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Abstract Stepwise regression algorithms have been widely used for a variety of applications and continue to be a
fundamental tool in variable selection. Most functions available in statistical software packages deliver models that may
contain insignificant predictors because of the criterion of the optimization at each step. Here we introduce an R package
that provides the user with several measures of the prospective model at each step of the algorithm. These prospective
models are checked with multiple testing p-value corrections such as Bonferroni and False Discovery Rate and hence the
algorithm’s final model includes only predictors that have their significance controlled by the choice of correction type and
alpha level. Moreover, the steps forward or backward can have an entry or drop criterion that is a combination of the p-values
of prospective models. We illustrate the functionality of the package with examples and simulations.
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1. Introduction

Enhancing predictive power and accuracy through parsimonious models is one of the primary concerns in
modern statistical model building. Stepwise regression ([4], [3]) is one of the most popular solutions in diverse
applications. It has been widely used for decades and continues to be an important tool in recent research, see
for example its application in [14], [8], [10], and [9]. The idea of the methods implemented in the R ([13])
package SignifReg, which is available in the Comprehensive R Archive Network (CRAN) at https://CRAN.R-
project.org/package=SignifReg, is to perform forward selection, backward elimination, and stepwise regression
using a novel criterium that is based on a combination of the p-values of the predictors already selected and the
p-value of the predictor to be added/dropped at each step. Additionally, the package allows the use of AIC, BIC,
adjusted R-square, or PRESS residuals as the criterium for a predictor to enter/leave the model while controlling, at
every step, the significance of the retained predictors based on their p-values. The package options for controlling
the significance of predictors include those in the p.adjust() function in the stats package (“holm” [6], “hochberg”
[5], “hommel” [7], “BH” or its alias “fdr” [1], and “BY” [2]), or no correction “none” where all p-values must be
below the alpha level, which is an argument of the function. Note that if the choice of criterium is AIC for example,
and the alpha level is set to 1 (no p-value corrections), the algorithm is equivalent to the step function in the stats
package in R. Overall, with the combination of stepwise directions, criteria, and corrections, the SignifReg package
offers a wide range of novel options for variable selection.
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Given the high demand for easy to use software for practical applications, various software packages have been
developed to implement stepwise algorithms for variable selection. For instance, the SAS (https://www.sas.com)
software offers the PROC GLMSELECT, which can be specified with the “SELECTION = ” options for forward,
backward, and stepwise directions. This procedure provides several criteria choices such as SBC (Schwarz’s
Bayesian Criterion), F-statistics, AIC (Akaike Information Criterion), and the average square error on validation
data. Likewise, Matlab possesses various functions for stepwise regression. For instance, stepwiselm offers stepwise
regression with sum of squares of errors (SSE), AIC, BIC, r-squared, and adjusted r-squared. Minitab performs
stepwise regression by adding or removing variables until all variables not in the model have p-values greater than
the specified significance level, and all variables in the model have p-values less than or equal to the specified
significance level. In R, the step and the stepAIC are the most commonly used procedures. These functions use
the AIC as a criterion for the model selection at each step by adding or removing variables as long as the model
decreases the AIC value. Additionally, there are other packages in R that perform stepwise variable selection, as for
example the package olsrr and its several functions, the regsubsets function in the leaps package, the train function
in the caret package, among others. However, to the best of our knowledge, no software performs stepwise variable
selection while controlling for false discovery rate or using Bonferroni p-value corrections at each step, nor do they
make use of the combination of the p-values of already selected and prospective predictors as criteria to add/drop
predictors.

The broad availability of software that contain stepwise variable selection algorithms makes the use of statistical
techniques accessible to all researchers, however it can lead to serious misjudgment or misinterpretation of
results. It is important to understand the underlying variable selection algorithm, as it is so widely used by
practitioners of all backgrounds. For instance in epidemiological analysis, a total 59 (20%) among 300 articles
used stepwise regression for selection of covariates in the four major epidemiological journals only in the year of
2008 (American Journal of Epidemiology, Epidemiology, European Journal of Epidemiology and the International
Journal of Epidemiology) ([15]). Overall, it is important that the selection method achieves the desired outcome
with theoretical foundation, however it is crucial that the final model output from the software they choose yields
low prediction error. With the huge amount of available data in all fields of research, the risk of overfitting
becomes higher as technology allows for the collection of more predictors. Thus, it is desirable that the selected
predictors have high evidence against the null hypothesis that their corresponding parameters are equal to 0. This
is important because the most used classical stepwise variable selectors do not require that all selected predictors
are significant, that is, the final selected model may contain predictors whose corresponding p-values are large. In
forward, backward and stepwise algorithms this happens because in many cases the AIC or the BIC are used as the
criterium for inclusion/exclusion of predictors. More specifically for the forward selection, each addition of a new
variable may render one or more of the already included variables non-significant when the criteria for addition is
lowering the AIC or even when the criteria is a significant p-value of the prospective predictor.

In this paper we introduce new algorithms for backward elimination and stepwise selection whose criteria to
include or exclude predictors is based on the maxium p-value corresponding to hypothesis tests in prospective
model. Moreover, we compare the general algorithms developed to benchmark procedures in the R system and
relevant implementations in other software systems. The general goal of the algorithms in the SignifReg package
is to select the predictors that compose the true underlying data mechanism rather than the set of predictors with
smallest prediction error. When building a regression model, the set of predictors, among all available covariates,
that yield the smallest prediction error may not include the true underlying model. This can be due to spurious
correlations or simply the randomness of the data. However, if the algorithm manages to select the significant
predictors only, in the sense of the true underlying model, as the sample size increases one expects the prediction
error to decrease. The methods in this paper are specially recommended for situations where the sample size is
moderate to large, which is commonly found in modern datasets, because of the large number of hypothesis tests
performed and the multiple testing corrections.

The remainder of the paper is structured as follows. In Section 2 we summarize the forward selection, backward
elimination and a stepwise algorithm using selection/elimination strategy based on the p-values of prospective
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models. Section 3 presents the package SignifReg with its main function SignifReg() and its numerous criteria
and correction choices with examples. In addition, the functions add1SignifReg and drop1SignifReg (similar to
the add1 and drop1 from the stats package in R) are introduced, which perform one step of the main algorithms
while providing the user with a table with the information of prospective models. In the simulations in Section 4,
the performance of the proposed method is compared to that of other functions in widely used statistical software
for different signal to noise ratios determined by an increasing variance of the model error. We observe that the
proposed methods perform better in selecting the correct predictors for small and moderate values of the noise
while underfitting when the noise is high.

