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Abstract The problem of singularity of the variance-covariance matrix and its impact on the sensitivity of
Markowitz portfolio optimization has been extensively studied in the literature when the underlying model does
not include jump terms. In this paper, we first use a jump-diffusion multivariate Merton model to evaluate
sensitivity of portfolio optimization and apply principal component analysis (PCA) for dimensionality reduction
as a solution to singularity of the variance-covariance matrix. Finally, we provide a numerical study based on
the adjusted daily closing price of S&P 500 stocks to explore the impact of the dimension of the reduced space
and jump terms on the sensitivity of the portfolio optimization. Empirical experiments confirm that for models
without jump terms, the sensitivity analysis may not reflect the correct assessment of the impact of dimensionality
reduction on the portfolio optimization.
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1. Introduction

In 1952, Markowitz solved the problem of stock portfolio optimization based on expected returns (average)
and standard deviation (variance) using parametric quadratic programming (PQP) [11]. Michalowski et
al. [14] and Zhang et al. [21] generalized the Markowitz model and measured risk using absolute and
downside deviations instead of variance. Ledoit et al.[9] introduced a nonlinear shrinkage estimator in the
Markowitz portfolio selection to solve the problem of estimating the covariance matrix of returns. Goto
et al. [7] proposed a “sparse” estimator of the inverse covariance matrix by shrinking the size of trades
and reducing the number of stocks in each hedge trade. The portfolio obtained using this estimator
compares favorably with those obtained by other methods (equal weighting, small covariance matrix,
industry operating model, non-negative constraints) and also has a significantly reduced out-of-sample
risk and a much better certainty equivalent returns after transaction costs.

One of the basic assumptions of the Markowitz model is investor risk-aversion (see Borodovsky et
al. [3]). An insurance risk manager looking for a risk-averse portfolio prefers to manage portfolios with
large numbers of stocks to avoid financial crises. However, when the number of shares increases, some
become linearly dependent. As a result, the non-singularity assumption of the variance-covariance matrix
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is violated, and the standard portfolio optimization methods are not applicable. As a solution, common
linear dimensionality reduction methods such as principal component analysis are suggested.

The Mean-Variance (MV) portfolio optimizer also has a poor empirical performance due to relatively
large errors in estimating the means and variances ([6]). Several approaches have been proposed in the
literature to address this problem. For example, Best and Grauer [2] studied the variation of an optimal
portfolio set with respect to a non-random perturbation in the input parameters, and suggested an upper
bound for the sensitivity of such a portfolio. Chopra et al. [4] investigated the relative impact of estimation
errors in means, variance, and covariances and showed that it is important to distinguish between errors
in variances and covariances. Moreover, he relative impact of errors in means, variance, and covariances
also depends on the investor’s risk tolerance.

It is well known that the Markowitz mean–variance portfolio optimization problem is a quadratic
programming problem whose first-order conditions require the solution of a linear system and that the
optimal portfolio weights are sensitive to parameter estimates, particularly the mean return vector. This
has generally been attributed to the interaction of estimation error and optimization, but Hurley et al. [8]
provided examples to show that the linear system produced by the first-order condition of the Markowitz
mean variance portfolio optimization problem is ill-conditioned, and it is in fact this property that causes
the optimal weight sensitivity.

An empirical study by Paskaramoorthy et al. [15] shows that the analytical bounds by Best and Grauer
[2] significantly overestimate MV portfolio sensitivity. Moreover, they showed that the condition number
of the covariance matrix does not necessarily epitomize the sensitivity of the MV optimizer. Another
restrictive assumption of the Markowitz model is the Gaussian distribution assumption on assets prices
([17]). Merton [13] showed that under this assumption, trading must occur continuously in time, and the
path of stock price dynamics must be continuous with probability one. Since this assumption may not hold
in practice, models including jump terms are suggested for modeling stock prices ([19],[10], and [18]). To
study these jump terms we first introduce the portfolio optimization problem based on a jump-diffusion
Merton model. In contrast to Paskaramoorthy et al. [15] we consider the effect of jump terms in the
sensitivity of the MV optimizer. An empirical study shows that when the model includes jump terms, the
ratio of the exact amount to the upper bound for sensitivity of the portfolio optimization depends very
much on the dimension of the reduced space,but is almost constant when the jump terms are excluded
in which case we obtain results similar to those obtained by Paskaramoorthy et al. [15].

In this paper, we first introduce the portfolio optimization problem based on a jump-diffusion Merton
model. We then study sensitivity of the portfolio optimization with respect to perturbations to the
model parameters. Finally, using an empirical study we explore the influence of the dimension of the
reduced space and jump terms on the ratio of the exact amount to the upper bound for the sensitivity
of the portfolio optimization. The remainder of the paper is organized as follows. In Section 2, using the
multivariate Merton model with jump terms, we discuss the MV portfolio problem with full investment
constraints and obtain the upper bound for the sensitivity of the portfolio optimization measured by
adding perturbation to the model parameters. In Section 3, we provide numerical results based on the
adjusted closing daily price of S&P 500 stocks from January of 2010 to March of 2021. We also calculate
the bounds of the sensitivity of the portfolio performance obtained based on a multivariate jump-diffusion
Merton model based on S&P 500 stocks data. For the reader’s convenience, notations used in this paper
are displayed in Table 1. Moreover, we provide the proof of the results in Appendix A, B, C.

