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Abstract This paper presents a statistical analysis of Covid-19 data using a new distribution. Some mathematical properties
of the proposed distribution such as survival and hazard functions, quantile function, median, ordinary and incomplete
moments, moment generating function, probability weighted moment, distribution of order statistic, and Renyi entropy are
derived. Five estimators are examined for unknown model parameters. The performances of the estimators are compared
using an extensive simulation study based on the bias and mean square error criterion. Two Covid-19 data sets representing
the percentage of daily recoveries of Covid-19 patients are used to illustrate the utility of the new distribution. The results
show that the new model is a superior alternative for some current models with bounded support.
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1. Introduction

Lifetime distributions are parametric models used for the prediction of the length of life of a device. It also measures
the survival time as well as the rate at which failure occurs in a system. Many lifetime distributions have been
studied and applied to areas such as biological sciences, engineering, finance, actuarial sciences, etc. Modeling
data in the range of (0,1), such as mortality and recovery rates, scores of ability tests, or measurement sciences,
has become more important in recent years. Therefore, there is a need to introduce new distributions which are
defined on (0,1). Therefore, the Kumaraswamy distribution, introduced by Kumaraswamy [16], is selected as the
baseline distribution for this study. The Kumaraswamy distribution, although in existence for decades, received
less attention until the work of Jones [15], who addressed the relevance of the distribution over the widely explored
beta distribution. A major advantage of the Kumaraswamy distribution over the beta distribution is the explicit
expression of the cumulative distribution function and the quantile function for the Kumaraswamy distribution
which is not the case for the beta distribution due to the beta function. The cumulative distribution function (cdf)
of the Kumaraswamy distribution is given by

F (x) = 1 − (1− xa)
b
, 0 < x < 1, a, b > 0, (1)
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and the corresponding probability density function (pdf) is obtained as

f (x) = a b xa−1 (1− xa)
b−1

, 0 < x < 1, a, b > 0. (2)

It is inarguably, that the addition of extra parameter(s) to an existing lifetime model increases its flexibility in
data analysis. Thus, this has aroused the interest of many researchers in developing several methods of generalizing
existing models. Some of these methods include the exponentiated Weibull family by Mudholkar and Srivastava
[20], the Marshall-Olkin extended family by Marshall and Olkin [17], the transmuted-G family by Shaw and
Buckley [24], the Kumaraswamy-G family by Cordeiro and de Castro [6], the Beta-G family by Eugene et al.
[7], the T −X family by Alzaatreh et al. [1], the Weibull-G family by Bourguignon et al. [4], the T −R{Y }
family by Alzaatreh et al. [2], the Kumaraswamy-Marshall -Olkin family by Alizadeh et al. [3], the Topp-Leone
Kumaraswamy-G family by Ibrahim et al. [14], etc.

Gleaton and Lynch [10] introduced the generalized log-logistic (GLL) family of distributions. Cordeiro et al.
[5] referred to the GLL family of distributions as the odd log logistic-G (OLL-G) family of distributions and then
proposed the beta odd log logistic-G family of distributions. The cdf of the OLL-G family of distributions is defined
as

G(x, α, ξ) =
F (x, ξ)

α

F (x, ξ)
α
+ F̄ (x, ξ)

α , (3)

with pdf obtained as

g (x, α, ξ) =
αf (x, ξ) [F (x, ξ)]

α−1 [
F̄ (x, ξ)

]α−1[
F (x, ξ)

α
+ F̄ (x, ξ)

α]2 , (4)

where F̄ (x, ξ) = 1− F (x, ξ), f (x, ξ) = dF (x,ξ)
dx is the density function and ξ is the vector of the parameter(s)

of the baseline distribution.
The main idea of this paper is to develop a heavy-tailed distribution that accommodates left-skewed, right-

skewed, exponentially decreasing (reversed-J), symmetric shapes, exhibits a bathtub-shaped hazard rate property
and also provides consistently better fits than existing non-nested lifetime models in data analysis. The remaining
Sections of this paper are organized as follows: Section 2 defines the odd log-logistic Kumaraswamy (OLLK)
distribution. Section 3 provides some mathematical properties of the OLLK distribution. Section 4 discusses five
estimation methods and a Monte Carlo simulation study is conducted to investigate the performances of the
estimators. The applicability of the OLLK distribution alongside some existing non-nested models is illustrated
in Section 5. Finally, in Section 6, concluding remarks are presented.

2. The Odd Log Logistic Kumaraswamy Distribution

We define the cdf and the pdf of the OLLK distribution by inserting (1) and (2) into (3) and (4) as follows:

G(x) =

[
1 − (1− xa)

b
]α

[
1 − (1− xa)

b
]α

+ (1− xa)
bα
, α, a, b > 0, 0 < x < 1, (5)

and

g(x) =
abαxa−1 (1− xa)

bα−1
[
1 − (1− xa)

b
]α−1

[(
1 − (1− xa)

b
)α

+ (1− xa)
bα
]2 , α, a, b > 0, 0 < x < 1. (6)

It is easily seen that (6) reduce to the density function of the Kumaraswamy distribution when α = 1.
The survival, hazard rate function (hrf) and quantile functions of the OLLK distribution are defined as follows:
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S(x) =
(1− xa)

bα[
1 − (1− xa)

b
]α

+ (1− xa)
bα
, (7)

h(x) =
abαxa−1

[
1 − (1− xa)

b
]α−1

(1− xa)
[(

1 − (1− xa)
b
)α

+ (1− xa)
bα
] (8)

and

QX (u) =

1−{
(1− u)

1/α

(1− u)
1/α + u

1/α

}1/b

1/a

, 0 < u < 1. (9)

The quantile function allows us to generate random samples from a known probability distribution for simulation
study.