2. Consistent Significance Controlled Variable Selection

Assume there are d available covariates X1, . . . , Xd, however only d0 of them, denoted as Xℓ1 , . . . , Xℓd0
, compose

the true data generating mechanism for the regression model. Let I0 = {ℓ1, . . . , ℓd0} ⊆ {1, . . . , d} denote the subset
of indices corresponding to the d0 predictors in the true model. To be specific, assume that the data is generated by
the linear regression model

Y = X0β0 + ϵ,

where Y = (Y1, . . . , Yn)
′, X0 is the n× (d0 + 1) design matrix of observed values of the covariates Xℓ1 , . . . , Xℓd0

,
β0 = (γ, βℓ1 , . . . , βℓd0

)′ is the vector of unknown parameters in the true model and ϵ = (ϵ1, . . . , ϵn) is a vector of
i.i.d. errors with E(ϵi) = 0, E(ϵ2i ) = σ2, and E|ϵi|4+δ < ∞ for some δ > 0. Using this framework, the objective
is to select with high accuracy the true predictors from the d available, that is, estimate a set of indices Î which
identifies the subset I0 with high accuracy.

In this section we will describe in detail the forward selection algorithm ([16]) which uses a novel criterion
based on the combination of the p-values while applying a Bonferroni correction at every step. With the sample
size increasing to infinity, it can be theoretically shown that forward selecting predictors while controlling for
Bonferroni (or other p-value correction methods) is consistent in the sense that Î is equal to I0 with probability
increasing to 1 (see [16] for details). The use of AIC, BIC and other criteria as well as other correction methods
(FDR or fixed value) follows with straightforward changes. For ease of notation, let Îk be the set of indices
selected after step k of the algorithm. If k = 1, then Îk is the empty set. Let {Îk, r} be the set of predictors in
Îk with a new added predictor r. Let πj

{Îk,r}
be the p-value of the hypothesis test of the j-th coefficient, that is

H0 : βj

{Îk,r}
= 0, j ∈ {Îk, r}, computed from the linear regression model with predictors corresponding to the set

of indices {Îk, r}. Let α be a specified Type I error rate that we are willing to commit, which will be used in the
Bonferroni correction (or FDR, or fixed for all p-values). The algorithm is as follows.

Forward Variable Selection Algorithm
==========================================
Step 1. Starting from the NULL model, let Î1 be the index ℓ of the covariate with lowest marginal p-value, i.e.,

ℓ = argminℓ{π1, . . . , πd}, where πj , j = 1, . . . , d, is the p-value obtained from the simple linear regression of Y
on each Xj ; as long as πℓ ≤ α and set k = 2. If no πj ≤ α, then stop and retain no predictor.

Step 2. Given the previously selected lags Îk, include in Îk the index

ℓ = arg min
r∈Id\Îk

max
j∈{Îk,r}

πj

{Îk,r}
,

as long as all selected coefficients are significant after Bonferroni correction, that is, πj

{Îk,ℓ}
≤ α

k+1 for all

j ∈ {Îk, ℓ}.
Step 3. Repeat Step 2 until no more indices can be added to Îk.
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==========================================
Denote the final set of selected indices after no more index can be added by Î . This set will only contain indices

corresponding to predictors that are considered significant in the regression model according to the Bonferroni
correction. As in any stepwise variable selection procedure, this algorithm follows a path for inclusion and hence
does not evaluate all possible combinations of predictors in the regression model. Such an attempt, called best
subset regression, demands high computational cost and is prohibitive when the number of predictors is moderate
to large. The concept behind the proposed algorithm is to include a new predictor to the model based on what we
call the minmax criterion of p-values: choose the prospective predictor that when included in the model yields the
set of p-values that are the smallest.

Next we extend the forward selection procedure to a backward elimination method with a similar strategy.
At each step, given the current predictors in the model, the idea is to compute the sub-model with a predictor
removed, and all p-values of the remaining predictors. If all these p-values are low, then the model without that
predictor is competitive. After computing this over all predictors in the model, we will chose to drop the predictor
whose generating sub-model has the smallest p-values, in fact, the minimum of the maximum p-values. In order to
describe the algorithm more precisely, let πj

{Îk,−r}
be the p-value from the hypothesis test of the j-th coefficient

H0 : βj

{Îk,−r}
= 0, j ∈ {Îk,−r}, computed from the linear regression model with predictors corresponding to the

set of indices Îk \ r, that is, the set Îk minus the r index, r ∈ Îk. The backward algorithm is as follows.

Backward Elimination Algorithm
==========================================
Step 1. With the previously selected lags Îk (in first iteration Îk is composed of the indices of the FULL model),

if πj

{Îk}
≤ α

k for all j = 1, . . . , k, then stop and retain Îk. Otherwise go to Step 2.

Step 2. Given the previously selected lags Îk, remove from Îk the index

ℓ = arg min
r∈Îk

max
j∈{Îk,−r}

πj

{Îk,−r}
.

Step 3. Repeat Steps 1 and 2 until all selected coefficients are significant after the Bonferroni correction, that is,
πj

{Îk}
≤ α

k for all j ∈ Îk.
==========================================
It is important to notice that when Step 2 is reached (from Step 1), this means that the p-values for the coefficients

in the current model do not pass the Bonferroni correction. This means that he current model is overfit in the sense
that not all predictors are significant. The algorithm removes a predictor until all predictors left in the model
are significant, which means that it seeks the largest model with significant predictors. A combination of both
directions, forward and backward, composes the stepwise algorithm, which is described below.

Stepwise Selection Algorithm
==========================================
Let Îk denote the lags selected in the current model.
Step 1. Compute the maximum p-value of the one-step forward model that adds a single predictor from the

current model

ℓf = arg min
r∈Id\Îk

max
j∈{Îk,r}

πj

{Îk,r}
,

Step 2. Compute the maximum p-value of the one-step backward model that eliminates a single predictor from
the current model.

ℓb = arg min
r∈Îk

max
j∈{Îk,−r}

πj

{Îk,−r}
.
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Step 3. Let max
j∈Îk

πj

Îk
be the maximum p-value of the current model.

If

max
j∈{Îk,ℓf}

πj

{Îk,ℓf}
< min

{
max
j∈Îk

πj

Îk
, max
j∈{Îk,−ℓb}

πj

{Îk,−ℓb}

}
include in Îk the index ℓf as long as all selected coefficients are significant after Bonferroni correction, that is,
πj

{Îk,ℓf}
≤ α

k+1 for all j ∈ {Îk, ℓf}. If

max
j∈{Îk,−ℓb}

πj

{Îk,−ℓb}
< min

{
max
j∈Îk

πj

Îk
, max
j∈{Îk,ℓf}

πj

{Îk,ℓf}

}

remove from Îk the index ℓb if the coefficients in the current model are not significant after Bonferroni correction,
that is, πj

{Îk}
≤ α

k for all j ∈ Îk

Step 4. Repeat Steps 1, 2, and 3 until no prospective model can be selected.
==========================================
Section 3 describes the functions in the package SignifReg and their usage for these algorithms, including

functions that allow the user to perform one only addition or removal of a predictor in a similar way to that of
add1 or drop1 in the stats library in R, however using the steps of the proposed algorithm.