2. Portfolio Choice under Changes to the Mean under Merton model

Modern portfolio optimization theory was introduced by Markowitz [11], where he considered a portfolio
of assets with jointly normally distributed returns, and defined an optimal portfolio as one that has the
minimum variance and meets a targeted return. This problem is equivalent to maximizing the return
of a portfolio while controlling the variance. Markowitz [12] and Sharpe [16] proposed the MV portfolio
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Table 1. Notations used throughout this paper

Symbol Definition

m Number of risky assets
τ Investment horizon

Pj(t) Price of the j-th risky asset at time t, j = 1, 2, . . . ,m
mj Drift of geometric Brownian motion
σj Volatility of the asset Pj , j = 1, 2, . . . ,m

N(t) Poisson processes with intensity rates ξ
Nj(t) Poisson processes with intensity rates ξj
ξ intensity rate of N(t)

ξZj,1 intensity rates of Nj(t)
ξZ1 (ξZ1,1 , . . . , ξZm,1)

⊤

Zk,j,0 The jump magnitude of the k-th common jump
for all assets Pj in (0, t], k = 1, 2, . . . , N(t)

µZj,0
E(Zk,j,0), j = 1, 2, . . . ,m,

σ2
Zj,0

V ar(Zk,j,0), j = 1, 2, . . . ,m,

µZ0
(µZ1,0

, . . . , µZm,0
)⊤

Zk,j,1 The jump magnitude of the k-th individual jump
of asset Pj , in (0, t], k = 1, 2, . . . , Nj(t)

µZj,1
E(Z1,j,1), j = 1, 2, . . . ,m,

σ2
Zj,1

V ar(Zk,j,1), j = 1, 2, . . . ,m,

µZ1 (µZ1,1 , . . . , µZm,1)
⊤

hj,0 E[eZι(t),j,0 ]− 1, j = 1, 2, . . . ,m,
hj,1 E[eZι(t),j,1 ]− 1, j = 1, 2, . . . ,m,
µ (r +m1 − ξh1,0 − ξh1,1, . . . , r +mm − ξhm,0 − ξmhm,1)

⊤

1 Vector of ones with length m
x (x1, . . . , xm)⊤ fraction of assets the optimal MV efficient portfolio
B′

j m-dimensional Brownian motions j = 1, 2, . . . ,m
r Interest rate of risk-free asset

ρi,j t Cov(B′
i(t+ s), B′

j(t)) for i, j = 1, 2, . . . ,m and ∀s, t ≥ 0

Σm×m

(
σi σj ρi,j + ξ µZi,0

µZj,0
+ (ξ σ2

Zi,0
+ ξi σ

2
Zi,1

+ µ2
Zi,1

ξi)I{i=j}

)
i,j

i, j = 1, 2, . . . ,m

problem, which is given by the following optimization problem for risky assets with constraints,

max
x∈Rm

{
sµ⊤x− 1

2
x⊤Σx | A⊤x ≤ b

}
, (1)

where x gives portfolio weights, µ and Σ are expectation and variance-covariance matrix of return rates, s
represents the risk tolerance of the investor, A is the matrix of constraints and b is the vector of constants.
Best and Grauer [2] added a non-random perturbation to input parameters in problem (1) and suggested
the following optimization problem

max
x∈Rm

{
T (µ+ κq)⊤x− 1

2
x⊤Σx | 1⊤x = 1

}
, (2)

where T represents the risk tolerance of the investor, µ represents the fixed component of the mean
returns, κq represents the varying component of the mean, x represents a vector of portfolio weights, Σ
is the d variance-covariance matrix, and 1 is a vector of ones.
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In this paper, we consider the MV portfolio optimisation based on a jump-diffusion multivariate Merton
model to account for two different types of jumps: common (caused by any reason that causes a price
jump for all stock values, for example changes in investment rate, alterations in economic outlook) and
uncommon (caused by new and important information that, for example, may only influence prices of
certain stocks or cause an imbalance between their supply and demand).

Here, we consider a jump-diffusion model containing one risk-free asset and m risky assets and assume
that (for j = 1, 2, . . . ,m), the dynamics of risky assets prices follow

dPj(t)

Pj(t−)
= (r +mj − ξ hj,0 − ξj hj,1) dt+ σj dB

′
j(t) + (eZι(t−),j,0 − 1) dN(t)

+(eZι(t−),j,1 − 1) dNj(t), (3)

where r is interest rate, mj is the drift of geometric Brownian motion, σj > 0 is the volatility of the asset
Pj (j = 1, 2, . . . ,m) and B′

j are standard Brownian motions. Moreover, N(t) and Nj(t) are independent
Poisson processes with intensity rates ξ and ξj , respectively. Discounted changes in assets price are divided
into two groups: individual changes corresponding to Nj(t) and common changes corresponding to N(t).
As in Vanduffel et al. [19], for j = 1, 2, . . . ,m and k = 1, 2, . . . , N(t), Zk,j,0 denotes the jump magnitude
of the k-th common jump in (0, t] while for k = 1, 2, . . . , Nj(t), Zk,j,1 denotes the k-th individual jump of
asset Pj , in (0, t]. Other symbols are introduced in Table 1.

By calculating the expected value of the return of terminal wealth process given in (3), we propose a
new optimization problem similar to Markowitz method (Best et al. [2] and Paskaramoorthy et al. [15])
as follows:

max
x∈Rm

{
T
[
µ+ ξ µZ0

+ ξZ1
⊙ µZ1

+ κq
]⊤

x− 1

2
(x⊤ Σx) | 1⊤ x = 1

}
, (4)

where ⊙ is Hadamard product (element-wise multiplication) defined for vectors a = (a1, a2, . . . , am) and
b = (b1, b2, . . . , bm) as a⊙ b = (a1 b1, a2 b2, . . . , am bm), T is the risk tolerance of the investor, κq indicates
the varying components of the mean returns, x is portfolio weights, and µ , ξ ,µZ0 , ξZ1 ,µZ1 , and Σ are
given in Table 1. A detailed discussion on construction of optimisation problem given in (4) is provided
in Appendix A. The objective function of optimization problem in (4) is a quadratic function of x with
a linear constraint, hence using the Lagrange method we can show that the solution is given by

x(κq) =
1

a3
Σ−1 1+ T

[
Σ−1(µ+ ξ µZ0

+ ξZ1
⊙ µZ1

)− a1
a3

Σ−1 1
]

︸ ︷︷ ︸
h0

+κ T
[
Σ−1 q− a2

a3
Σ−11

]
︸ ︷︷ ︸

h1

, (5)

where a1 = 1⊤ Σ−1 (µ+ ξ µZ0
+ ξZ1

⊙ µZ1
), a2 = 1⊤ Σ−1 q, a3 = 1⊤ Σ−1 1. Note that h0 and h1 in (5)

represent the fixed and varying components of x(κq) , respectively. For reader convenience, a detailed
discussion on the solution to the optimisation problem given in (5) is provided in Appendix B. The first
term in h0 is a global minimum variance portfolio and the second term is a zero-cost portfolio, in case
jump terms are included in the model. Additionally, h1 is a zero-cost portfolio showing variation of the
optimal portfolio due to changes in the mean vector.