Figures 1 and 2 present the plots of the pdf and the hrf of the OLLK distribution for some selected values of the
parameters.

Figure 1. The pdf plots of the OLLK distribution for some values of the parameters.

Figure 1 shows that the pdf plots of the OLLK distribution accommodate exponentially decreasing or increasing,
negatively-skewed, positively-skewed and symmetric shapes.
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Figure 2. Hazard function of the OLLK distribution for selected values of the parameters.

Figure 2 suggests that the hrf of the OLLK distribution exhibits an increasing and bathtub shaped hazard property.

3. Mathematical Properties

3.1. Linear Representation

The usefulness of obtaining a mixture representation for the density function and the cumulative distribution
function of a new model is to allow easy derivation of some other mathematical properties of the model such as the
moments, moment generating function and the distribution of order statistic. To obtain the mixture representation
for the cumulative distribution function and the density function of the OLLK distribution, we consider the
following useful expansion

(
1 − (1− xa)

b
)α

=

∞∑
j=0

(
α
j

)
(−1)

j
(1− xa)

b j
,

=

∞∑
j=0

j∑
k=0

(
α
j

)(
j
k

)
(−1)

j+k
[
1− (1− xa)

b
]k
,

=

∞∑
k=0

∞∑
j= k

(
α
j

)(
j
k

)
(−1)

j+k
[
1− (1− xa)

b
]k

=

∞∑
k=0

ak

[
1− (1− xa)

b
]k
,

where ak =

j∑
k=0

(
α
j

)(
j
k

)
(−1)

j+k
.
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Also,(
1 − (1− xa)

b
)α

+ (1− xa)
bα

=

∞∑
k=0

ak

[
1− (1− xa)

b
]k

+

∞∑
k=0

(
α
k

)
(−1)

k
[
1− (1− xa)

b
]k
,

=

∞∑
k=0

bk

[
1− (1− xa)

b
]k
,

where bk = ak +

(
α
k

)
(−1)

k
.

Combining these expressions, we obtain the mixture representation for the cumulative distribution function of
the OLLK distribution as

G (x) =

∞∑
k=0

ak

[
1− (1− xa)

b
]k

∞∑
k=0

bk

[
1− (1− xa)

b
]k =

∞∑
k=0

ck

[
1− (1− xa)

b
]k

, (10)

where c0 = a0
b0
, and for k ≥ 1, we have ck = b−1

0

[
ak − b−1

0

k−1∑
r=0

brck−r

]
,

(See Gradshteyn and Ryzhik, [11], pg.17).
(10) can be rewritten as

G (x) =

∞∑
k=0

ckHk (x) =

∞∑
k=0

ck [H (x)]
k
, (11)

where Hk (x) is the cumulative distribution function of the Kumaraswamy distribution with power parameter k.
From (11), we deduce the mixture representation of the OLLK distribution as

g (x) =

∞∑
k=0

ck+1hk+1 (x) , (12)

where hk+1 (x) is the density function of the Kumaraswamy distribution with power parameter (k+1).

3.2. The rth ordinary Moments, incomplete Moments and Moment Generating Function

E [Xr] =

∞∑
k=0

ck+1E
[
Y rk+1

]
, (13)

where E
[
Y rk+1

]
is the moment of the Kumaraswamy distribution with density function of power parameter k+1.

That is,

E
[
Y rk+1

]
= ab (k + 1)

∫ 1

0

yr+a−1 (1− ya)
b−1

[
1− (1− ya)

b
]k
dy, (14)

since, [
1− (1− ya)

b
]k

=

∞∑
m =0

(
k
m

)
(−1)

m
(1− ya)

bm
,

then the change of variable ya = x, transforms (14) as
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E
[
Y rk+1

]
= b (k + 1)

∞∑
m =0

(
k
m

)
(−1)

m

∫ 1

0

x
r/a (1− x)

b(m+1)−1
dx, (15)

but, B (a, b) =

∫ 1

0

xa−1 (1− x)
b−1

dx,

so that (15) now becomes

E
[
Y rk+1

]
= b (k + 1)

∞∑
m =0

(
k
m

)
(−1)

m
B
(
1 + r/a, b (m+ 1)

)
,

= b

∞∑
m =0

(−1)
m (k + 1)Γ (k + 1)

m!Γ (k + 1−m)
B
(
1 + r/a, b (m+ 1)

)
.

(16)

Substituting (16) into (13), we define the rth ordinary moments of the OLLK distribution as

E [Xr] = b

∞∑
k =0

∞∑
m =0

ck+1 (−1)
m (k + 1)Γ (k + 1)

m!Γ (k + 1−m)
B
(
1 + r/a, b (m+ 1)

)
. (17)

The corresponding rth incomplete moments of the OLLK distribution can be obtained from (17) as

φr (t) = b

∞∑
k =0

∞∑
m =0

ck+1 (−1)
m (k + 1)Γ (k + 1)

m!Γ (k + 1−m)
Bt

(
1 + r/a, b (m+ 1)

)
. (18)

where Bt (α, β) =
∫ t

0

yα−1 (1− y)
β−1

dy is the incomplete beta function.

