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Abstract Box-Cox and Yeo-Johnson transformation models were utilized in this paper to use density function to improve
multivariate time series forecasting. In this article, the transformations are used to improve the forecastability of the
nonparametric multivariate time series. The K-Nearest Neighbor function is used in our model, with automatic bandwidth
selection using a cross-validation approach and semi-metrics used to measure the proximity of functional data. Then, to
decorrelate multivariate response variables, we use principal component analysis. The methodology was applied to two time
series data examples with multiple responses. The first example includes three time series datasets of the monthly average of
Humidity (H), Rainfall (R) and Temperature (T). The simulation studies are provided in the second example. Mean square
errors of predicted values were calculated to show forecast efficiency. The results have proved that applying multivariate
nonparametric time series transformed stationary datasets using the Yeo-Johnson model is more efficient than applying the
univariate nonparametric analysis to each response independently.
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1. Introduction

There are many nonlinear time series structures, so nonparametric regression methods to estimate time series are
varied. The Kernel method provides excellent results in the detection of nonlinear dependencies in time series and
prediction in smooth regression [1, 2]. , It has been demonstrated that the functional estimation for kernel regression
has asymptotic normality under reliance. Simultaneously, Antoniadis [3]. suggested a functional wavelet kernel
technique for time series forecasting at the same time. Perez G, Vieu use a semi-functional partial linear model to
forecast nonparametric time series [4]. In [5, 6] , the time depending on observations in some datasets is referred
to the estimates that based on the principal component technique may be incorrect [7]. As a result, the authors see
that this issue may be worsened in certain time series data, particularly those with seasonal variations. However, in
actual applications of time series, it has become clear that they are rarely stable, with seasonal fluctuations, trend,
and reliance on external influences becoming the norm rather than the exception [8]. These problems increase
and become more complicated in multivariate time series. Consequently, Traditional parametric and nonparametric
analysis of complex time series now includes data transformation. The authors of present article used the Yeo-
Johnson transformations to improve the nonparametric estimation of functional multivariate time series. Our
work aims to create a new model that will add Yeo-Johnson transformations in multivariate time series with
functional modeling benefits. This article is organized as follows: section two includes the theoretical aspects of
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the Kernel estimation of Multivariate response. section three include some theoretical aspect of the use of Box-Cox
transformation BCT and Yeo-Johnson transformation YJT in univariate response. section four includes Asymptotic
properties of the functional covariates and multivariate response. while section five include the application part of
the article.

2. Kernel estimation of Multivariate response

In Multivariate instances, n random vectors Xt, , X2, . . . , Xn with values in Rp are seen. In this case, a multivariate
kernel can benefit from kernel local weighting. K⋆ is a function from Rp, into R and can be considered
to be adequate.The first method is to define K⋆as a product of p real kernel functions.Kt, ,K2, . . . ,Kp∀u =
(ut, , u2, . . . , up)

t ∈ Rp,K⋆(u) = Kt(u1)×K2(u2)× . . .×Kp(up) . The second way, according to Hardle and
Muller [9], is a real kernel function H with a norm (denoted by ∥.∥ in Rp. as follows: ∀u ∈Rp K⋆(u) = K(∥u∥).It
is worth noting that if ∥.∥ is the supermom norm and if K1 = K2, . . .Kp = 1[−1,1], both methods coincide taking
1[0,1]. Because the real kernel K is always a positive amount, the ∥u∥) real kernel K should also have positive
support (i.e.,{v ∈ R such that K(u) > 0} ⊂ R+ ).When x is a fixed vector of Rp the multivariate kernel local
weighting consists in translating the n random vectors xt, , x2, . . . , xn into the n variables ∆t,∆2, . . . ,∆n:

∆i =
1

hp
K⋆(

x− xi
h

) (1)

Where ∆i are weighted local transformations of the variables xi, since ∆i = 0 and xi is not in some neighborhood
of x, the normalization 1

hp is proportional to the volume of the set on which the x,is are used into account. A naive
functional application of multivariate kernel local weighting ideas would be to convert the n functional random
variables Xt, , X2, . . . , Xn into the n amounts,

1

v(h)
K(

d(x, xi
h

) (2)

Where denotes a real (asymmetrical) kernel and d denotes a semi-metric on E. v(h) V (h) in this expression is
the volume of B(x, h) = {x́ ∈ Ed(x, x́)}, where (h) is a positive, real bandwidth (depending on n) and K(.) is a
symmetrical kernel. The neighbors of the optimal bandwidth, Kopt,of the KNN estimator are defined by

hkopt = argmin
h
GCV (K)

where,

GCV =

n∑
i=1

(yi −m−1
KNN (xi))