In the following, we provide an upper bound for the L2 norm of the fixed and varying components in
(5). We provide the proof of the Lemmas given in the paper in Appendix C.
Lemma 2.1
Upper bounds for the fixed and varying components of (5) are given by

||h0|| ≤
λmax√
mλmin

+ T
||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

||
λmin

(1 +
λmax

λmin
) (6)
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and

||h1|| ≤ T
||q||
λmin

(1 +
λmax

λmin
) , (7)

respectively, where λmin and λmax are smallest and largest eigenvalues of the variance-covariance matrix,
respectively.

In order to identify the role of varying components of the mean returns, i.e. κq in the portfolio
optimisation problem given in (4), we first consider the optimization problem without κq and denote
the solution to this optimization problem by x⋆. Then, for a fixed risk tolerance T , we investigate the
deviation of x(κq) given in (5) from x⋆ . We use the L2 norm as deviance function and provide an upper
bound for the deviation between x(κq) and x⋆ as follows.

||x(κq)− x⋆|| ≤ κ ||h1|| ≤ T κ
||q||
λmin

(1 +
λmax

λmin
).

Also the difference between mean and variance of new optimal portfolio (µPF and σ2
PF ) and their initial

values (µ⋆
PF and σ2

PF
⋆) are given in Equations (8) and (9).

|µPF − µ⋆
PF | = |(h0 + κh1)

⊤(µ+ ξµZ0
+ ξZ1

⊙ µZ1
+ κq)− h⊤

0 (µ+ ξµZ0
+ ξZ1

⊙ µZ1
)|, (8)

and

|σ2
PF − σ2

PF
⋆
| = |(h0 + κh1)

⊤Σ (h0 + κh1)− h⊤
0 Σh0|. (9)

We use (8) and (9) as measures of sensitivity of the portfolio performance and provide upper bounds for
these measures in the following lemma.
Lemma 2.2
Upper bound for change in mean and variance of optimal portfolio are given by

|µPF − µ⋆
PF | ≤

κ ||q||
λmin

[
T (1 +

λmax

λmin
)(2 ||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

||+ κ ||q||) + λmax√
m

]
(10)

and

|σ2
PF − σ2

PF
⋆
| ≤ T κ ||q|| λmax

λ2min

(1 +
λmax

λmin
)
[
T (1 +

λmax

λmin
)
(
κ ||q||+ 2||µ+ ξµZ0

+ ξZ1
⊙ µZ1

||
)
+

2λmax√
m

]
, (11)

respectively.

3. Experimental results

In this section, we use |µPF − µ⋆
PF | and |σ2

PF − σ2
PF

⋆| to study sensitivity of the portfolio performance
for adjusted closing daily stock prices of S&P 500 from Jan 1st, 2010 to March 1st, 2021. Throughout,
we call |µPF − µ⋆

PF | and |σ2
PF − σ2

PF
⋆| the average and sparsity of sensitivity of the portfolio optimizer,

respectively. Our numerical study illustrates that, for a model with jump terms, the dimension of the
reduce space has a significant impact on sensitivity of the portfolio optimizer. That is, for the model with
jump terms, as dimension of the reduce space increases, sparsity of the sensitivity of portfolio performance
significantly increases; however, the sparsity remains similar if we ignore the jump terms.
Example 3.1
For this example we fix the interest rate at r = 0.03 (see [20] and [5]). Since adjusted closing daily price
of stocks are not linearly independent we use principal component analysis (PCA) to obtain the linearly
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Table 2. Results for the actual norms ||h0||, ||h1||, |µPF − µ⋆
PF | and |σ2

PF − σ2
PF

⋆|.

neig
5 10 20 35 40 60

1/λmin 4.2292 · 1002 8.5327 · 1002 1.4398 · 1003 1.9833 · 1003 2.2205 · 1003 2.9196 · 1003

κ 0.0113 · 1000 0.0114 · 1000 0.0116 · 1000 0.0117 · 1000 0.0117 · 1000 0.0117 · 1000

T 0.9433 · 1000 1.4181 · 1000 0.8243 · 1000 7.8111 · 1001 1.5145 · 1000 0.3436 · 1000

Including ||h0|| 0.9646 · 1000 1.9474 · 1000 2.4252 · 1000 2.8372 · 1002 5.9281 · 1000 1.7237 · 1000

jump ||h1|| 9.1161 · 1001 2.5555 · 1002 2.7484 · 1002 5.0088 · 1004 1.1450 · 1003 3.2623 · 1002

terms |µPF − µ⋆
PF | 0.0025 · 1000 0.0058 · 1002 0.0118 · 1000 3.4634 · 1000 0.0758 · 1000 0.0233 · 1000

|σ2
PF − σ2

PF
⋆| 0.0021 · 1000 0.0034 · 1000 0.0076 · 1000 2.7040 · 1002 0.1124 · 1000 0.0075 · 1000

T 0.0030 · 1000 7.6350 · 10−4 4.3814 · 10−4 8.3110 · 10−5 2.1334 · 10−4 9.5415 · 10−5

Excluding ||h0|| 0.5180 · 1000 0.3623 · 1000 0.3553 · 1000 0.1863 · 1000 0.3659 · 1000 0.2484 · 1000

jump ||h1|| 0.2940 · 1000 0.1376 · 1000 0.1461 · 1000 0.0533 · 1000 0.1613 · 1000 0.0906 · 1000

terms |µPF − µ⋆
PF | 0.3014 · 1000 0.2951 · 1000 0.2080 · 1000 0.3031 · 1000 0.2095 · 1000 0.2418 · 1000

|σ2
PF − σ2

PF
⋆| 1.2076 · 10−4 2.6450 · 10−5 1.1614 · 10−5 5.0235 · 10−6 1.1152 · 10−5 8.2979 · 10−6

independent components and denote the the number of PCs by neig . Then, we estimate parameters of
the Merton model for reduced data via PCA using the method of moments. Following Paskaramoorthy
et al. [15], we assume κ = ||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

|| and risk tolerance is assigned to be T = 1
|a1| . In the

next step, we simulate a random sample of size 100 of random vector q with dimension neig , whose
marginals have uniform distribution and ||q|| = 1 . Afterwards, for various value of neig , we calculate the
exact values of ||h0|| , ||h1|| , |µPF − µ⋆