The mean of the OLLK distribution is obtained by setting r = 1 in (18). Other related measures such as the
variance

(
σ2

)
, skewness (Sk) and kurtosis (Ks) can further be derived from (18) as

σ2 = µ
′

2 −
(
µ

′

1

)2

,

Sk =
µ

′

3 − 3µ
′

2µ
′

1 + 2
(
µ

′

1

)3

(
µ

′
2 −

(
µ

′
1

)2) 3
2

,

Ks =
µ

′

4 − 4µ
′

3µ
′

1 + 6µ
′

3

(
µ

′

1

)2

− 3
(
µ

′

1

)4

(
µ

′
2 −

(
µ

′
1

)2)2 .

where µ
′

1, µ
′

2, µ
′

3 and µ
′

4 are the first four rth ordinary moments of the OLLK distribution.
Galton [8] and Moors [19] introduced an alternative measure of skewness and kurtosis, respectively, based on

the quantile function of a probability model. The Galton’s skewness and Moors’ kurtosis are defined as

Sk =
Q (6/8; a, b, α)− 2Q (4/8; a, b, α) +Q (2/8; a, b, α)

Q (6/8; a, b, α)−Q (2/8; a, b, α)
,

and

Ks =
Q (7/8; a, b, α)−Q (5/8; a, b, α) +Q (3/8; a, b, α)−Q (1/8; a, b, α)

Q (6/8; a, b, α)−Q (2/8; a, b, α)
.
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Figure 3. Galton’s Skewness and Moors’ Kurtosis for OLLK distribution (a, b, 0.5)

Figure 3 shows the behaviour of the Galton’s skewness and Moors’ kurtosis for the OLLK distribution when
α = 0.5.

Table 1. Theoretical moments of the OLLK distribution for selected value of the parameters

a b α µ
′

1 µ
′

2 µ
′

3 µ
′

4 σ2 Sk Ks

1 2 0.5 0.3768 0.2535 0.1955 0.1604 0.1115 0.4281 1.7067
1 0.3333 0.1667 0.1000 0.0667 0.0556 0.5620 2.4161
2 0.3074 0.1149 0.0495 0.0239 0.0204 0.5610 3.3442

4 0.5 0.2543 0.1318 0.0827 0.0572 0.0671 0.8653 2.5922
1 0.2000 0.0667 0.0286 0.0143 0.0267 1.0498 3.6864
2 0.1728 0.0381 0.0102 0.0032 0.0082 1.0351 4.4749

3 2 0.5 0.6148 0.4613 0.3768 0.3220 0.0833 -0.3851 1.8648
1 0.6429 0.4500 0.3333 0.2571 0.0367 -0.4505 2.5611
2 0.6570 0.4440 0.3074 0.2174 0.0124 -0.3891 3.2724

4 0.5 0.5248 0.3468 0.2543 0.1976 0.0714 -0.1377 1.8236
1 0.5341 0.3156 0.2000 0.1335 0.0303 -0.1836 2.4715
2 0.5392 0.3007 0.1728 0.1019 0.0100 -0.0819 1.6862

It is clearly seen from Table 1 that the OLLK distribution can be right skewed (Sk > 0), left skewed (Sk < 0) and
approximately symmetric (Sk ≈ 0). Also, at some fixed values of the parameters, the distribution can be leptokurtic
(Ks > 3), platykurtic (Ks < 3) as well as mesokurtic (Ks ≈ 3).

The moment generating function of a known probability distribution is defined using the Maclaurin expansion
of the exponential function as

MX (t) = E
[
et x

]
=

∞∑
n=0

tn

n!
E [Xn] . (19)

By inserting (17) in (19), we obtain the moment generating function of the OLLK distribution as

MX (t) = b

∞∑
k =0

∞∑
m =0

∞∑
n=0

tnck+1 (−1)
m (k + 1)Γ (k + 1)

n!m!Γ (k + 1−m)
B
(
1 + n/a, b (m+ 1)

)
. (20)
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3.3. Probability Weighted Moments

Greenwood et al. [12] introduced a certain class of moments, called the probability weighted moments (PWMs).
The PWMs are generally used to construct the estimators of the parameters and the quantiles of known probability
distribution whose cumulative distribution function is invertible. For a random variable X, the (s, r)

th PWMs is
defined by

ρs,r = E [XrF (x)
s
] =

∫ ∞

−∞
xrf (x)F (x)

s
dx. (21)

Combining (5) and (6), we have

f (x)F (x)
s

=
abαxa−1 (1− xa)

bα−1
[
1 − (1− xa)

b
]α(s+1)−1

[(
1 − (1− xa)

b
)α

+ (1− xa)
bα
]2+s , (22)

consider the generalized binomial expansion

(x+ y)
−s

=

∞∑
k=0

(
s+ k − 1

k

)
(−1)

k
x−s−kyk, (23)

using (23) in (22), we have

f (x)F (x)
s

= αab

∞∑
k=0

∞∑
m =0

(
s+ k + 1

k

)(
α (s+ k + 1)− 1

m

)
(−1)

k+m
xa−1 (1− xa)

b(m−α(s+k+1))−1
,

so that (22) now becomes,

f (x)F (x)
s

= a

∞∑
k,m =0

qk,m b (m− α (s+ k + 1)) xa−1 (1− xa)
b(m−α(s+k+1))−1

,

=

∞∑
k,m =0

qk,m h (x, a, b (m− α (s+ k + 1))) ,

(24)

where

qk,m =

(
s+ k + 1

k

)
(−1)

k+m
αΓ (α (s+ k + 1))

m! (m− α (s+ k + 1)) Γ (α (s+ k + 1)−m)
,

and h (x, a, b (m− α (s+ k + 1))) represents the pdf of the Kumaraswamy with parameters a and
b (m− α (s+ k + 1)).

By setting (24) in (21), we have

ρs,r =

∞∑
k,m =0

qk,m

∫ 1

0

xrh (x, a, b (m− α (s+ k + 1))) dx,

= a

∞∑
k,m =0

qk,m b (m− α (s+ k + 1)) B [r + a, b (m− α (s+ k + 1))] .