3. Significance Controlled Variable Selection with package SignifReg

The SignifReg() function can be used with the input of a few arguments which define a) the scope or predictors, b)
the direction of the algorithm, c) the criterion to compare models, and d) the correction on the p-values. The call of
the function, as described in the package manual, is

SignifReg(fit, scope, alpha = 0.05, direction = "forward",
criterion = "p-value", adjust.method = "fdr", trace=FALSE)

The function SignifReg() returns an object inheriting from the class lm or glm (depending on the input), which
can be used for regression analysis with the additional component steps.info. The argument ‘fit’ is an lm or glm
object, which represents the initial model for the variable selection procedure. The user can specify the desired
scope, as a formula, of predictors to be considered in the same way one would provide it to the the step function
in the stats package. If scope is not provided the function will automatically consider those in the fitted model
argument fit. When the argument trace is equal to TRUE, SignifReg will print a table with the information on the
candidate models when a predictor is included/excluded and the chosen model for each step. This information table
is similar to that of the function step in R, however it contains the value of all criteria yielded with the candidate
models, including RSS, AIC, BIC, R-adj, PRESS residuals and maximum p-value of the predictors in it, as well
as the maximum Variance Inflation Factor of the predictors in the model, and finally a boolean indicating whether
the candidate model passed the correction levels indicated in adjust.method. The additional component steps.info
returned by the function is a dataframe with each step taken by the algorithm, which can be used for example
to build graphs of the progress or compare with different methods. This component, as well as the output table
printed when trace = TRUE, differently from other available software, contains a large amount of information to
help the user understand and ultimately choose (by changing the parameters of the function) the model and its
desired properties.

To illustrate the function Signifreg(), first we will consider the following scenario. Suppose we have 100
observations of a set of predictors X = (X1, . . . , X10) and a response variable Y . Assume that the true but unknown
data generating mechanism is

Y = 5X1 − 3X3 −X8 + ϵ,
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where ϵ is the independent and identically distributed error with a standard Gaussian distribution, and X1, . . . , X10

are independent with Uniform distribution on (0,1). We use the following code to generate the dataset.

R> n = 100
R> d = 10 #number of variables
R> set.seed(1324)
R> X <- matrix(nrow=n, ncol=d)
R> for(i in 1:d){
+ X[,i] <- runif(n)
+ }
R> Y <- 5*X[,1] - 3*X[,3] - X[,8] + rnorm(nrow(X))
R> dat <- data.frame(X,Y)

The Signifreg() with its default arguments will run the forward algorithm described in Section 2, and will not
display each step of the algorithm but only the resulting model.

R> install.packages("SignifReg")
R> library(SignifReg)
R> model<-lm(Y˜1, data = dat)
R> fit<-SignifReg(model, scope = formula(lm(Y ˜ ., data = dat)))
R> summary(fit)

Call:
lm(formula = Y ˜ X1 + X3 + X8, data = dat)

Residuals:
Min 1Q Median 3Q Max

-2.4660 -0.7512 0.0049 0.7419 2.6343

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3635 0.3393 1.071 0.286674
X1 4.7840 0.3543 13.502 < 2e-16 ***
X3 -3.1744 0.3538 -8.973 2.39e-14 ***
X8 -1.2011 0.3530 -3.402 0.000976 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.045 on 96 degrees of freedom
Multiple R-squared: 0.7745,Adjusted R-squared: 0.7674
F-statistic: 109.9 on 3 and 96 DF, p-value: < 2.2e-16

The selected predictors in this simulation correspond to the true data generating model and each p-value is
significant after correcting for FDR. It is possible to examine the steps taken by the algorithm to reach the final
model with the steps.info component returned within the object returned by the SignifReg function. To assess it one
can use the following code.

R> fit$steps.info

Step Df Deviance Resid.Df Resid.Dev AIC BIC adj.rsq PRESS
1 NA 99 464.7142 441.4129 446.6233 0.00000 474.1498
2 + X1 1 -252.2719 98 212.4423 365.1377 372.9532 0.53819 221.2592
3 + X3 1 -95.00518 97 117.4371 307.8610 318.2817 0.74208 125.2498
4 + X8 1 -12.63562 96 104.8015 298.4775 311.5033 0.76743 114.2418
max_pvalue max.VIF pass fdr correction

1 NA NA NA
2 0.00000 NA TRUE
3 0.00000 1.01356 TRUE
4 0.00098 1.02879 TRUE
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Next we examine the steps taken by the algorithm by using the “trace = TRUE” argument. As can be seen in the
code output below, the function displays a table for each step of the algorithm, containing the criteria and correction
results. For instance, each row of the first table shows the AIC, BIC, adj.rsq, PRESS residuals, p-value of the model
only with the corresponding predictor displayed in that row. VIF is not displayed in the first table because it is only
computable with 2 or more predictors. For the default criterion, which is the smallest p-value, the table is ordered
in ascending order of the p-values and the algorithm chooses to include X1 in the model (note that the p-value 0
is rounded by the software). This model passes the “fdr” correction (default) as we see TRUE in the corresponding
column. Note that the model only with X3, and the model only with X8 would also pass the correction checks.
The second table shows the results when X1 is already included in the model. For example, the row “<none>”
is the same row as the one corresponding to X1 in the first table, which shows the results when only X1 is in the
model. The ninth row of the second table (corresponding to X2) shows the results for the model with X1 and X2.
The max pvalue 0.82706 in that row is the largest of π1 and π2, which are the p-values of the tests H1

0 : β1 = 0

and H2
0 : β2 = 0, respectively, when only X1 and X2 are in the model. Now, on the third row of the max pvalue

column we find 0.00215, which is the largest of π1 and π8, the p-values of the tests H1
0 : β1 = 0 and H8

0 : β8 = 0,
respectively, when only X1 and X8 are in the model. From this second table, the algorithm chooses the smallest
of these max pvalues, and includes in the model the predictor X3, since it passes the “fdr” correction. Similarly,
the third table shows the inclusion of X8 in the model and the last table suggests that no other predictor should be
included since none passes the correction cut-offs.