2 (3)

With,

m−i
KNN (x) =

∑n
j=1,j ̸=i yiK (dq(xj ,x)/hk(x))∑n
j=1,j ̸=iK (dq(xj ,x)/hk(x))

. (4)

The user must resolve the semi-metric (d (.,.)) and the kernel function K(.) [10], selecting the hkopt(x) on x because
utilizing the same number of neighbors at every curve, but kopt is the same for any curve. According to [10], semi-
metrics best method to compute functional data. The semi-metric built on FPCA is defined as,

dFPCA
q (Xi, χj) =

√√√√ q∑
k=1

(∫
[Xi(t)− χj(t)]νk(t)dt

)2

., (5)
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3. Box-Cox and Yeo-Johnson Transformations of Univariate Response (BCT and YJT)

To achieve normality of random errors, transformation is used Box and Cox When the series is not stationary
[11, 12], taking differences for the data to make the series stationary, and then the series contains positive and
negative values. So adopting the Yeo and Johnson method summarized the Box-Cox transformation to incorporate
negative and positive values in collections data [13]. They utilized a perfection condition to connect positive and
negative data changes, resulting in a one-parameter transformation family [14]. The YJT for Z ∈ R is provided by,
(where Z response of). Consider the univariate time series {Zt ∈ R}. By dividing the time series sample again into
(p− 1) size (n = N − s− p+ 1) statistics samples.

ψ(λ) =


((z + 1)λ − 1) λ ̸= 0 and z ≤ 0

ln (z + 1) λ = 0 and z ≤ 0

−((−z + 1)2−λ − 1)/(2− λ) λ ̸= 2 and z < 0

ln (−z + 1) λ = 2 and z < 0

(6)

Besides, the BCT may not result in an improvement in forecasting execution in some realistic examples of time
series [15, 16]. According to CW, Lee JC state [17], it does not reliably create prevalent forecasts. Accordingly, the
relationship can depict a standard regression model [18]:

Y = m(X) + ϵ (7)

Where m(X) denotes smooth functional data and ϵ is white noise a sequence consisting of independent identically
distributed functions with E[ε/X] = 0. A kernel estimator is a function that is evaluated at a given function m(X)
by,

m̂(X) =

∑n
i=1 YiK(h−1 (d(X,Xi))∑n
i=1K(h−1 (d(X,Xi))

. (8)

Where Xi= (Z(i−p+1), . . . , Zi), Yi = Z(i+s), i = p, . . . , N − s, N = nτ for some n ∈ N and some τ > 0 The
application approach incorporates estimating the smooth functional datam(X) in the regression Eq (7). as indicated
by the kernel estimator Eq. (8) after changing for each curve in the time series. The Yeo-Johnson Transformations
method was used on the stationary time series, whereas the Box-Cox Transformations method was used on the
actual time series. As a result, the expression redefined the measurable sample of curves.

ψλ(Xi) = ψλ(Z(t)), (i− 1)τ < t ≤ iτ (9)

Also, the response expression by the,
ψλ(Yi) = ψλ(Z(iτ + s)) (10)

where ψλ denoted a data transformation by the power λ , i=1, . . . , n-1. The choice principle acquired for picking
the ideal estimate of power λ for each change model is that which corresponds to the most minimum assessments
estimates of the mean squares errors of the forecasting the last curve of functional variable as represented by
Eq. MSE(Xn)=(1/s)

∑s
j=1 (Ẑj − Zj)

2, where, Zj are the j-th real values and Ẑjdenotes the forecast value
in the last curve. Ẑj values are calculated from the inversions of Box-Cox Transformations and Yeo-Johnson
Transformations, or from the re-transformation of the modified data metric to the original metric. In univariate, the
application algorithm of the Box-Cox Transformations and Yeo-Johnson Transformations models, as well as the
nonparametric estimate of the converted functional time series dataset, were the following:

i . Fix τ to define the expressions Eq .(9) and Eq. (10).
ii . To create stationary time series, subtract the seasonality patterns using the differences.

iii . take λ ∈ Λ , where Λ ={-3,3}.
iv . For each λ ∈ Λ, The original time series Z(t)is transformed using Box-Cox Transformations. Yeo-Johnson

Transformations is used to convert the stationary series dataset of k differences ∆k Z(t) to provide the
functional matrices with two explanations ψλ(X) =[ψλ(Z)]n×τ and ψλ(X) = [ψλ(∆

kZ)]n×τ , for additional
about the grids fille putting together in the R program [19, 20].
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Eq.(7) is extended in our regression model below.