(25)

(25) is readily the (s, r)
th PWMs of the OLLK distribution, which is expressed as a linear combination of the

Kumaraswamy densities.
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3.4. Distribution of Order Statistics

Let (X1, X2, ..., Xn) be random samples of size n from the OLLK distribution. Suppose Xr : n denotes the rth

order statistics, then the density function of Xr : n is defined by

fr : n (x) =
1

B (r, n− r + 1)

n−r∑
j=0

(
n− r
j

)
(−1)

j
f (x)F (x)

r+j−1
. (26)

Using a similar approach in (22),

f (x)F (x)
r+j−1

=
abαxa−1 (1− xa)

bα−1
[
1 − (1− xa)

b
]α(r+j)−1

[(
1 − (1− xa)

b
)α

+ (1− xa)
bα
] r+j+1

, (27)

it follows from (23) that,

f (x)F (x)
r+j−1

= αab

∞∑
k=0

∞∑
m =0

(
r + j + k

k

)(
α (r + j + k)− 1

m

)
(−1)

k+m
xa−1 (1− xa)

b(m−α(r+j+k))−1
.

So that (26) now becomes

fr : n (x) = a

∞∑
k,m =0

ψk,m b (m− α (r + j + k))xa−1 (1− xa)
b(m−α(r+j+k))−1

,

=

∞∑
k,m =0

ψk,m h (x, a, b (m− α (r + j + k))) ,

(28)

where,

ψk,m =
α

B (r, n− r + 1)

n−r∑
j=0

(
n− r
j

)(
r + j + k

k

)
(−1)

j+k+m
Γ (α (r + j + k))

m! (m− α (r + j + k)) Γ (α (r + j + k)−m)
,

and h (x, a, b (m− α (r + j + k))) denotes pdf of the Kumaraswamy distribution with parameters a and
b (m− α (r + j + k)). We show that the rth order statistics of the OLLK distribution can be expressed as a linear
combination of Kumaraswamy densities.

From (28), we can derive an expression for the sth moment of the rth order statistics of the density of OLLK
distribution as

E [Xs
r : n] =

∫ 1

0

xsh (x, a, b (m− α (r + j + k))) dx,

= a

∞∑
k,m =0

ψk,m b (m− α (r + j + k)) B [s+ a, b (m− α (r + j + k))] .

(29)

3.5. Renyi Entropy

The entropy of a random variable Y is the measure of randomness associated with the random variable Y. Renyi
[23] define the Renyi entropy of a random variable Y with pdf f (y), as

τR (ξ) =
1

1− ξ
log

∫ ∞

−∞
fξ (y) dy, ξ > 0, ξ ̸= 0. (30)
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Inserting the pdf in (6) into (30), the Renyi entropy of the OLLK distribution is defined as

τR (ξ) =
1

1− ξ
log

∫ ∞

−∞

abαxa−1 (1− xa)
bα−1

[
1 − (1− xa)

b
]α−1

[(
1 − (1− xa)

b
)α

+ (1− xa)
bα
]2


ξ

dx, ξ > 0, ξ ̸= 1. (31)

Using the generalized binomial expansion in (23), we have[
(1− xa)

bα
+
(
1 − (1− xa)

b
)α]−2ξ

=

∞∑
k=0

(
2ξ + k − 1

k

)
(−1)

k
(
(1− xa)

bα
)−2ξ−k (

1 − (1− xa)
b
)αk

,

[
1 − (1− xa)

b
]αk+ξ(α−1)

=

∞∑
m=0

(
αk + ξ (α− 1)

m

)
(−1)

m
(1− xa)

bm
,

so that (31) now becomes,

τR (ξ) =
1

1− ξ
log

aξbξαξ ∞∑
k,m =0

ψ∗
k,m

∫ 1

0

xξ(a−1) (1− xa)
b(m−α(k+ξ))−ξ

dx

 ,

=
1

1− ξ
log

aξ−1bξαξ
∞∑

k,m =0

ψ∗
k,mB

(
ξ (a− 1) + 1

a
, b (m− α (k + ξ))− ξ + 1

) , (32)

where ψ∗
k,m =

(
2ξ + k − 1

k

)(
αk + ξ (α− 1)

m

)
(−1)

k+m.

4. Point Estimators for Unknown Model Parameters

In this section, some estimators to estimate the unknown parameters of the OLLK distribution are examined.
The maximum likelihood, least squares, weighted least squares, Anderson-Darling, and Cramer-von Mises
estimators are investigated and performances of these estimators are evaluated via Monte Carlo simulation. Let
X1, X2, . . . , Xn be a random sample from theOLLK (ψ)distribution,X(1), X(2), . . . , X(n) represent the associated
order statistics and x(i) indicates the observed values of X(i) for i = 1, 2, . . . , n, where ψ = (a, b, α) . The
likelihood and log-likelihood functions are obtained, respectively, by,

L (ψ) = anbnαn
n∏
i=1

xi
a−1 (1− xi

a)
bα−1

[
1 − (1− xi

a)
b
]α−1

[(
1 − (1− xia)

b
)α

+ (1− xia)
bα
]2 , (33)

and

ℓ (ψ) =n log (a) + n log (b) + n log (α) + (a− 1)

n∑
i=1

log (xi) + (bα− 1)

n∑
i=1

log {1− xi
a}

+ (α− 1)

n∑
i=1

log
{
1 − (1− xi

a)
b
}
− 2

n∑
i=1

log
{(

1 − (1− xi
a)
b
)α

+ (1− xi
a)
bα
}
.