R> fit <- SignifReg(model, scope = formula(lm(Y ˜ ., data = dat)), trace = TRUE)

Call:
lm(formula = Y ˜ 1, data = dat)

Coefficients:
(Intercept)

0.4832

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF pass fdr correction
+ X1 212.4423 365.1377 372.9532 0.53819 221.2592 0.00000 NA TRUE
+ X3 332.0272 409.7924 417.6079 0.27823 346.0595 0.00000 NA TRUE
+ X8 422.3509 433.8543 441.6698 0.08189 440.6285 0.00227 NA TRUE
+ X2 454.4266 441.1743 448.9898 0.01216 474.0537 0.13957 NA FALSE
+ X7 458.1016 441.9798 449.7953 0.00417 479.0101 0.23717 NA FALSE
+ X9 459.1888 442.2168 450.0323 0.00181 479.9711 0.28018 NA FALSE
+ X10 459.9271 442.3775 450.1930 0.00020 481.0354 0.31500 NA FALSE
+ X6 461.2542 442.6656 450.4811 -0.00268 479.4119 0.39332 NA FALSE
+ X5 462.9987 443.0431 450.8586 -0.00648 480.4387 0.54818 NA FALSE
+ X4 464.6790 443.4054 451.2209 -0.01013 485.8172 0.93154 NA FALSE
<none> 464.7142 441.4129 446.6233 0.00000 474.1498 NA NA NA

Call:
lm(formula = Y ˜ X1, data = dat)

Coefficients:
(Intercept) X1

-2.123 5.310

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF pass fdr correction
<none> 212.4423 365.1377 372.9532 0.53819 221.2592 0.00000 NA TRUE
+ X3 117.4371 307.8610 318.2817 0.74208 125.2498 0.00000 1.01356 TRUE
+ X8 192.6983 357.3833 367.8039 0.57679 206.1638 0.00215 1.01787 TRUE
+ X7 195.5304 358.8423 369.2629 0.57057 207.9424 0.00466 1.00927 TRUE
+ X5 209.2887 365.6421 376.0628 0.54035 222.2828 0.22961 1.00086 FALSE
+ X10 211.4831 366.6852 377.1059 0.53553 226.0905 0.50872 1.00585 FALSE
+ X6 212.1464 366.9984 377.4191 0.53408 224.8924 0.71383 1.00693 FALSE
+ X9 212.2894 367.0657 377.4864 0.53376 226.1957 0.79211 1.01551 FALSE
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+ X2 212.3372 367.0883 377.5089 0.53366 225.9079 0.82706 1.03421 FALSE
+ X4 212.3934 367.1147 377.5354 0.53354 225.1238 0.88155 1.00000 FALSE

Call:
lm(formula = Y ˜ X1 + X3, data = dat)

Coefficients:
(Intercept) X1 X3

-0.2802 4.9307 -3.2860

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF pass fdr correction
<none> 117.4371 307.8610 318.2817 0.74208 125.2498 0.00000 1.01356 TRUE
+ X8 104.8015 298.4775 311.5033 0.76743 114.2418 0.00098 1.02879 TRUE
+ X7 114.1170 306.9931 320.0190 0.74676 124.0867 0.09793 1.07576 FALSE
+ X10 116.5063 309.0652 322.0911 0.74146 126.8795 0.38334 1.01939 FALSE
+ X2 116.6091 309.1535 322.1793 0.74123 127.0635 0.41107 1.05054 FALSE
+ X4 117.0591 309.5385 322.5644 0.74023 127.7700 0.57896 1.02103 FALSE
+ X6 117.2783 309.7257 322.7515 0.73975 127.7522 0.71924 1.02021 FALSE
+ X9 117.2996 309.7438 322.7696 0.73970 128.5259 0.73797 1.02901 FALSE
+ X5 117.4242 309.8500 322.8759 0.73942 127.7722 0.91841 1.04399 FALSE

Call:
lm(formula = Y ˜ X1 + X3 + X8, data = dat)

Coefficients:
(Intercept) X1 X3 X8

0.3635 4.7840 -3.1744 -1.2011

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF pass fdr correction
<none> 104.8015 298.4775 311.5033 0.76743 114.2418 0.00098 1.02879 TRUE
+ X7 102.6042 298.3586 313.9896 0.76991 114.0549 0.15705 1.08150 FALSE
+ X4 103.6409 299.3638 314.9949 0.76759 115.4774 0.30495 1.04370 FALSE
+ X2 103.7733 299.4916 315.1226 0.76729 115.7464 0.33443 1.06719 FALSE
+ X10 103.7847 299.5026 315.1336 0.76727 115.5637 0.33713 1.03485 FALSE
+ X6 104.7340 300.4131 316.0441 0.76514 116.6094 0.80511 1.03469 FALSE
+ X9 104.7577 300.4357 316.0667 0.76508 117.2160 0.84251 1.04290 FALSE
+ X5 104.7649 300.4426 316.0736 0.76507 116.6753 0.85592 1.05352 FALSE

Next we will use the backward algorithm to perform variable selection with a different dataset. In this case we
consider the same 10 predictors but with a different model

Y = 1.5X1 + 1.5X2 + 2.3X3 − 1.2X5 − 3.2X6 + 1.9X8 + 1.8X9 − 4.2X10 + ϵ,

where ϵ and X are generated similarly to the previous model. We run the selection with the Bonferroni correction
as follows

R> n = 100
R> d = 10 #number of variables
R> set.seed(1324)
R> X <- matrix(nrow=n, ncol=d)
R> for(i in 1:d){
+ X[,i] <- runif(n)
+ }
R> Y = 1.5*X[,1] + 1.5*X[,2] + 2.3*X[,3] - 1.2*X[,5] - 3.2*X[,6]
+ + 1.9*X[,8] + 1.8*X[,9] - 4.2*X[,10] + rnorm(nrow(X))
R> dat <- data.frame(X,Y)
R> model<-lm(Y˜.,dat)
R> fit <- SignifReg(model, direction = "backward",

adjust.method = "bonferroni", trace = TRUE)

Stat., Optim. Inf. Comput. Vol. 10, June 2022



A.Z. ZAMBOM AND J. KIM 957

Call:
lm(formula = Y ˜ ., data = dat)