PF | and |σ2
PF − σ2

PF
⋆| given in (5), (8) and (9), respectively (Table

2). Our findings confirm that the exact value of the average (sparsity) of the sensitivity of the portfolio
performance of the multivariate Merton model with jump terms is smaller (larger) than the corresponding
value for the Merton model without jump terms. This finding is consistent with the intuition since the
Merton model with jump terms is more flexible compared to the Merton model without jump terms,
consequently produces less bias and higher variation in estimation.

Minimum, mean, median, mode and maximum values of upper bounds given in (6), (7), (10) and (11)
are shown in Table 3. In Table 4, we exclude the jump terms and calculate the minimum, mean, median,
mode and maximum values of the upper bounds following Paskaramoorthy et al. [15]. Similar to the
results in Table 2, by comparing Tables 3 and 4, we conclude that by adding jump terms, the bounds
of the average (sparsity) of the sensitivity of the portfolio performance of multivariate Merton model
decreases (increases).

To consider the accuracy of the upper bounds, based on neig = 5, 10, 20, 35, we calculate the ratio of
the exact values of ||h0|| , ||h1|| , |µPF − µ⋆

PF | and |σ2
PF − σ2

PF
⋆| given in Table 2 and corresponding mean

values of upper bounds given in Tables 3 and 4. The ratios (Table 5) illustrate that the ratio of the
sparsity of the sensitivity remains the same between the model with or without jump terms; However, the
ratio of the mean values of sensitivity decreases are significantly smaller for the model with jump terms.
In addition, the ratio is highly dependent on neig , for the model with jump terms.

4. Conclusion

In this paper, we investigated the sensitivity of the portfolio performance bounds considered in Best and
Grauer (1991) and Paskaramoorthy (2021). Our numerical results confirm that the ratio of exact value
and the upper bound of the sensitivity of portfolio performance depends on the dimension of the reduced
space. In addition, for the Merton Model with jump terms, the ratio of mean sensitivity decreases as
dimension of reduced space increases, but it stays the same when the model does not include jump terms.
Moreover, when the number of non-zero eigenvalues is small the ratio takes values closer to one. As a
future plan, it will be interesting to investigate how portfolio sensitivity is affected by imposing some
constraints on jump terms.
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Table 3. Results for the upper bounds of ||h0||, ||h1||, |µPF − µ⋆
PF | and |σ2

PF − σ2
PF

⋆| by including jump terms in
model.

neig
5 10 20 35 40 60

min 2.3496 · 1001 3.5357 · 1001 0.0211 · 1003 0.0196 · 1005 0.0386 · 1003 0.0092 · 1003

mean 6.4014 · 1001 3.2395 · 1002 5.4428 · 1002 1.0573 · 1005 2.4249 · 1003 9.3163 · 1002

||h0|| median 5.5269 · 1001 3.4999 · 1002 4.7135 · 1002 1.0646 · 1005 2.3834 · 1003 8.6592 · 1002

mod 2.3496 · 1001 3.5357 · 1001 2.1112 · 1001 1.9599 · 1003 3.8608 · 1001 9.2309 · 1000

max 1.2202 · 1002 7.3402 · 1002 1.2251 · 1003 2.2006 · 1005 5.3596 · 1003 2.1156 · 1003

min 0.2028 · 1004 0.3049 · 1004 0.0177 · 1005 0.0168 · 1007 0.0326 · 1005 0.0074 · 1005

mean 5.5797 · 1003 2.8240 · 1004 4.6685 · 1004 9.0617 · 1006 2.0712 · 1005 7.8834 · 1004

||h1|| median 4.8100 · 1003 3.0502 · 1004 4.0394 · 1004 9.1246 · 1006 2.0354 · 1005 7.3220 · 1004

mod 2.0280 · 1003 3.0490 · 1003 1.7722 · 1003 1.6794 · 1005 3.2561 · 1003 7.3870 · 1002

max 1.0671 · 1004 6.4073 · 1004 1.0522 · 1005 1.8861 · 1007 4.5800 · 1005 1.7931 · 1005

min 0.7850 · 1000 1.1982 · 1000 0.7220 · 1000 0.0686 · 1003 1.3408 · 1000 0.3124 · 1000

mean 2.1525 · 1000 1.1058 · 1001 1.8881 · 1001 3.7004 · 1003 8.4922 · 1001 3.2707 · 1001

|µPF − µ⋆
PF | median 1.8566 · 1000 1.1944 · 1001 1.6341 · 1001 3.7261 · 1003 8.3462 · 1001 3.0385 · 1001

mod 0.7850 · 1000 1.1982 · 1000 0.7220 · 1000 6.8585 · 1001 1.3408 · 1000 0.3124 · 1000

max 4.1121 · 1000 2.5077 · 1001 4.2534 · 1001 7.7020 · 1003 1.8776 · 1002 7.4353 · 1001

min 0.0977 · 1003 0.0224 · 1004 0.0008 · 1005 0.0007 · 1009 0.0003 · 1006 0.0001 · 1005

mean 9.9628 · 1002 2.8815 · 1004 8.1268 · 1004 2.9339 · 1009 1.5350 · 1006 2.2778 · 1005

|σ2
PF − σ2

PF
⋆| median 6.0313 · 1002 2.2220 · 1004 4.0268 · 1004 2.0708 · 1009 1.0350 · 1006 1.3575 · 1005

mod 9.7695 · 1001 2.2360 · 1002 7.8591 · 1001 7.0135 · 1005 2.6709 · 1002 1.4341 · 1001

max 2.6812 · 1003 9.7943 · 1004 2.7281 · 1005 8.8448 · 1009 5.2379 · 1006 8.1290 · 1005