(34)

Then, the maximum likelihood estimator (MLE) of ψis given by
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ψ̂1 = argmax
ψ

ℓ (ψ) . (35)

The solution to the following non-linear equations is also ψ̂1:
∂2ℓ (ψ)

∂a = 0
,
∂2ℓ (ψ)

∂b = 0
and

∂2ℓ (ψ)

∂α = 0
, with

∂ℓ (ψ)

∂a
=
n

a
+

n∑
i=1

log (xi)− (bα− 1)

n∑
i=1

xa log (xi)

1− xia
+ (α− 1) b

n∑
i=1

xa log (xi) (1− xi
a)
b

(1− xia)
{
1 − (1− xia)

b
}

− 2

n∑
i=1

αbxa log(xi)(1−xi
a)b(1 − (1−xi

a)b)
α

(1−xi
a){1 − (1−xi

a)b} − αbxa log(xi)(1−xi
a)bα

1−xi
a(

1 − (1− xia)
b
)α

+ (1− xia)
bα

,

∂ℓ (ψ)

∂b
=
n

b
+ α

n∑
i=1

log (1− xi
a)− (α− 1)

n∑
i=1

(1− xi
a)
b
log (1− xi

a)

1 − (1− xia)
b

− 2

n∑
i=1

α(1−xi
a)b log(1−xi

a)(1 − (1−xi
a)b)

α

(1−xi
a)b−1

+ α log (1− xi
a) (1− xi

a)
bα(

1 − (1− xia)
b
)α

+ (1− xia)
bα

,

and

∂ℓ (ψ)

∂α
=
n

α
+ b

n∑
i=1

log (1− xi
a) +

n∑
i=1

log
{
1− (1− xi

a)
b
}

− 2

n∑
i=1

log
(
1− (1− xi

a)
b
)(

1 − (1− xi
a)
b
)α

+ b log (1− xi
a) (1− xi

a)
bα(

1 − (1− xia)
b
)α

+ (1− xia)
bα

.

The MLEs â, b̂ and α̂ have no closed forms. We also determine them with high numerical precision through
numerical techniques.

Additionally, the underlying distribution of the estimator ψ̂1, under regular regularity conditions, can be
approximately distributed as a normal distributionN (ψ1, J

∗) for practical applications, where J∗ is the observation
of the J =

(
∂2ℓ (ψ) /∂ψ2

)−1
∣∣∣
ψ=ψ̂

from the practical data set.

One of the uses for this result is the asymptotic confidence interval for ψ at the level (1− γ)100% with γ ∈ (0, 1),
which is given by

Ciγ =
[
ψ1

∗ − zγ/2
√
J∗, ψ1

∗ + zγ/2
√
J∗

]
,

where zγ/2 is the (1− γ)-quartile of the standard normal distribution. Let us construct the functions that give us
the different estimators:

QLS(ψ) =

n∑
i=1


[
1 −

(
1− x(i)

a
)b]α[

1 −
(
1− x(i)a

)b]α
+
(
1− x(i)a

)bα − i

n+ 1

2

, (36)

QWLS(ψ) =

n∑
i=1

(n+ 2) (n+ 1)
2

i (n− i+ 1)


[
1 −

(
1− x(i)

a
)b]α[

1 −
(
1− x(i)a

)b]α
+
(
1− x(i)a

)bα − i

n+ 1

2

, (37)
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QAD (ψ) =− n−
n∑
i=1

2i− 1

n

log


[
1 −

(
1− x(i)

a
)b]α[

1 −
(
1− x(i)a

)b]α
+
(
1− x(i)a

)bα


+ log

1−


[
1 −

(
1− x(i)

a
)b]α[

1 −
(
1− x(i)a

)b]α
+
(
1− x(i)a

)bα


 ,

(38)

and

QCvM (ψ) =
1

12n
+

n∑
i=1


[
1 −

(
1− x(i)

a
)b]α[

1 −
(
1− x(i)a

)b]α
+
(
1− x(i)a

)bα − 2i− 1

2n

2

. (39)

Then, the least square estimator (LSE), the weighted least square estimator (WLSE), the Anderson-Darling
estimator (ADE) and the Cramer-von Mises estimator (CvME) of the ψ are obtained, respectively, by

ψ̂2 = argmin
ψ

QLS (ψ) , (40)

ψ̂3 = argmin
ψ

QWLS (ψ) , (41)

ψ̂4 = argmin
ψ

QAD (ψ) , (42)

and

ψ̂5 = argmin
ψ

QCvM (ψ) . (43)

All of the optimization problems in (35), (40), (41), (42), and (43) can be solved using the BFGS methods in the
R optim function.

In the simulation study, the bias and mean square errors (MSEs) of the five estimators are obtained based on
5000 trials. The quantile function given in (9) is used to generate data from the OLLK (ψ)distribution, where
U (0, 1) is the standard uniform distribution. The parameters are selected as ψ = (0.5, 0.7, 0.9) , ψ = (3, 1, 0.3) and
ψ = (1, 2, 0.5) . The sample size n = 25, 50, 100, 250, 500, 1000 is considered in the simulation study. The results
are reported in Tables 2-4.
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Table 2. Average bias and MSEs for ψ = (0.5, 0.7, 0.9)

Bias MSEs

n â b̂ α̂ â b̂ α̂
ψ1 25 0.7820 1.8373 0.1136 2.3176 17.5880 1.0704

50 0.4153 0.8082 0.0544 0.8321 3.3289 0.5353
75 0.2819 0.5138 0.0443 0.4743 1.5407 0.3633
100 0.2129 0.3779 0.0342 0.3223 0.9193 0.2639
250 0.1066 0.1693 0.0024 0.1163 0.2384 0.1058
500 0.0554 0.0846 0.0000 0.0520 0.0926 0.0539