Coefficients:
(Intercept) X1 X2 X3 X4 X5

0.5080 1.2150 1.0693 2.2203 0.4080 -0.9794
X6 X7 X8 X9 X10

-3.2039 -0.4757 1.6853 2.0452 -4.4909

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF pass fdr correction
- X4 100.3357 306.1228 334.7797 0.77685 125.0811 0.19084 1.22518 FALSE
- X7 100.8037 306.5882 335.2451 0.77581 125.9849 0.25521 1.11424 FALSE
<none> 99.1637 306.9479 338.2099 0.77698 126.3626 0.30786 1.23670 FALSE
- X2 108.8823 314.2974 342.9543 0.75784 135.5839 0.31719 1.23276 FALSE
- X5 106.0102 311.6243 340.2811 0.76423 132.8155 0.39209 1.17421 FALSE
- X10 253.3652 398.7539 427.4108 0.43650 315.1725 0.41972 1.18667 FALSE
- X1 110.8525 316.0907 344.7476 0.75346 138.4006 0.50833 1.20431 FALSE
- X8 123.1441 326.6062 355.2631 0.72612 152.8000 0.55620 1.21846 FALSE
- X3 137.0207 337.2839 365.9407 0.69526 169.0151 0.68329 1.15557 FALSE
- X9 128.1771 330.6119 359.2688 0.71493 158.1410 0.87184 1.18591 FALSE
- X6 177.3869 363.1040 391.7609 0.60548 219.0695 0.89303 1.23006 FALSE

Call:
lm(formula = Y ˜ X1 + X2 + X3 + X5 + X6 + X7 + X8 + X9 + X10,

data = dat)

Coefficients:
(Intercept) X1 X2 X3 X5 X6

0.6534 1.2451 1.1232 2.2651 -0.9560 -3.1643
X7 X8 X9 X10

-0.5145 1.7379 1.9892 -4.4996

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF pass fdr correction
- X7 102.2723 306.0346 332.0863 0.77504 125.0929 0.00677 1.09575 FALSE
- X5 106.8814 310.4426 336.4943 0.76490 130.8349 0.06748 1.16554 FALSE
- X10 255.2151 397.4814 423.5331 0.43862 310.0643 0.11083 1.17404 FALSE
<none> 100.3357 306.1228 334.7797 0.77685 125.0811 0.19084 1.22518 FALSE
- X2 111.2880 314.4829 340.5346 0.75521 135.2176 0.26128 1.22290 FALSE
- X1 112.6862 315.7314 341.7831 0.75213 137.4083 0.44396 1.19555 FALSE
- X8 126.3512 327.1773 353.2289 0.72207 153.3868 0.47857 1.21050 FALSE
- X6 177.4227 361.1242 387.1759 0.60974 214.9185 0.63876 1.21656 FALSE
- X3 140.2609 337.6211 363.6728 0.69148 168.8406 0.75689 1.13088 FALSE
- X9 128.3008 328.7084 354.7601 0.71779 155.1020 0.84023 1.16649 FALSE

Call:
lm(formula = Y ˜ X1 + X2 + X3 + X5 + X6 + X8 + X9 + X10, data = dat)

Coefficients:
(Intercept) X1 X2 X3 X5 X6

0.6719 1.1684 1.1028 2.1260 -1.0707 -3.1222
X8 X9 X10

1.6860 1.8746 -4.6024

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF pass fdr correction
- X9 128.3584 326.7533 350.1999 0.72073 152.3350 0.00534 1.08511 TRUE
- X5 110.9035 312.1367 335.5833 0.75871 133.0201 0.00660 1.09565 TRUE
<none> 102.2723 306.0346 332.0863 0.77504 125.0929 0.00677 1.09575 FALSE
- X2 112.8507 313.8773 337.3238 0.75447 134.5197 0.01615 1.08611 FALSE
- X1 113.4183 314.3789 337.8255 0.75323 135.4409 0.01950 1.09149 FALSE
- X8 127.0542 325.7321 349.1786 0.72357 151.0423 0.02035 1.09122 FALSE
- X3 140.4095 335.7270 359.1735 0.69451 166.0706 0.03309 1.08462 FALSE
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- X10 271.3677 401.6182 425.0647 0.40958 323.6463 0.03340 1.08781 FALSE
- X6 177.8553 359.3677 382.8142 0.61304 211.0353 0.04831 1.09118 FALSE

Call:
lm(formula = Y ˜ X1 + X2 + X3 + X5 + X6 + X8 + X10, data = dat)

Coefficients:
(Intercept) X1 X2 X3 X5 X6

1.631 1.345 1.143 2.069 -1.465 -2.873
X8 X10

1.622 -4.677

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF pass fdr correction
<none> 128.3584 326.7533 350.1999 0.72073 152.3350 0.00534 1.08511 TRUE
- X10 303.3075 410.7454 431.5868 0.34718 353.4149 0.00678 1.07578 TRUE
- X2 139.7209 333.2353 354.0767 0.69928 161.5338 0.00927 1.05370 FALSE
- X8 151.3399 341.2235 362.0648 0.67427 176.4146 0.01322 1.06911 FALSE
- X5 145.2680 337.1287 357.9701 0.68734 168.7815 0.01492 1.08405 FALSE
- X3 164.5260 349.5775 370.4189 0.64589 188.8564 0.02166 1.07095 FALSE
- X6 193.5558 365.8273 386.6686 0.58341 223.6356 0.03205 1.07832 FALSE
- X1 143.2625 335.7385 356.5799 0.69165 166.4775 0.03480 1.04200 FALSE

The first model displayed by the SignifReg function is the initial model, which for this backward case is the
full model with all 10 predictors. It is important to clearly interpret the tables presented in the backward algorithm,
which differ from the ones shown in the forward algorithm. The row corresponding to “<none>”, shows the criteria
for the full model. Additionally, the following rows show the criteria when the corresponding variable is excluded
from the model. For example, when X1 is excluded from the model, that is the model containing X2, . . . , X10 we
obtain RSS equal to 110.8525 and adjusted R-squared equal to 0.75346. Recalling that we are using the Bonferroni
correction, the model without X1 does not have all 9 remaining p-values less than the Bonferroni correction,
and thus “FALSE” is seen on the row corresponding to X1 of the Bonferroni column in this first table. The first
predictor eliminated by the backward algorithm is X4, since the model without it has the smallest “max pvalue”,
that is, the maximum of the p-values of the model with X1, . . . , X3, X5, . . . , X10 is 0.19084, the smallest compared
to other models (with 9 covariates) with other predictors removed. The last table displayed by the algorithm shows
that two models are candidates (they pass the Bonferroni correction): the first with X5 removed and the second
with X9 removed. This means that the model without X5 for example, which would be composed of predictors
Xj , j = 1, 2, 3, 6, 8, 9, 10, would have all predictors with p-values below the Bonferroni cut-offs. The model without
X9 is chosen since it produces the smallest “max pvalue”, so the final model is chosen to be the one with the
predictors Xj , j = 1, 2, 3, 5, 6, 8, 10.

If one is interested in exploring the addition or removal of a predictor for a given regression model while keeping
the significance of all added predictors, the functions add1SignifReg() and drop1SignifReg() will show how each
of the criteria and correction methods perform according an individual step of the proposed algorithms. This is
similar to the add and drop functions in the stats package in R.