Table 4. Results for the upper bounds of ||h0||, ||h1||, |µPF − µ⋆
PF | and |σ2

PF − σ2
PF

⋆| by excluding jump terms
following Paskaramoorthy et al. [15].

neig
5 10 20 35 40 60

min 4.6466 · 1000 2.0066 · 1000 1.3489 · 1000 0.8486 · 1000 1.0784 · 1000 0.8382 · 1000

mean 1.2153 · 1001 1.5058 · 1001 2.3661 · 1001 1.9857 · 1001 3.7675 · 1001 3.5967 · 1001

||h0|| median 1.0562 · 1001 1.6347 · 1001 2.0883 · 1001 2.0318 · 1001 3.7417 · 1001 3.4042 · 1001

mod 4.6466 · 1000 2.0066 · 1000 1.3489 · 1000 0.8486 · 1000 1.0784 · 1000 0.8382 · 1000

max 2.2841 · 1001 3.3178 · 1001 5.1705 · 1001 3.9348 · 1001 8.0802 · 1001 7.8326 · 1001

min 6.5401 · 1000 1.6415 · 1000 0.9420 · 1000 0.1787 · 1000 0.4587 · 1000 0.2051 · 1000

mean 1.7994 · 1001 1.5204 · 1001 2.4815 · 1001 9.6417 · 1000 2.9176 · 1001 2.1893 · 1001

||h1|| median 1.5511 · 1001 1.6422 · 1001 2.1471 · 1001 9.7086 · 1000 2.8672 · 1001 2.0334 · 1001

mod 6.5401 · 1000 1.6415 · 1000 0.9420 · 1000 0.1787 · 1000 0.4587 · 1000 0.2051 · 1000

max 3.4412 · 1001 3.4496 · 1001 5.5928 · 1001 2.0068 · 1001 6.4517 · 1001 4.9797 · 1001

min 8.0348 · 1000 4.3537 · 1000 2.4870 · 1000 2.3877 · 1000 2.4429 · 1000 1.9634 · 1000

mean 2.1711 · 1001 3.7200 · 1001 5.5477 · 1001 8.5864 · 1001 1.1993 · 1002 1.3504 · 1002

|µPF − µ⋆
PF | median 1.8770 · 1001 4.0253 · 1001 4.8349 · 1001 8.6995 · 1001 1.1831 · 1002 1.2631 · 1002

mod 8.0348 · 1000 4.3537 · 1000 2.4870 · 1000 2.3877 · 1000 2.4429 · 1000 1.9634 · 1000

max 4.1270 · 1001 8.3527 · 1001 1.2366 · 1002 1.7543 · 1002 2.6233 · 1002 3.0231 · 1002

min 3.3371 · 1000 0.4840 · 1000 0.1002 · 1000 0.0359 · 1000 0.0288 · 1000 0.0152 · 1000

mean 3.2916 · 1001 5.3563 · 1001 7.0839 · 1001 7.6638 · 1001 7.8718 · 1001 8.9955 · 1001

|σ2
PF − σ2

PF
⋆| median 2.0078 · 1001 4.1841 · 1001 3.6212 · 1001 5.5583 · 1001 5.4721 · 1001 5.5945 · 1001

mod 3.3371 · 1000 0.4840 · 1000 0.1002 · 1000 0.0359 · 1000 0.0288 · 1000 0.0152 · 1000

max 8.8173 · 1001 1.8030 · 1002 2.3443 · 1002 226.6880 2.6232 · 1002 3.1193 · 1002

Table 5. Results for ratios between the actual norms ||h0||, ||h1||, |µPF − µ⋆
PF | and |σ2

PF − σ2
PF

⋆| and
corresponding upper bounds.

||h0|| ||h1|| |µPF − µ⋆
PF | |σ2

PF − σ2
PF

⋆|
neig = 5 Including jump terms 0.0151 · 1000 0.0163 · 1000 0.0012 · 1000 0.2108 · 10−5

Excluding jump terms 0.0426 · 1000 0.0163 · 1000 0.0139 · 1000 0.3669 · 10−5

neig = 10 Including jump terms 0.0060 · 1000 0.0090 · 1000 5.2453 · 10−4 1.1799 · 10−7

Excluding jump terms 0.0241 · 1000 0.0091 · 1000 0.0073 · 1000 0.4938 · 10−6

neig = 20 Including jump terms 0.0045 · 1000 0.0059 · 1000 6.2497 · 10−4 0.0935 · 10−6

Excluding jump terms 0.0150 · 1000 0.0059 · 1000 0.0037 · 1000 1.6395 · 10−7

neig = 35 Including jump terms 0.0027 · 1000 0.0055 · 1000 9.3595 · 10−4 0.0922 · 10−6

Excluding jump terms 0.0094 · 1000 0.0055 · 1000 0.0035 · 1000 0.0655 · 10−6
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A. Appendix

To obtain the optimisation problem (4) which is a MV portfolio optimisation problem based on the
multivariate Merton model give in (3), we need to obtain the mean and covariance matrix of the model.
Following, Wang [19] the solution to the SDE (3) is given by

Pj(t) = e
(r+mj− 1

2σ
2
j−ξ hj,0−ξj hj,1) t+σj Bj(t)+

N(t)∑
k=1

Zk,j,0+
Nj(t)∑
k=1

Zk,j,1

. (12)