1000 0.0265 0.0389 0.0007 0.0232 0.0358 0.0266

ψ2 25 0.0654 0.3033 0.5389 0.4765 1.9484 1.2449
50 0.0564 0.2674 0.4092 0.3770 1.5866 0.8544
75 0.0831 0.2706 0.3253 0.3931 1.3741 0.6743
100 0.0589 0.2115 0.2853 0.2887 0.9780 0.5475
250 0.0411 0.1166 0.1507 0.1509 0.3256 0.2568
500 0.0281 0.0738 0.0842 0.0913 0.1743 0.1291

1000 0.0135 0.0366 0.0495 0.0488 0.0786 0.0674

ψ3 25 0.0873 0.4426 0.5827 0.6571 6.4575 1.4129
50 0.0760 0.2821 0.3807 0.4082 1.8177 0.8220
75 0.0947 0.2745 0.2680 0.3513 1.3854 0.5753
100 0.0682 0.1967 0.2220 0.2536 0.7523 0.4373
250 0.0540 0.1154 0.0872 0.1221 0.2493 0.1685
500 0.0368 0.0715 0.0392 0.0664 0.1219 0.0799

1000 0.0171 0.0324 0.0205 0.0305 0.0477 0.0380

ψ4 25 0.1476 0.4917 0.5365 0.7029 4.0503 1.3882
50 0.1018 0.3132 0.3496 0.4197 1.6590 0.7863
75 0.0909 0.2496 0.2663 0.3334 1.1017 0.5688
100 0.0515 0.1610 0.2329 0.2270 0.6054 0.4358
250 0.0407 0.0952 0.1004 0.1134 0.2239 0.1734
500 0.0222 0.0515 0.0530 0.0595 0.1056 0.0814

1000 0.0092 0.0225 0.0289 0.0286 0.0438 0.0388

ψ5 25 0.2004 0.5741 0.5129 0.6725 3.1638 1.3632
50 0.1481 0.4389 0.3718 0.4898 2.2418 0.8825
75 0.1513 0.3932 0.2937 0.4652 1.7853 0.6886
100 0.1052 0.2842 0.2633 0.3277 1.1155 0.5563
250 0.0647 0.1505 0.1361 0.1648 0.3666 0.2569
500 0.0426 0.0929 0.0742 0.0971 0.1881 0.1295

1000 0.0209 0.0458 0.0440 0.0507 0.0825 0.0675
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Table 3. Average bias and MSEs for ψ = (3, 1, 0.3)

Bias MSEs

n â b̂ α̂ â b̂ α̂
ψ1 25 1.6194 0.6572 0.0574 13.8442 1.9784 0.1020

50 0.8313 0.3332 0.0426 6.0514 0.8115 0.0524
75 0.5159 0.2149 0.0405 3.9719 0.5145 0.0390
100 0.4004 0.1598 0.0335 3.0825 0.3793 0.0289
250 0.1128 0.0506 0.0206 1.2213 0.1415 0.0113
500 0.0416 0.0194 0.0123 0.6261 0.0695 0.0054

1000 0.0232 0.0111 0.0062 0.3217 0.0356 0.0026

ψ2 25 -0.6173 -0.0432 0.3245 5.3625 0.6579 0.4176
50 -0.2921 0.0499 0.1914 5.2148 0.6647 0.1817
75 -0.2814 0.0389 0.1484 4.3717 0.5603 0.1145
100 -0.1842 0.0438 0.1187 4.0815 0.4903 0.0824
250 -0.1658 0.0100 0.0617 2.1449 0.2534 0.0282
500 -0.1466 -0.0138 0.0371 1.1399 0.1261 0.0127

1000 -0.0736 -0.0061 0.0184 0.5983 0.0650 0.0054

ψ3 25 0.3483 0.3010 0.2487 15.2026 2.2707 0.3214
50 0.1824 0.1860 0.1366 7.7436 0.9601 0.1179
75 0.0681 0.1212 0.1069 5.4043 0.6165 0.0785
100 0.0743 0.1012 0.0861 4.4501 0.5139 0.0570
250 -0.0145 0.0400 0.0425 1.9447 0.2206 0.0201
500 -0.0472 0.0074 0.0249 0.9292 0.1028 0.0091

1000 -0.0186 0.0059 0.0118 0.4679 0.0514 0.0039

ψ4 25 0.0175 0.1679 0.2761 9.6639 1.2999 0.3508
50 -0.1127 0.0817 0.1623 5.3651 0.6935 0.1415
75 -0.1765 0.0413 0.1263 3.9612 0.4890 0.0886
100 -0.1497 0.0251 0.1013 3.2719 0.3875 0.0619
250 -0.1694 -0.0121 0.0538 1.5232 0.1746 0.0214
500 -0.1103 -0.0136 0.0299 0.8523 0.0949 0.0094

1000 -0.0546 -0.0060 0.0148 0.4499 0.0495 0.0041

ψ5 25 -0.3011 0.0819 0.3217 5.9659 0.8226 0.4477
50 -0.0387 0.1417 0.1798 5.8021 0.7720 0.1817
75 -0.0920 0.1071 0.1393 4.7216 0.6248 0.1140
100 -0.0161 0.1036 0.1106 4.4662 0.5491 0.0818
250 -0.0792 0.0395 0.0566 2.2699 0.2719 0.0276
500 -0.1008 0.0014 0.0343 1.1692 0.1304 0.0124

1000 -0.0491 0.0020 0.0170 0.6075 0.0662 0.0053
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Table 4. Average bias and MSEs for ψ = (1, 2, 0.5)