To demonstrate the use of these functions, suppose we are interested in adding or removing a predictor from the
generalized linear regression model with binary response (logistic regression) for predicting death using the heart
failure dataset available at
https://archive.ics.uci.edu/ml/datasets/Heart+failure+clinical+records. This dataset contains the clinical features of
299 patients who had heart failure and the event recorded was whether the patient died or not. Features include
age, sex, if the patient had diabetes, number of platelets in the blood, among others. We consider an initial logistic
regression model only with age. The following code uses the function add1SignifReg() to assess the possible
predictors that can be added, together with all the information of the model containing age and each prospective
predictor when print.step = TRUE

R> data_heart = read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/
00519/heart_failure_clinical_records_dataset.csv", header = TRUE)
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R> fit = glm(DEATH_EVENT ˜ age, data = data_heart, family = "binomial")
R> add1SignifReg(fit, scope = formula(lm(DEATH_EVENT˜., data = data_heart)),

print.step = TRUE)

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue
+ ejection_fraction 327.4015 333.4015 344.5029 NA 334.4432 0.00000
<none> 355.9928 359.9928 367.3937 NA 360.7789 0.00007
+ serum_creatinine 334.1227 340.1227 351.2240 NA 341.9026 0.00074
+ serum_sodium 345.5911 351.5911 362.6924 NA 353.2427 0.00307
+ time 271.4643 277.4643 288.5656 NA 277.2341 0.00426
+ creatinine_phosphokinase 353.8454 359.8454 370.9467 NA 361.7142 0.18118
+ high_blood_pressure 354.9659 360.9659 372.0672 NA 362.2801 0.35553
+ anaemia 355.3216 361.3216 372.4229 NA 362.6095 0.45519
+ platelets 355.4946 361.4946 372.5959 NA 362.9402 0.52004
+ diabetes 355.7601 361.7601 372.8614 NA 363.0023 0.66026
+ sex 355.8342 361.8342 372.9356 NA 363.1491 0.71675
+ smoking 355.9059 361.9059 373.0073 NA 363.1327 0.78829

max.VIF pass fdr correction
+ ejection_fraction 1.05168 TRUE
<none> NA TRUE
+ serum_creatinine 1.01102 TRUE
+ serum_sodium 1.00053 TRUE
+ time 1.00002 TRUE
+ creatinine_phosphokinase 1.01864 FALSE
+ high_blood_pressure 1.00296 FALSE
+ anaemia 1.00183 FALSE
+ platelets 1.00006 FALSE
+ diabetes 1.01892 FALSE
+ sex 1.00744 FALSE
+ smoking 1.00056 FALSE

Call: glm(formula = DEATH_EVENT ˜ age + ejection_fraction, family = "binomial",
data = data_heart)

Coefficients:
(Intercept) age ejection_fraction

-1.79490 0.05582 -0.06586

Degrees of Freedom: 298 Total (i.e. Null); 296 Residual
Null Deviance: 375.3
Residual Deviance: 327.4 AIC: 333.4

Note that in this case, there are a few predictors that are candidates for entering the model, namely
ejection fraction, serum creatinine, serum sodium, and time (models with each of these predictors included
pass the FDR correction). The output of the function add1SignifReg() is the glm object with age and
ejection fraction, with the additional component step.info for the information about why it was selected. The
predictor ejection fraction is chosen to be added because the p-values of the tests H1

0 : β1 = 0 and H2
0 : β2 = 0,

respectively, when only age and ejection fraction are in the model are both equal to or smaller than 0.00001, that
is, the max of these two p-values is smaller than 0.00001. This is the smallest of all max pvalues, computed from
models with age and the other prospective predictors. It is important to notice that the default of the SignifReg()
function is to use the FDR correction, so that the model with age and ejection fraction is only chosen because both
p-values are below the cutoff values of the FDR.

Now suppose we are interested in dropping a predictor and checking which model, after dropping the predictor,
has the best performance in terms of max p-value while all remaining predictors are significant according to FDR or
Bonferroni corrections. The function drop1SignifReg() will display all the information of the prospective models
when each predictor is removed, will perform one step of the backward elimination algorithm in the SignifReg
function and will return the model with a predictor removed (if the current model does not pass the correction). To
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demonstrate its use, assume we have the logistic regression model with response variable death and predictors age,
ejection fraction, serum creatinine, and platelets. The following code uses drop1SignifReg to assess the possible
predictors that can be removed and displays all the information of the prospective models. Removing platelets
yields a model with the lowest maximum p-value, so the function returns the glm object with age, ejection fraction,
and serum creatinine only.

R> fit = glm(DEATH_EVENT ˜ age+ ejection_fraction + serum_creatinine+ platelets,
data = data_heart, family = "binomial")

R> drop1SignifReg(fit, print.step = TRUE)
Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF

- platelets 305.2827 313.2827 328.0844 NA 314.8040 0.00002 1.07064
- ejection_fraction 333.8877 341.8877 356.6895 NA 344.2673 0.64901 1.01276
- serum_creatinine 327.2865 335.2865 350.0883 NA 336.8010 0.74770 1.05494
- age 324.2484 332.2484 347.0502 NA 333.8983 0.79726 1.00367
<none> 305.2628 315.2628 333.7650 NA 317.1645 0.89000 1.07395

pass fdr correction
- platelets TRUE
- ejection_fraction FALSE
- serum_creatinine FALSE
- age FALSE
<none> FALSE

Call: glm(formula = DEATH_EVENT ˜ age + ejection_fraction + serum_creatinine,
family = "binomial", data = data_heart)

Coefficients:
(Intercept) age ejection_fraction serum_creatinine

-2.35306 0.05173 -0.07000 0.66592

Degrees of Freedom: 298 Total (i.e. Null); 295 Residual
Null Deviance: 375.3
Residual Deviance: 305.3 AIC: 313.3

Finally, to see the prospective models when adding or dropping a predictor one can use the functions
add1summary and drop1summary from the package SignifReg. These functions are informative only and do
not return an lm (glm) object. As an example we check the prospective models when adding anaemia,
high blood pressure or cyl to the model with serum sodium with the following code.

