.1283 0.7696 0.0829 0.3420
(0.0001) (0.1702) (0.0004) (0.0062)

Based on Table 9, MO-TL-Gom-LLo distribution has the highest p-value for the K-S statistic and the lowest
goodness-of-fit statistics compared to other non-nested models. Thus, we conclude that the MO-TL-Gom-LLo
model performs better with bladder cancer data than the non-nested TLGW, TLMOW, BGom, KGom, MOEGGom,
GWGom, EGGom and OGEGom models. Moreover, Figure 10 shows that our model outperforms the competing
non-nested models on bladder cancer data.
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Figure 10. Histogram, fitted density and probability plots for bladder cancer data
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Figure 11. Estimated cdf, K-M survival, TTT-Transform and estimated hrf plots of the MO-TL-Gom-LLo distribution for
bladder cancer data

Stat., Optim. Inf. Comput. Vol. 12, July 2024



B. OLUYEDE, M. GABANAKGOSI AND G. WARAHENA-LIYANAGE 905

In Figure 11 again, we see that the estimated cdf for the MO-TL-Gom-LLo distribution indicated in blue in (a)
is closer to the empirical cdf while the survival function in blue (b) is also close to the K-M curve which indicate
that our model is the best in explaining the bladder cancer data. The scaled TTT-Transform plot for bladder cancer
is also presented in (c) and a uni-modal hazard rate function in (d).

8. Concluding Remarks

A new generalized distribution called the Marshall-Olkin Topp-Leone Gompertz-G (MO-TL-Gom-G) family of
distributions is developed and presented. The MO-TL-Gom-G distribution has several new and known distributions
as special cases or sub-models. The behaviour of the hazard rate function is flexible. We also obtained closed
form expressions for the moments and generating function, distribution of order statistics and entropy. Maximum
likelihood estimation technique is used to estimate the model parameters. The performance of a special case of
the MO-TL-Gom-G family of distributions was examined by conducting various simulations for different sizes.
Finally, we illustrated that the MO-TL-Gom-G family of distributions is useful for lifetime applications by fitting
its special case, MO-TL-Gom-LLo distribution to two real data sets.

Appendix

The link below contains the appendix
https://drive.google.com/file/d/1BLQjGat89t5VbGJyaQibDK66WmC8xIol/view?usp=
sharing
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