ψλ(Yt)) = m(ψλ(Xt)) + ϵ (11)

i=1,. . . , T, Where ψλ(Yt) = (ψλ(Yt,1),. . .,(ψλ(Yt,d))
T ∈ ℜd,m(ψλ(Xt)) = m1(ψλ(Xt,1),. . .,md(ψλ(Xt,d))

T the
explanatory variable is functional (that is,ψλ(Xt) it accepts values in a potentially infinite-dimensional space).
For the kernel approaches suggested in this paper, it is often preferable to ignore the correlation structure entirely
the ostensible “working independence estimator”, e.g [21]. Adapting a kernel-based strategy described by [18]
for estimating m(X) in the time series regression model for multivariate explanatory variables x to a functional
situation. Xiao et al. demonstrated that their method is more efficient than the traditional local polynomial method
[18]. Because the regression function is nonlinear, the primary idea is to alter the original data. This transformation
is dependent on the function m(·). According to the kernel estimator listed below,

m̂(ψλ(X)) =

∑n
i=1 YiK(h−1 (d(ψλ(X), ψλ(Xi)))∑n
i=1K(h−1 (d(ψλ(X), ψλ(Xi)))

. (12)

The best value λ∗ the power λ is the one that minimizes the MSE(Xn) of the last functional variable [22, 23]. Our
target model below, based on the four-step algorithm mentioned before, is to expand Eq.(12) and convert it into
multivariate Case.

m̂(ψ∗
λ(X)) =

∑n
i=1 YiK(h−1 (d(ψ∗

λ(X), ψ∗
λ(Xi)))∑n

i=1K(h−1
(
d(ψ∗

λ(X), ψ∗
λ(Xi))

) . (13)

4. Asymptotic properties of the functional covariates and multivariate response

Suppose that there is a sample {(ψ∗
λ(X1), ψ

∗
λ(Y1)),. . .,(ψ

∗
λ(XT ), ψ

∗
λ(YT ))} where (ψ∗

λ(Yt) is a random variable
taking its values in a semi-metric space (E, d) of infinite dimension for each t ∈ {1,. . .,T} and (ψ∗

λ(Yt) ∈ ℜd, , is
the response from the nonparametric regression Eq. (11). Let us now discuss in detail the theoretical framework
that allows us to prove the asymptotic results in our research. The error process {ϵt} is, as expected independent
of the process {ψ∗

λ(Xt)} and E[ϵt | χ =ψ∗
λ(Xt)] = 0. Considering that the processes of (ψ∗

λ(Xt), ψ
∗
λ(Yt)) are α -

the most generic example of weakly dependent variables. Define 𭟋b
a be as the σ-algebra of events created by the

random variables {(ψ∗
λ(Xt), ψ

∗
λ(Yt))}bt=a and set

sup
A∈𭟋0

−∞,B∈𭟋∞
k

|pr (A ∩B)− pr (A) pr(B)| = α(k) −−−−→
k→∞

0 (14)

Let | · | denote the L1 -norm when applied to a vector; |y| =
∑d

j=1 |yj | , y = (y1, · · · , yd)T when applied to a
matrix; and the normal matrix norm when applied to a matrix. Our assumptions are as follows: Let x be a given
point in f , and denote by B(x, h) the closed ball of centre x and radius h, namely:

B(x, h) = {x′ ∈ f : d(x, x′) ⩽ h}.

The model requires that the probability of X is such that there exists a non-decreasing function ϕx such that:

(H1) ∃(C1, C2),∀x ∈ f ,∀ε > 0,

0 < C1ϕx(ε) ⩽ P (X ∈ B(x, ε)) ⩽ C2ϕx(ε) <∞.

And the joint distribution of (X , Y ) needs to satisfy:
(H2) ∃C3,∀r > 1, E(∥Y ∥r|X ) < C3r! <∞.
(H3) ∃C4,∃b > 0,∃γ > 0,∀x, x′ ∈ f ,

∥r(x)− r(x′)∥ ⩽ C4d
b(x, x′).

In addition, we also need the following technical conditions on the kernel function and the bandwidth.
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(H4) The kernel function has to be such that:

(i) K is a bounded and Lipschitz continuous function with support [0, 1), and if K(1) = 0 it has to fulfill,
together with ϕx(·), the conditions:

(ii) ∃(C5, C6) > 0, such that −∞ < C5 ⩽ K ′
iH ⩽ C6 < 0.