Therefore, the log return of the j-th (j = 1, . . . ,m) risky asset is given by

Yj(t) =
(
r +mj − ξ hj,0 − ξj hj,1 −

1

2
σ2
j

)
+ σj

(
Bj(t)−Bj(t− 1)

)
+

N(t)∑
k=N(t−1)+1

Zk,j,0 +

Nj(t)∑
k=Nj(t−1)+1

Zk,j,1 . (13)

Lemma A.1
The expectation of log return of the j-th asset and (i, j)-th (i, j = 1, 2, . . . ,m) element of matrix Σ in
Equation (13) are given by

E
(
Yj(t)

)
= (r +mj − ξ hj,0 − ξj hj,1 −

1

2
σ2
j ) + µZj,0 ξ + µZj,1 ξj , (14)

and

Cov
(
Yi(t), Yj(t)

)
= σi σj ρi,j + ξ µZi,0

µZj,0
+ (ξ σ2

Zi,0
+ ξi σ

2
Zi,1

+ µ2
Zi,1

ξi)I{i=j} , (15)

respectively.

Proof
First we consider Equation (14). By Equation (13),

E
(
Yj(t)

)
= (r +mj − ξ hj,0 − ξj hj,1 −

1

2
σ2
j ) + σj E

(
Bj(t)−Bj(t− 1)

)
+E

( N(t)∑
k=N(t−1)+1

Zk,j,0

)
+ E

( Nj(t)∑
k=Nj(t−1)+1

Zk,j,1

)
. (16)

Since Brownian motion has stationary increments, E
(
Bj(t)−Bj(t− 1)

)
= 0. The last two expectation

terms in (16) can be calculated as follows.

E
( N(t)∑
k=N(t−1)+1

Zk,j,0

)
= µZj,0

ξ , (17)
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and

E
( Nj(t)∑
k=Nj(t−1)+1

Zk,j,1

)
= µZj,1

ξj . (18)

By substituting the Equations (17) and (18) in (16) the expectation of Yj(t) is obtained. Of course, for
simplicity, we use the vector form for the expectation on Equation (14). Therefore,

E
(
Y(t)

)
= µ+ ξ µZ0 + ξZ1 ⊙ µZ1 .

Now we calculate (i, j)-th (i, j = 1, 2, . . . ,m) element of matrix Σ. From Equation (13),

Cov
(
Yi(t), Yj(t)

)
= Cov

[(
(r +mi − ξ hi,0 − ξi hi,1 −

1

2
σ2
i ) + σi (Bi(t)−Bi(t− 1))

+

N(t)∑
k=N(t−1)+1

Zk,i,0 +

Ni(t)∑
k=Ni(t−1)+1

Zk,i,1

)
,
(
(r +mj − ξ hj,0 − ξj hj,1 −

1

2
σ2
j ) + σj (Bj(t)−Bj(t− 1))

+

N(t)∑
k=N(t−1)+1

Zk,j,0 +

Nj(t)∑
k=Nj(t−1)+1

Zk,j,1

)]
. (19)

First we calculate the covariance related to Brownian motion.

Cov
[
σi

(
Bi(t)−Bi(t− 1)

)
, σj

(
Bj(t)−Bj(t− 1)

)]
= σi σj

{
Cov

(
Bi(t), Bj(t)

)
−Cov

(
Bi(t), Bj(t− 1)

)
− Cov

(
Bi(t− 1), Bj(t)

)
+Cov

(
Bi(t− 1), Bj(t− 1)

)}
,

and from Cov(Bi(t), Bj(l)) = ρi,j min{t, l} for t, l ≥ 0, i, j = 1, 2, . . . ,m it turns out

Cov
[
σi

(
Bi(t)−Bi(t− 1)

)
, σj

(
Bj(t)−Bj(t− 1)

)]
= σi σj ρi,j . (20)

Therefore, the covariance of the common jumps reduces to

Cov
[( N(t)∑

k=N(t−1)+1

Zk,i,0

)
,
( N(t)∑
k=N(t−1)+1

Zk,j,0

)]

= E
{
Cov

[( N(t)∑
k1=N(t−1)+1

Zk1,i,0

)
,
( N(t)∑
k2=N(t−1)+1

Zk2,j,0

)
| N(t− 1), N(t)

]}

+Cov
{
E
[ N(t)∑
k1=N(t−1)+1

Zk1,i,0 | N(t− 1), N(t)
]
,E

[ N(t)∑
k2=N(t−1)+1

Zk2,j,0 | N(t− 1), N(t)
]}

= E
{ N(t)∑

k1=N(t−1)+1

N(t)∑
k2=N(t−1)+1

Cov
(
Zk1,i,0, Zk2,j,0

)}

+Cov
[( N(t)∑

k1=N(t−1)+1

µZi,0

)
,
( N(t)∑
k2=N(t−1)+1

µZj,0

)]
.
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Since Zk,i,0 , i = 1, ...,m are independent for fixed k = 1, . . . , N(t), Cov
(
Zk1,i,0, Zk2,j,0

)
= 0 , which implies

Cov
[( N(t)∑

k=N(t−1)+1

Zk,i,0

)
,
( N(t)∑
k=N(t−1)+1

Zk,j,0

)]

= E
{ N(t)∑

k1=N(t−1)+1

N(t)∑
k2=N(t−1)+1

Cov
(
Zk1,i,0, Zk2,i,0

)}
I{i=j}

+µZi,0 µZj,0 Cov
[ N(t)∑
k1=N(t−1)+1

1,

N(t)∑
k2=N(t−1)+1

1
]
.

Moreover, Zk,i,0 , k = 1, . . . , N(t) are iid for fixed i = 1, . . . ,m, thus

Cov
[( N(t)∑

k=N(t−1)+1

Zk,i,0

)
,
( N(t)∑
k=N(t−1)+1

Zk,j,0

)]
= E

{ N(t)∑
k=N(t−1)+1

Cov
(
Z1,i,0, Z1,i,0

)}
I{i=j}

+µZi,0
µZj,0

Cov
[
N(t)−N(t− 1), N(t)−N(t− 1)

]
= Cov

(
Z1,i,0, Z1,i,0

)
E
(
N(t)−N(t− 1)

)
I{i=j} + µZi,0

µZj,0
V ar

(
N(t)−N(t− 1)

)
.