Bias MSEs

n â b̂ α̂ â b̂ α̂

ψ1 25 0.6036 3.0507 0.1087 1.7740 44.0300 0.4440
50 0.2537 1.2305 0.1154 0.6778 9.6036 0.3029
75 0.1620 0.7615 0.1030 0.4309 4.7026 0.2197

100 0.1260 0.6060 0.0744 0.3248 3.3748 0.1427
250 0.0355 0.1902 0.0367 0.1173 0.8623 0.0454
500 0.0214 0.1009 0.0146 0.0583 0.4084 0.0159
1000 0.0097 0.0510 0.0061 0.0281 0.1952 0.0061

ψ2 25 0.1055 1.0089 0.3269 0.9446 11.2901 0.6505
50 0.0912 0.9852 0.2410 0.7276 10.7536 0.4403
75 0.0700 0.7402 0.1870 0.5646 7.6914 0.3083

100 0.0438 0.5843 0.1689 0.4584 5.7007 0.2622
250 -0.0125 0.1694 0.1008 0.2047 1.6262 0.1187
500 -0.0017 0.0953 0.0473 0.1088 0.7576 0.0473
1000 -0.0009 0.0483 0.0188 0.0509 0.3486 0.0148

ψ3 25 0.2068 2.1566 0.3745 1.5437 60.0749 0.8247
50 0.0736 0.9404 0.2606 0.7081 17.4782 0.4867
75 0.0577 0.5967 0.1849 0.4923 6.1996 0.3106

100 0.0443 0.4664 0.1453 0.3819 4.0783 0.2258
250 0.0037 0.1452 0.0669 0.1525 1.1087 0.0733
500 0.0110 0.0895 0.0253 0.0751 0.5089 0.0243
1000 0.0074 0.0508 0.0081 0.0340 0.2327 0.0069

ψ4 25 0.2039 1.6810 0.3568 1.2803 25.8724 0.8259
50 0.0696 0.7796 0.2516 0.6285 8.3372 0.4718
75 0.0432 0.5112 0.1971 0.4627 4.8276 0.3313

100 0.0324 0.4157 0.1572 0.3660 3.5433 0.2464
250 -0.0101 0.1104 0.0799 0.1536 1.0504 0.0877
500 0.0026 0.0697 0.0319 0.0770 0.5064 0.0292
1000 0.0030 0.0401 0.0108 0.0347 0.2334 0.0079

ψ5 25 0.2399 1.4401 0.2564 1.0280 13.5576 0.5321
50 0.1772 1.2692 0.1897 0.7587 12.2313 0.3633
75 0.1310 0.9425 0.1532 0.5850 8.8014 0.2630

100 0.0940 0.7377 0.1391 0.4649 6.2566 0.2286
250 0.0105 0.2317 0.0878 0.2018 1.6800 0.1076
500 0.0107 0.1277 0.0408 0.1066 0.7652 0.0429
1000 0.0049 0.0639 0.0166 0.0503 0.3501 0.0140

From Tables 2-4, it is concluded that the bias and MSEs of all estimators decrease and converge to zero when the
sample size increases. Although MLE gives bad results in a and b parameters, MLE shows the best performance
in estimating α parameter. It is also observed that the LSE for parameters a and b performed better than other
estimators. Additionally, MLE is generally the best method as sample sizes increase.
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5. Data Analysis

In this section, the OLLK distribution is applied to two sets of Covid-19 data sets. The data sets represent the
percentage of daily total recovery of Covid-19 patients from the total number of confirmed cases in Nigeria
and Turkey. The infectious Covid-19 which has spread across nations of the world was confirmed in Nigeria
and Turkey on the 28th February and 12 March, 2020, respectively. WHO recorded the first official recoveries
from the pandemic virus in Nigeria and Turkey on 18 and 26 March, 2020, whereas, the first death case
was recorded on 23 and 17 March, 2020, respectively. The data sets are accessible using the following links;
https://covid19.ncdc.gov.ng/ and https://data.humdata.org/dataset/coronavirus-covid-19-cases-and-deaths. The two
data sets are calculated as the ratio of daily total number of the recoveries to total number of confirmed cases. The
first data set was collated from 18 March to 18 May, 2020, while the second data set was collated from 27 March
to 20 April, 2020. The second data set was first reported in Gunduz and Korkmaz [13]. The data sets are presented
as follows:

Data set 1

0.12500000, 0.12500000, 0.08333333, 0.04545455, 0.06666667, 0.05000000, 0.04545455, 0.03921569,
0.03076923, 0.04285714, 0.03370787, 0.02702703, 0.06106870, 0.05925926, 0.05172414, 0.10869565,
0.11904762, 0.11682243, 0.14224138, 0.14705882, 0.17322835, 0.15942029, 0.17708333, 0.19016393,
0.22012579, 0.26315789, 0.26530612, 0.26541555, 0.31449631, 0.34389140, 0.32251521, 0.30627306,
0.27113238, 0.28270677, 0.28270677, 0.22565865, 0.20081549, 0.18995434, 0.18781726, 0.18774548,
0.19072550, 0.16644909, 0.17766204, 0.16511387, 0.16175115, 0.14698492, 0.15637217, 0.14882227,
0.16305085, 0.16979332, 0.17044810, 0.17356851, 0.17947483, 0.17685838, 0.19435466, 0.20033424,
0.21524844, 0.22859357, 0.24220183, 0.26187511, 0.26749455, 0.26623482

Data set 2

0.007371007, 0.009456904, 0.011325639, 0.014962594, 0.017958761, 0.021238599, 0.022883926, 0.023134649,
0.032840311, 0.038494218, 0.043882583, 0.046380721, 0.048291739, 0.050659855, 0.051521402, 0.056836698,
0.060502844, 0.064816787, 0.073704904, 0.081767351, 0.095548098, 0.109884654, 0.126966197, 0.138762079,
0.14761486

Figures 4-5 present some graphical plots to describe the nature of the two data sets, respectively.