R> fit = glm(DEATH_EVENT ˜ age, data = data_heart, family = "binomial")
R> add1summary(fit, scope = ˜.+ anaemia + high_blood_pressure+ serum_sodium)

Resid.Dev AIC BIC adj.rsq PRESS max_pvalue max.VIF
<none> 355.9928 359.9928 367.3937 NA 360.7789 0.00007 NA
+ serum_sodium 345.5911 351.5911 362.6924 NA 353.2427 0.00307 1.00053
+ high_blood_pressure 354.9659 360.9659 372.0672 NA 362.2801 0.35553 1.00296
+ anaemia 355.3216 361.3216 372.4229 NA 362.6095 0.45519 1.00183

pass fdr correction
<none> TRUE
+ serum_sodium TRUE
+ high_blood_pressure FALSE
+ anaemia FALSE

Note that the call of the add1summary function includes the model, the scope, the significance level, the p-value
correction method (default is “fdr”) and finally the column by which to sort the table (which needs to be one of the
criteria available - default is “p-value”). Similar code and output can be see when using drop1summary.
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4. Simulations

In this section we assess the finite sample performance of the variable selection methods available in the package
SignifReg and, for comparison purposes, the results of the classical algorithms from other available statistical
software are also analyzed. Each simulation was run 1000 times with sample size of n = 500. The results presented
here with moderately large sample sizes aim at modern applications, where available data storage and recording
technologies usually allow for large samples. Nevertheless, simulations with n = 100, which are not reported here
for the sake of brevity and space, suggest that the results are comparatively similar to the ones presented in this
section for the methods considered.
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Figure 1. Proportion of correct fit (top left), underfit (top right), overfit (bottom left), and under/over (bottom right) out of
1000 simulation runs for 10 predictors with multivariate Normal distribution.

In this simulation study we generate the data from the linear model Y = Xβ + ϵ, where ϵ ∼ N(0, σ2) are
i.i.d., for a range of values of the variance σ2, X = (X1, . . . , Xd) for d = 10 or 30, and β = (β1, . . . , βd).
For the scenarios where d = 10, the coefficients are set to β1 = 4, β4 = 1, β5 = −2, β8 = −0.5, β10 = 1.3 and
βj = 0 for j /∈ {1, 4, 5, 8, 10}. For the scenarios where d = 30, the coefficients are set to β1 = 3, β10 = −1, β11 =

−1, β15 = −4, β25 = 0.4 and βj = 0 for j /∈ {1, 10, 11, 15, 25}. We consider independent and dependent predictors:
for the independent case Xj , j = 1, . . . , d are generated independently from U(0, 5), while for the dependent
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case the predictors are generated from a multivariate Normal distribution with zero mean and covariance matrix
Σ = (σkℓ)d×d with σkℓ = 0.9|k−ℓ| for all k, ℓ ∈ 1, . . . , d. We assess the performance of the variable selection
methods by computing the percentage of the simulation runs where a) Correct fit: all five active predictors were
selected, b) Underfit: only a few of the active predictors were selected and no non-active predictor was selected,
c) Overfit: all five active predictors and some non-active predictors were selected, and d) Under/Over: some active
predictors were not selected and some non-active predictors were selected. These measures are computed for
difference values of the variance σ, that is, with increasing levels of difficulty given the increasing noise.
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Figure 2. Proportion of correct fit (top left), underfit (top right), overfit (bottom left), and under/over (bottom right) out of
1000 simulation runs for 30 predictors with multivariate Normal distribution.

We compare the results of the proposed method with those from the step function in R, stepwisefit in Matlab
(https://www.mathworks.com/help/stats/stepwisefit.html), and PROC REG in SAS with SELECT option. The step
function in R chooses the model based on AIC comparisons and was set to start with the null model for forward
and full model for backward. The stepwisefit in Matlab was used with steps in both directions and the criterion
to add/drop predictors was the sse. For SAS, we used the stepwise option in the PROC GLMSELECT procedure
with the significance level (F statistic) of each predictor as the criteria to add or drop variables. The procedure
terminates when adding any effect to the model increases the predicted residual sum of squares. Results of other
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software such as Minitab and SPSS are not included because of their graphic user interface (GUI), which bring
challenges to program Monte Carlo simulations such as the ones in this section.
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Figure 3. Proportion of correct fit (top left), underfit (top right), overfit (bottom left), and under/over (bottom right) out of
1000 simulation runs for 10 independent predictors with Uniform distribution.

Figures 1 and 2 show the percentage of correct, underfit, overfit, and under/overfit out of the 1000 Monte
Carlo simulation runs for the multivariate Normal covariates with d = 10 and d = 30 respectively. For small
to moderate values of σ, the proposed forward procedure has the highest percentage of correct fit followed by
Matlab’s algorithm. In the case of d = 30 virtually all other competitors achieve almost 0 correct fit rates. For low
values of σ and d = 10, the proposed forward algorithm has low rates of overfit, underfit and under/overfit, while
more overfit is seen when d = 30 as expected. Also expected is the fact that the underfit rates for the proposed
method tend to be higher when σ2 is large, since requiring small p-values (under FDR or Bonferroni thresholds)
is restrictive in selecting predictors, however, overfit and under/overfit rates are generally the lowest for all values
of σ. The proposed backward procedure does not seem to perform well in this scenario with a high percentage of
under/overfit, that is, some active predictors were dropped from the model while some non-active predictors were
kept. The step function in R, stepwisefit in Matlab, and PROC GLMSELECT in SAS had reasonable percentages
of correct fit for d = 10 but performed poorly for d = 30, mostly overfiting the model for small values of σ and
under/overfiting the model for larger values of σ. The results in Figures 3 and 4, which correspond to the percentage
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of correct, underfit, overfit, and under/overfit for the independent Uniform covariates with d = 10 and d = 30

respectively, show rates with patterns similar to those in the multivariate Normal case. Overall, the results suggest
that the proposed forward selection algorithm with p-value corrections is preferable for finding the correct set
of predictors especially if the variability of the error is relatively small to moderate, with the expected rate of
underfit climbing faster than other methods given its restriction (Bonferroni or FDR) in allowing new variables to
be added. The very high rates of overfit in the methods applied from other software, especially for small values of
σ, would yield models with unnecessary predictors and thus consume unnecessary degrees of freedom, which in
consequence can cause inaccurate inference.
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Figure 4. Proportion of correct fit (top left), underfit (top right), overfit (bottom left), and under/over (bottom right) out of
1000 simulation runs for 30 independent predictors with Uniform distribution.

5. Real Data

In this section we assess the performance of the proposed method in comparison with competing statistical software
on two benchmark real datasets for regression: medical costs ([11]) and US macroeconomic data ([12]). The
dataset medical costs was originally introduced in Brett Lantz’ book Machine Learning with R and is available on
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Medical Costs
forward/p-value/FDR backward/p-value/FDR step-forward step-backward Matlab SAS

Age X X X X X X
Sex
bmi X X X X X X

Children X X X X X X
Smoker X X X X X X
Region X X X

Table 1. Results of variable selection based on each algorithm for the Insurance Cost dataset.