(iii) ∃C7 > 0,∃γ0 > 0,∀γ < γ0, ∫ γ

0

ϕx(u)du > C7γϕx(γ).

(H5) The bandwidth h is a positive sequence such that:

lim
n→∞

h = 0 and lim
n→∞

log n

nϕx(h)
= 0.

It is noted that this set of assumptions are different from the case of functional covariate with univariate response
and when both explanatory and response variables are functional, because of the different bandwidths for the
different components of the response variable.

5. Numerical examples

The methodology was applied to two examples and the data was analyzed using a R software. As clarified, the
objective is to develop a methodology for measuring the effectiveness of the two transformation models, Box-
Cox Transformations and Yeo-Johnson Transformations, when applied to two time series datasets, for example,
multivariate nonparametric investigation of various reactions contrasted with their analysis as a univariate series.
Furthermore, mean squared error is used for comparison purposes, MSE(Xn)=(1/s)

∑s
j=1 (Ẑj − Zj)

2, where,
Ẑj is the estimated value of the j-th value and Zj is the real value of the j-th value

5.1. Real data example

In figure (1)., the principal model reflects the monthly average of Temperature (T), Rainfall (R), and Humidity (H)
of Ninavah, Iraq, from 1976 to 2000. It discovered that the three-time series is not stationary, as evidenced by the
autocorrelation functions values outside of the confidence intervals In figure (2)..

Because the YJT was used on the stationary time series, t was set to equal 8. According to the application
methodology and requirements of the R program26, where ψ∗

λ(Z)
(i)
(24∗8), i = 1, 2, 3. represent the (24x8) matrix of

(i)th response data, such that the first raw contains the first eight observations of the response i, the second row
contains the second eight observations, and so on,

ψ∗
λ(Z)

(i)
(24∗8) =


ψ∗
λ(Z)

(i)
(11) ψ∗

λ(Z)
(i)
(12) . . . ψ∗

λ(Z)
(i)
(18)

ψ∗
λ(Z)

(i)
(21) ψ∗

λ(Z)
(i)
(22) . . . ψ∗

λ(Z)
(i)
(28)

...
...

...
...

ψ∗
λ(Z)

(i)
(24)2 ψ∗

λ(Z)
(i)
(24)2 . . . ψ∗

λ(Z)
(i)
(24)2

 (15)

. The data have to put into a new matrix size 24 × 24 in the multivariate case illustrated in Table (1).
Here, we will use the 24th year and predict the 25th based on the 24 prior ones [24]. The horizon of prediction

that is denoted by fixed s will be reorganized into two parts. The first is devoted to learning, which contains 23
curves, and the second part represents the testing contains lest curve (24). The functional explanatory sample
ψ∗
λ(Xi) ,i = 1, · · · , 23 will be loaded in the 23× 24 matrix presented in (2):
And a response real sample ψ∗

λ(yi) ,i = 1, · · · , 23 , that will be loaded into the following 23-dimensional vector
The value ψ∗

λ(Ẑ)576+s is predicted for fixed horizon s.For every estimation of s {1, · · · , 24},the predictions
have been fulfilled. It should be noted that in our system, a few parameters must be chosen. This is for the kernel.
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Figure 1. represents the time series of monthly average of H, R, T of Ninavah city in Iraq for the period (1976 – 2000).

Table 1. Table of organization the data matrix in the first example uploaded to the R program

Col 1 · · · Col j · · · col 24
Row 1 ψ∗

λ(Z)(i) · · · ψ∗
λ(Z)(j) · · · ψ∗

λ(Z)(24∗8)
...

...
...

...
...

...
Row i ψ∗

λ(Z)1+24(i−1) · · · ψ∗
λ(Z)j+24(i−1) · · · ψ∗

λ(Z)(24i)
...

...
...

...
...

...
Row 24 ψ∗

λ(Z)553 · · · ψ∗
λ(Z)552+j · · · ψ∗

λ(Z)576

Table 2. The horizon of prediction learning, which contains 23 curves

ψ∗
λ(Z)1 · · · ψ∗

λ(Z)j · · · ψ∗
λ(Z)24

...
...

...
...

...
ψ∗
λ(Z)1+24(i−1) · · · ψ∗

λ(Z)j+24(i−1) · · · · · ·ψ∗
λ(Z)1+24i

...
...