Figure 4. Graphical plots showing the (a) boxplot and (b) histogram of the first data set

In Figure 4(a) and 4(b), it can be said that the data has an approximately symmetrical structure. Further
investigation from the boxplot reveals that there is no presence of an outlier in the first data set.
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Figure 5. Graphical plots showing the (a) boxplot and (b) histogram of the second data set

One can see clearly from Figure 5 that the second data set is right-skewed and does not contain outliers. Now,
we further proceed to compare the fit of the OLLK distribution with the fits obtained from some well-known
non-nested models defined on a unit interval whose pdf is defined as

1. Marshall-Olkin Extended Kumaraswamy Distribution (MOEKD) due to George and Thobias [9];

f(x, a, b, α) =
αabxa−1 (1− xa)

b−1[
1− α (1− xa)

b
]2 ,

2. Marshall-Olkin Extended Topp-Leone Distribution (MOETLD) due to Opone and Iwerumor [21];

f(x, α, λ) =
2αλ (1− x)

[
1− (1− x)

2
]λ−1

[
1− ᾱ

{
1−

(
1− (1− x)

2
)λ}]2 ,

3. Kumaraswamy distribution (KwD) due to Kumaraswamy [16];

f(x, a, b) = abxa−1 (1− xa)
b−1

,

4. Unit-Gompertz distribution (UGD) due to Mazucheli et al. [18];

f(x, a, b) = abx−(a+1)e−b(x
−a−1).

5. Transmuted Marshall-Olkin Extended Topp-Leone Distribution (TMOETLD) due to Opone and
Osemwenkhae [22];

f(x, α, β, λ) =

[
1− (1− x)

2
]λ

α+ α
(
1− (1− x)

2
)λ

1 + β − β


[
1− (1− x)

2
]λ

α+ α
(
1− (1− x)

2
)λ


 .

The MLE is used in data analysis, in accordance with the results of the simulation experiments and results are
reported in Tables 5 and 6. Tables 5 and 6 present the summary statistics of each of the distributions for the two
Covid-19 data sets.
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Table 5. Summary Statistics for the Covid-19 data set 1

Distributions Estimates Log-Lik AIC A∗ p-value
a = 3.4464

OLLKD b = 327.47 69.944 -133.887 0.8012 0.4797
α = 0.5528

a = 1.5586
MOEKD b = 25.0209 69.346 -132.693 0.8160 0.4691

α = 4.1425

MOETLD α = 0.0322 59.236 -114.472 2.4953 0.0500
λ = 2.8100

KwD a = 2.1522 68.138 -132.276 1.2284 0.2568
b = 34.2331

UGD a = 0.0757 50.473 -96.947 4.1554 0.0074
b = 1.1838

α = 0.0278
TMOETLD β = -0.1669 59.2505 -112.501 2.4908 0.0503

λ = 2.7967

Table 6. Summary Statistics for the Covid-19 data set 2

Distributions Estimates Log-Lik AIC A∗ p-value
a = 1.5271

OLLKD b = 70.160 49.3522 -92.704 0.2109 0.9887
α = 0.9156

a = 2.0030
MOEKD b = 86.936 49.1729 -92.345 0.3061 0.9329

α = 0.1796

MOETLD α = 0.0062 48.1276 -92.255 0.3118 0.9284
λ = 2.0649

KwD a = 1.4159 49.3422 -94.684 0.2126 0.9867
b = 50.887

UGD a = 0.0186 46.5550 -89.110 0.6500 0.6004
b = 1.1146

α = 0.0061
TMOETLD β = -0.0007 48.1278 -90.2552 0.3117 0.9281

λ = 2.0647
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The flexibility of the non-nested models in fitting the Covid-19 data sets is examined by considering the fitted
value of the log-likelihood, Akaike information criterion (AIC) and the Anderson Darling (A∗) test statistic with its
corresponding p-value. The model with the best fit for a data set is traceable to the model having the maximized
log-likelihood, the least value of AIC and A∗ test statistics with the highest p-value. Hence, from Tables 5 and 6,
we observed that the proposed OLLK distribution having the maximized log-likelihood, the least value of AIC, as
well as A∗ test statistic value outperformed the MOEKD, MOETLD, KwD, UGD and TMOETLD.

Further evidence of the superiority of OLLK distribution over the competitor models is shown in Figures 6-9. In
particular, Figures 6 and 7, show the estimated pdf and cdf fits, and Probability-Probability (P-P) plots of the models
for the first data set, whereas, Figures 8 and 9, show the estimated pdf and cdf fits, and Probability-Probability (P-P)
plots of the models for the second data set, respectively.

Figure 6. The estimated pdf (a) and cdf (b) fits of the models for the first data set

Figure 7. The P-P plots of the models for the first data set
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Figure 8. The estimated pdf (a) and cdf (b) fits of the models for the second data set

Figure 9. The P-P plots of the models for the second data set

6. Conclusion

In this paper, a new bounded statistical model called the odd log logistic Kumaraswamy distribution is introduced.
Some mathematical properties of the proposed OLLK distribution are derived. For the estimation problem of the
unknown parameters of the new model, some estimators are examined. A Monte Carlo simulation study is carried
out to observe the performance of these estimators. The flexibility of the OLLK distribution and its superiority over
some existing bounded models are illustrated using two Covid-19 data sets.
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