US Macroeconomic Data
forward/p-value/FDR backward/p-value/FDR step-forward step-backward Matlab SAS

GNP Deflator
GNP X X X X X

Uneployment X X X X X X
Armed Forces X X X X

Population
Year X X X

Table 2. Results of variable selection based on each algorithm for the US Macroeconomic Data dataset.

Medical Costs
forward/p-value/FDR backward/p-value/FDR step-forward step-backward Matlab SAS

AIC 27114.04 27114.04 27113.66 27113.66 27114.04 27113.66
Adj R2 0.7489434 0.7489434 0.7495727 0.7495727 0.7489434 0.7495727

Table 3. Selected model characteristics based on each algorithm for the Insurance Cost dataset.

US Macroeconomic Data
forward/p-value/FDR backward/p-value/FDR step-forward step-backward Matlab SAS

AIC 250.4944 236.5756 231.655 231.655 250.4944 248.3174
Adj R2 0.9776784 0.9910588 0.993671 0.993671 0.9776784 0.9813745

Table 4. Selected model characteristics based on each algorithm for the US Macroeconomic Data dataset.

Kaggle (https://www.kaggle.com/datasets/mirichoi0218/insurance). It contains medical cost information of 1,338
individuals and 7 variables: age, sex, bmi, number of children, whether the person is a smoker or not, region where
the person lives, and premium insurance charges. The goal with this dataset is to apply variable selection methods
to a linear regression model with charges as a response variable and the other six variables as predictors. The
second dataset, US macroeconomic, was provided by Longley (1967) [12] and is available in the datasets library
in the software R. It is a relatively small dataset containing 16 observations and 7 highly correlated variables:
total employment, GNP deflator, GNP, number of unemployed, size of armed forces, population, and year. For this
dataset we consider total employment as the response variable.

Table 1 and Table 2 summarize the selected models based on each algorithm considered for the medical costs
dataset and the US macroeconimic dataset respectively, while Table 3 and Table 4 report the AIC and adjusted
R2. As expected, in general SignifReg selects the most parsimonious models given its strict nature of controlling
p-values. For the medical costs dataset, both forward and backward algorithms of SignifReg select the same model
containing age, bmi, children, and smoker status, which is also the result of Matlab’s algorithm. SAS and R’s
selected models, besides these predictors, also include region. The parsimonious model selected by the proposed
algorithm yields AIC and Adjusted R2 virtually identical to the larger model selected by SAS and R step function,
differing at most of the order of 0.01%. The results for the US macroeconomic data follow the same pattern,
however the parsimony of the model selected by the proposed algorithm is more pronounced. Only 2 variables,
GNP and unemployment, are selected by the proposed forward procedure and Matlab, while SAS and R’s step
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function select 4 predictors. Similarly to the medical costs data results, AIC and adjusted R2 of the models selected
by the proposed algorithm are close to the ones obtained by SAS and R’s step function. However, the models chosen
by the competing algorithms include too many predictors, which are in this case known to be multi-colinear, and
yield variance inflation factors (VIF) as high as 638.13, while the parsimonious model selected by the proposed
algorithm yields a model with variance inflation factor no more than 1.57. Such a parsimonious model is preferable
to the larger model, especially due to the inflation of the standard deviation caused by the high VIFs in the larger
model.

6. Conclusion

Implementations of variable selection algorithms are available in a variety of statistical software. However, the
standard approach, which selects variables according to a criterion such AIC or BIC, may yield a final model with
insignificant predictors. In this paper, we proposed new algorithms that control for the significance of the included
predictors at each step of the selection process, either backward or forward. The control can be performed using
the commonly available p-value correction cut-offs, including for example the well known “hochberg” [5], “BH”
or “fdr” [1], and “BY” [2]). The algorithms proposed in here are implemented in the R software SignifReg() and
is available for download at https://cran.r-project.org/web/packages/SignifReg/index.html. In extensive simulation
scenarios and two real benchmark datasets for regression we evaluated the performance of the proposed algorithms
compared to other variable selection functions in R, Matlab and SAS. Overall, the results suggest that the proposed
forward selection algorithm with p-value corrections is performs better when selecting variables especially if the
variability of the error is relatively small to moderate.

REFERENCES

1. Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing.
Journal of the Royal Statistical Society. Series B (Methodological), 57(1):289–300, 1995.

2. Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple testing under dependency. Annals of
statistics, pages 1165–1188, 2001.

3. N. Draper and H. Smith. Applied regression analysis. John Wiley & Sons, New York, 1966.
4. M. Efroymson. Stepwise regression: a backward and forward look. Eastern Regional Meetings of the Institute of Mathematical

Statistics, 1966.
5. Y. Hochberg. A sharper bonferroni procedure for multiple tests of significance. Biometrika, 75:800–803, 1988.
6. Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2):65–70, 1979. ISSN

03036898, 14679469.
7. G. Hommel. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75(2):383–386, 06 1988.

ISSN 0006-3444.
8. Cho-Ying Huang, Hsin-Lin Wei, Jiann-Yeou Rau, and Jyun-Ping Jhan. Use of principal components of uav-acquired narrow-band

multispectral imagery to map the diverse low stature vegetation fapar. GIScience & Remote Sensing, 56(4):605–623, 2019.
9. A. B. Imran, K. Khan, N. Ali, N. Ahmad, A. Ali, and K. Shah. Narrow band based and broadband derived vegetation indices using

sentinel-2 imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management, 6:97–108, 2020.
10. Josely Correa Koury, Maria Almeida Ribeiro, Fabia Albernaz Massarani, Filomena Vieira, and Elisabetta Marini. Fat-free mass in

adolescent athletes: Accuracy of bioimpedance equations and identification of new predictive equations. Nutrition, 60:59 – 65, 2019.
ISSN 0899-9007.

11. Brett Lantz. Machine Learning with R. Packt Publishing, Birmingham, Mumbai, 2013.
12. James W. Longley. An appraisal of least-squares programs from the point of view of the user. Journal of the American Statistical

Association, 62: 819 – 841, 1967.
13. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria,

2021. URL https://www.R-project.org/.
14. S. Sarvepalli, C.A. Burke, M. Monachese, R. Lopez, B.H. Leach, L. Laguardia, M. O’Malley, M.F. Kalady, and J.M. Church. Web-

based model for predicting time to surgery in young patients with familial adenomatous polyposis: An internally validated study.
American Journal of Gastroenterology, 113:1881 – 1890, 2018.

15. S. Walter and H. Tiemeier. Variable selection: current practice in epidemiological studies. European Journal of Epidemiololy, 24:
733–736, 2009.

16. Adriano Zambom and Jongwook Kim. Consistent significance controlled variable selection in high-dimensional regression. STAT,
7, 2018.

Stat., Optim. Inf. Comput. Vol. 10, June 2022