...
...

...
ψ∗
λ(Z)529 · · · ψ∗

λ(Z)528+j · · · ψ∗
λ(Z)552

ψ∗
λ(Z)24+s · · · ψ∗

λ(Z)24i+s · · · ψ∗
λ(Z)552+s

A semi-metric is utilized for (local) smoothing parameter selection based on the first functional main components
of the data curves, conveyed as far as k-nearest neighbors, see Chapter 7 in[19]. The proposed algorithm was
implemented in the R package funopare.knn.gcv, which is accessible at (http://www.sp.ups-tlse.fr/staph/npfda for
the univariate -R model). In applying both analyzes, multivariate and univariate nonparametric. The MSE values
are shown in Tables (3)to (6). The plots of MSE values of the predicted and original values resulting from the
use of multivariate YJT and univariate YJT analysis for three series of real data are shown in figure (3) and (4)
respectively. The acquired outputs for the multivariate time series datasets displayed in Table (3) after applying the
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Figure 2. The ACF plots of the three-time series: (a) H, (b) R and (c) T.

Box-Cox Transformation method to the three-time series data set using the four-step technique described. Table(4)
compares MSE between original multivariate data and optimal univariate response parameters of the Box-Cox
Transformation.
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Table 3. Optimal Box-Cox transformation model parameters and MSE estimations of the functional variable’s last curve for
multivariate datasets

Time series H R T
Power parameter λ = 1 λ = −1.8 λ∗ = 1 λ = −0.4 λ = 1 λ = −0.6

MSE((Xn) of the original and 36.8322 11.8353 577.622 483.7307 1.7013 1.5349
transferred time series

MSE((Xn) after stationaries the 22.4901 19.8842 457.1106 207.5546 1.4582 1.1711
original and transferred time series

Table 4. Optimal Box-Cox transformation model parameters and MSE estimations of the functional variable’s last curve for
univariate datasets.

Time series H R T
Power parameter λ = 1 λ = −1.8 λ∗ = 1 λ = −0.4 λ = 1 λ = −0.6

MSE((Xn) of the original and 19.7141 14.6442 553.1709 400.638 2.0382 2.4684
transferred time series

MSE((Xn) after stationaries the 18.3779 15.0971 559.1246 313.1743 1.7616 1.2831
original and transferred time series

Table 5. For the three multivariate time series datasets, best power parameters of the two-transformation methods and MSE
estimates of variable Xn .

Time series H R T
Transformation models BCT YJT BCT YJT BCT YJT

Power parameter λ = −1.8 λ = 1.6 λ⋆ = 0.4 λ = −2.7 λ = 0.6 λ = −0.6

MSE((Xn) 19.8842 14.5759 207.5545 214.7288 1.1711 0.8847

Table 6. Optimal parameters of univariate YJT-transformation models and MSE(Xn) estimations for three time series
datasets.

Time series H , R T
Power parameter λ = 1.6 λ = −2.7 λ = −0.6

MSE((Xn) of the multivariate transferred time series 14.5759 214.7288 0.8847
MSE((Xn) of the univariate transferred time series 22.781 376.654 1.141

As expected, the results in Table (3) show that the mean square error has dropped when using the Box-Cox
Transformation compared to its value coming from the original data analysis when λ = 1. Table (4) shows that
MSE for multivariate series in optimal parameter is smaller than MSE for optimal univariate for all series. When
the YJT model was utilized in accordance with the identical four-step algorithm, these perplexing results were
eliminated. In the attempt to stationarize the actual and converted series using differences, the means square error
estimation increased in the actual time series while decreasing in the Yeo Johnson Transformation series. When
applied using the identical four-step procedure, the Yeo Johnson Transformation multivariate model generated
more accurate predictions with less error than the Box-Cox Transformation multivariate [25], as shown in Table
(5). The plots of the actual and predicted values for the most recent curve (25th year) after smoothing the data
using the Yeo Johnson Transformation multivariate method for the three-time series are shown in Figure 3. It can
be observed that the Yeo Johnson Transformation multivariate functional responses has the smallest mean square
error (MSE) than the YJT univariate functional responses model in figure(4) . It indicates that the YJT multivariate
has better prediction accuracy. These testing results show that in Table (6),

Stat., Optim. Inf. Comput. Vol. 13, June 2025
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Figure 3. The of the predicted (red) and original (blue) values resulting from the use of YJT univariate analysis for three
series of real data.