Since Poisson process has stationary increments,

Cov
[( N(t)∑

k=N(t−1)+1

Zk,i,0

)
,
( N(t)∑
k=N(t−1)+1

Zk,j,0

)]
= σ2

Zi,0
ξI{i=j} + µZi,0 µZj,0 ξ . (21)

Finally, we consider covariance of uncommon jumps.

Cov
[( Ni(t)∑

k1=Ni(t−1)+1

Zk1,i,1

)
,
( Nj(t)∑
k2=Nj(t−1)+1

Zk2,j,1

)]

= E
{
Cov

[( Ni(t)∑
k1=Ni(t−1)+1

Zk1,i,1

)
,
( Nj(t)∑
k2=Nj(t−1)+1

Zk2,j,1

)
| Ni(t− 1), Ni(t), Nj(t− 1), Nj(t)

]}
+Cov

{
E
[ Ni(t)∑
k1=Ni(t−1)+1

Zk1,i,1 | Ni(t− 1), Ni(t), Nj(t− 1), Nj(t)
]

,E
[ Nj(t)∑
k2=Nj(t−1)+1

Zk2,j,1 | Ni(t− 1), Ni(t), Nj(t− 1), Nj(t)
]}

= E
{ Ni(t)∑

k1=Ni(t−1)+1

Nj(t)∑
k2=Nj(t−1)+1

Cov
(
Zk1,i,1, Zk2,j,1

)}

+Cov
[ Ni(t)∑
k1=Ni(t−1)+1

µZi,1 ,

Nj(t)∑
k2=Nj(t−1)+1

µZj,1

]
.
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Since Zk,i,1 , k = 1, . . . , Ni(t) are iid for fixed i = 1, . . . ,m,

Cov
[( Ni(t)∑

k1=Ni(t−1)+1

Zk1,i,1

)
,
( Nj(t)∑
k2=Nj(t−1)+1

Zk2,j,1

)]

= E
{ Ni(t)∑

k=Ni(t−1)+1

Cov
(
Zk,i,1, Zk,j,1

)}

+Cov
[ Ni(t)∑
k1=Ni(t−1)+1

µZi,1 ,

Nj(t)∑
k2=Nj(t−1)+1

µZj,1

]
.

But Zk,i,1 , i = 1, ...,m are independent for fixed k = 1, . . . , Ni(t). Thus, for i ̸= j, Cov(Zk,i,1, Zk,j,1) = 0 ,
which implies

Cov
[( Ni(t)∑

k1=Ni(t−1)+1

Zk1,i,1

)
,
( Nj(t)∑
k2=Nj(t−1)+1

Zk2,j,1

)]

= E
{ Ni(t)∑

k=Ni(t−1)+1

Cov
(
Zk,i,1, Zk,i,1

)}
I{i=j}

+Cov
[ Ni(t)∑
k1=Ni(t−1)+1

µZi,1
,

Nj(t)∑
k2=Nj(t−1)+1

µZj,1

]
,

and

Cov
[( Ni(t)∑

k1=Ni(t−1)+1

Zk1,i,1

)
,
( Nj(t)∑
k2=Nj(t−1)+1

Zk2,j,1

)]

= E
{ Ni(t)∑

k=Ni(t−1)+1

Cov
(
Z1,i,1, Z1,i,1

)}
I{i=j}

+µZi,1
µZj,1

Cov
[
Ni(t)−Ni(t− 1), Nj(t)−Nj(t− 1)

]
,

thus

Cov
[( Ni(t)∑

k1=Ni(t−1)+1

Zk1,i,1

)
,
( Nj(t)∑
k2=Nj(t−1)+1

Zk2,j,1

)]
= Cov

(
Z1,i,1, Z1,i,1

)
E
{
Ni(t)−Ni(t− 1)

}
I{i=j}

+µZi,1
µZj,1

Cov
[
(Ni(t)−Ni(t− 1)), (Nj(t)−Nj(t− 1))

]
.
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Since Nj(t) , j = 1, 2, . . . ,m are independent Poisson processes,

Cov
[( Ni(t)∑

k1=Ni(t−1)+1

Zk1,i,1

)
,
( Nj(t)∑
k2=Nj(t−1)+1

Zk2,j,1

)]
= Cov

(
Z1,i,1, Z1,i,1

)
E
{
(Ni(t)−Ni(t− 1))

}
I{i=j}

+µZi,1
µZi,1

Cov
[
(Ni(t)−Ni(t− 1)), (Ni(t)−Ni(t− 1))

]
I{i=j}

= σ2
Zi,1

E
[
Ni(1)

]
I{i=j} + µZi,1

µZi,1
V ar

[
Ni(t)−Ni(t− 1)

]
I{i=j}

=
(
σ2
Zi,1

ξi + µ2
Zi,1

ξi
)
I{i=j} . (22)

By plug in (20), (21) and (22) into (19) the result is obtained.

B. Appendix

To obtain the solution to the optimisation problem (4) we use Lagrange method as follows.

L(x, θ) = T
[
(µ+ ξ µZ0 + ξZ1 ⊙ µZ1) + κq

]⊤
x− 1

2
(x⊤ Σx) + θ (1− 1⊤ x) .

The gradient of L(x, θ) is given in the following.

∂L(x, θ)

∂x
= T

[
(µ+ ξ µZ0 + ξZ1 ⊙ µZ1) + κq

]
−Σx− θ 1 . (23)

By simplifying the equation ∂L(x,θ)
∂x = 0 , we reach out to the following equation.

T Σ−1
[
(µ+ ξ µZ0

+ ξZ1
⊙ µZ1

) + κq
]
− θ Σ−1 1 = x ,

given 1⊤ x = 1 . To solve the equation, we multiply both sides by 1⊤ , to obtain

T 1⊤Σ−1
[
(µ+ ξ µZ0 + ξZ1 ⊙ µZ1) + κq

]
− θ 1⊤Σ−1 1 = 1 .