1 2 3 4 5 6 7 8

50
60

70
80

H: MSE=22.7831

25th year

(a)

1 2 3 4 5 6 7 8

20
40

60
80

R: MSE=376.654

25th year

(b)

1 2 3 4 5 6 7 8

20
40

60
80

R: MSE=376.654

25th year

(c)

Figure 4. The of the predicted (red) and original (blue) values resulting from the use of YJT univariate analysis for three
series of real data.

5.2. Some authorized models

In this section, some hypothetical nonlinear multivariate time series models are selected to apply the proposed
power transformation methodologies. The R program was used to generate these models:

Yt,1 = Xt +Xt−1 exp(−X2
t−1) + et1 (16)

Yt,2 = Xt +
4 exp(Xt−1)

1 + exp(Xt−1

Under the assumption that
X0 = Y0 = e0 = 0
The internal variable was generated as:
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Xt = 0.3X(t− 1)− at where at ∼ N(0, 1)
and random errors in the two models as:

e(t2 = 0.18e(t− 1) + εt + 0.2ε(t− 1)

e(t2 = 0.58e(t− 1) exp(−e2t−1) + εt

εt ∼ N(0, 0.5)
Figure (5) shows the generation of the Yt,1 and Yt,2 series with ρ = 0.916 and covariate =1.983. Figure (6)

demonstrates the values of the autocorrelation functions (ACF). The obtained results are shown in Table (7), which
represents the results of the analysis of the functional nonparametric multivariate time series analysis of the original
generated data.As for Table (7), it includes the estimates of MSE and power parameters after data transformation
and in figure (7,8), it represents MSE.
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Figure 5. (a) represents the time series of Y(t, 1) and (b) represents the time series of Y(t, 2).
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Figure 6. The ACF plots of the two-time series (a) of Y(t, 1) ; (b) of Y(t, 2).
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Table 7. MSE estimates of the last curve of functional variable for the multivariate time series and univariate time series for
hypothetical models.

Time series Y(t, 1) , Y(t, 2)

MSE(Xn) of the multivariate original time series 0.59277 0.8608

MSE(Xn) of the univariate original time series 0.8099 0.986

Table 8. Optimal parameters of the multivariate and in univariate data YJT -transformation models and MSE estimates of the
last curve of functional variable Xn for the two hypothetical models n time series datasets

Time series Yt, 1 , Yt,2

Power parameter λ∗ = 1.8 λ∗ = 0.4

MSE((Xn) of the multivariate transformed time series 0.4969 0.7942

MSE((Xn) of the univariate transformed time series 0.7526 1.2817

It can be observed that the YJT multivariate functional responses have the smallest mean square error (MSE)
than the YJT univariate functional responses model in table (8)
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Figure 7. The plot of the predicted (red) YJT -transformation and actual values (blue) resulting from the use of multivariate
analysis for two series of hypothetical models (a) of Y(t, 1) ; (b) of Y(t, 2).
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Figure 8. The plot of the predicted (red) YJT -transformation and actual values (blue) resulting from the use of univariate
analysis for two series of hypothetical models (a) of Y(t, 1) ; (b) of Y(t, 2).
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6. Conculusion

This paper contributes to developing new methods for constructing nonparametric estimator of functional
regression when the covariate is functional, and the response is multivariate functional. Two methods are
considered: one multivariate functional responses is a direct extension of the method for a univariate functional
response to multivariate functional responses the other is a new method where the transformation among different
functional responses is taken into account. The numerical examples show that the methodology is used to
demonstrate the ability of the multivariate YJT nonparametric time series using the K-nearest neighbor method to
achieve good fitting compared to the univariate analysis. Reorganizing vectors in data have displaied matrices in
a way that improves the ability of multivariate YJT analysis to provide accurate forecasts. It is crucial to notice
that the optimum power parameters λ⋆ of both transformation models are significantly different, despite the fact
that YJT represents an enlarged version of the Box-Cox Transformation method. The writers conclude that this
difference, as well as the amount of displacement in the actual data generated by both methods, was caused by
the use of a nonparametric estimation method as an alternative to the parametric method for the hypothesis of
normality of transformed response, as well as differences in the level of homogeneity between stationary and
non-stationary data. The application methodology presented in this paper illustrates that YJT is a viable alternative
to BCT for improving the non-parametric estimation of functional time series dataset. Furthermore, nonparametric
estimate of power parameters that is not constrained by the requirements of the probability distribution provides
researchers with a variety of choices for ensuring forecast accuracy.
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