Therefore,

θ = T
a1 + κ a2

a3
− 1

a3
, (24)

where

a1 = 1⊤Σ−1
[
µ+ ξ µZ0

+ ξZ1
⊙ µZ1

]
a2 = 1⊤Σ−1 q

a3 = 1⊤Σ−1 1 .

By plug in (24) in the Equation (23), we conclude that

T
[
(µ+ ξ µZ0

+ ξZ1
⊙ µZ1

) + κq
]
−Σx−

[
T

a1 + κ a2
a3

− 1

a3

]
1 = 0 ,

therefore

x = T Σ−1
[
µ+ ξ µZ0

+ ξZ1
⊙ µZ1

]
+ T κΣ−1 q− T

a1
a3

Σ−1 1− T κ
a2
a3

Σ−1 1+
1

a3
Σ−1 1 .

Therefore, (5) follows.
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C. Appendix

Proof of Lemma 2.1:

Proof
By using triangular inequality and (5),

||h0|| ≤ 1

|a3|
||Σ−1 1||+ T

{
||Σ−1

(
µ+ ξ µZ0 + ξZ1 ⊙ µZ1

)
||+

∣∣a1
a3

∣∣ · ||Σ−1 1||
}
. (25)

Suppose λj and ej (j = 1, 2, . . . ,m) are eigenvalues and normalized eigenvectors of matrix Σ , respectively.
According to the definition of h0, h1, a1, a2 and a3 in Equation (5), first we find the upper bound for norms
of Σ−1 1, Σ−1

[
µ+ ξ µZ0

+ ξZ1
⊙ µZ1

]
, a1, a2 and a−1

3 . By spectral decomposition, |Σ−1| = |
m∑
i=1

1
λi
ei ei

⊤| .

Therefore, we have

||Σ−1 1|| = |
( m∑

i=1

1

λi
ei ei

⊤)1| ≤ 1

λmin
||I 1|| = 1

λmin
||1|| = 1

λmin

√
m,

||Σ−1
[
µ+ ξ µZ0 + ξZ1 ⊙ µZ1

]
|| ≤ 1

λmin
||µ+ ξ µZ0 + ξZ1 ⊙ µZ1 || ,

|a1| ≤
∣∣1⊤Σ−1| · ||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

|| ≤
√
m

λmin
||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

|| ,

|a2| = ||1⊤Σ−1 q|| ≤ ||1⊤Σ−1|| · ||q|| ≤ 1

λmin
||1|| · ||q|| =

√
m

λmin
||q|| , (26)

where the last two inequalities are follows by Cauchy-Schwartz inequality. We can obtain a lower bound
for a3 as follows.

|a3| = |1⊤Σ−1 1| = |1⊤( m∑
i=1

1

λi
ei ei

⊤)1| ≥ 1

λmax
|1⊤ I 1| = m

λmax
,

or equivalent,

|a3|−1 ≤ λmax

m
. (27)

By plug in the obtained upper bounds in (26) and (27) into (25),

||h0|| ≤
λmax√
mλmin

+ T
1

λmin

(
1 +

λmax

λmin

)
||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

|| .

Similarly for h1 ,

||h1|| ≤ T
[
||Σ−1 q||+

∣∣a2
a3

∣∣ · ||Σ−1 1||
]
≤ T

[ 1

λmin
||q||+

√
m

λmin
||q|| λmax

m

√
m

λmin

]
A similar argument can be used to obtain an upper bound for h1 , to complete the proof of the results.

Proof of Lemma 2.2:

Proof
By using triangular inequality and Equation (8), we have

|µPF − µ⋆
PF | ≤ κ ||h0|| · ||q||+ κ ||h1||

[
||µ+ ξ µZ0 + ξZ1 ⊙ µZ1 ||+ κ ||q||

]
.
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By using (26) and (27),

|µPF − µ⋆
PF | ≤ κ ||q||

[ λmax√
mλmin

+ T
1

λmin
||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

||
(
1 +

λmax

λmin

)]
+κT

(
1 +

λmax

λmin

) ||q||
λmin

(
||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

||+ κ ||q||
)
,

so

|µPF − µ⋆
PF | ≤ κ

||q||
λmin

[λmax√
m

+ T
(
1 +

λmax

λmin

)(
2 ||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

||+ κ ||q||
)]

.

But for calculating upper bound for change in variance, we use triangular inequality and Equation (9) to
obtain ∣∣σ2

PF − σ2
PF

⋆∣∣ ≤ 2κ
∣∣h⊤

0 Σh1

∣∣+ κ2
∣∣h⊤

1 Σh1

∣∣ ,
from spectral decomposition |Σ| = |

m∑
i=1

λi ei
⊤ei| ≤ λmax |I| , which result in

∣∣σ2
PF − σ2

PF
⋆∣∣ ≤ 2κ ||h⊤

0 Σ|| · ||h1||+ κ2 ||h⊤
1 Σ|| · ||h1||

≤ 2κλmax ||h0|| · ||h1||+ κ2 λmax ||h1||2

= κλmax ||h1||
[
2 ||h0||+ κ ||h1||

]
. (28)

By plug in (26) and (27) into (28),

|σ2
PF − σ2

PF
⋆| ≤ κλmax T

1

λmin

(
1 +

λmax

λmin

)
||q||

×
[
2

λmax√
mλmin

+ 2T
1

λmin

(
1 +

λmax

λmin

)
||µ+ ξ µZ0 + ξZ1 ⊙ µZ1 ||

+κT
1

λmin

(
1 +

λmax

λmin

)
||q||

]
≤ T κλmax

(
1 +

λmax

λmin

) ||q||
λ2
min

[2λmax√
m

+ T
(
1 +

λmax

λmin

)
×
(
2 ||µ+ ξ µZ0

+ ξZ1
⊙ µZ1

||+ κ ||q||
)]

.

which completes the proof.
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