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Abstract Time series play a vital role in predicting different types of claims payment applications. The future values of
the expected claims are very important for the insurance companies for avoiding the big losses under uncertainty which may
be produced from future claims. We define a new size-of-loss synthetic autoregressive model for the left skewed insurance
claims. The new synthetic autoregressive model is assessed due to some simulations experiments. The optimal parameter is
also artificially determined. The usefulness of the proposed model is proved by a real application.
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1. Introduction

Analyzing the insurance claims payment triangle from a U.K. Motor Non-Comprehensive account is crucial for
understanding and predicting future claim liabilities. The data, spanning an origin period from 2007 to 2013, allows
insurers to estimate outstanding claims reserves accurately. This analysis aids in assessing the financial impact
of delayed claim settlements and helps maintain solvency. By modeling historical claims patterns, insurers can
identify trends and seasonality, improving forecasting accuracy. It also supports better decision-making regarding
premium setting and risk management strategies. Additionally, it enables companies to allocate capital efficiently
by predicting cash flow needs for future claims. The analysis enhances regulatory compliance by ensuring adequate
reserves are maintained. It also facilitates the evaluation of underwriting practices and claims handling efficiency
over time.

In the insurance field, analyzing claims payment triangles is vital for effective reserving and risk assessment.
It provides insights into the development patterns of claims over time, which is essential for accurate financial
reporting. Understanding these patterns ensures that insurers remain financially stable by setting aside appropriate
reserves. Furthermore, it supports the validation of pricing models and improves long-term strategic planning. This
analysis is also instrumental in identifying anomalies or inefficiencies in claims processing, leading to operational
improvements.

Box and Jenkins [5] developed autoregressive integrated moving average (ARIMA) models for prediction of time
series data. The Box-Jenkins methodology designed for forecasting data is based on inputs from a specified time
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series. It can analyze several types of time series data for forecasting purposes. This methodology uses differences
between time series data points to determine outcomes. It allows identifying trends using the autoregressive models,
moving averages models and seasonal differencing to generate future forecasts. The ARIMA models are the main
form of Box-Jenkins methodology. The two terms of these models are sometimes used interchangeably. For the
time series analysis with forecasting and control, see Box et al. [6].

On the other hand, the actuarial literature became rich in researches based on the ARIMA models, see Cummins
and Griepentrog [8] for forecasting automobile insurance paid claim costs using econometric and ARIMA models,
Jang et al. [23] for analysing some medical insurance program for employees by ARIMA model, Venezian and
Leng [37] for some applications of spectral and ARIMA analysis to combined-ratio patterns, Mohammadi and
Rich [29] for the dynamics of unemployment insurance claims with an application of ARIMA model, Hafiz et al.
[14] for projecting insurance penetration rate in Nigeria, and Kumar et al. [25] for forecasting motor insurance
claim amount using ARIMA model.

The autoregressive (AR) and ARIMA models have attracted many authors in the field of applied mathematical
modeling. The electricity price forecasting (Jakaša et al. [22]), modelling and forecasting of area, production, yield
and total seeds of rice and wheat (Sahu et al. [33]), forecasting of wheat production (Iqbal et al. [21]), forecasting oil
seeds prices in India (Darekar and Reddy [9]), forecasting wheat production in India (Nath et al. [31]), identification
of paddy crop phenological parameters (Palakuru et al. [32]), and Shrahili et al. [36] for modeling the negatively
skewed insurance claim-size asymmetric data using a new Chen model and the AR model.

The future insurance-claims forecasting is very important for insurance companies to avoid uncertainty about
big losses that may be produced from future claims. Recently, Shrahili et al. [36] introduced a flexible claim-size
Chen density for modeling asymmetric data (negative and positive) with different types of kurtosis (mesokurtic,
leptokurtic and platykurtic). Since the insurance-claims data (Charpentier [6]) are a quarterly time series dataset,
Shrahili et al. [36] analyzed these data using the AR model. A useful comparison is provided between the results
of the Chen model and the autoregressive regression model. Many Chen densities were studied, see, for example,
Ibrahim et al. [19] for a novel test statistic for right censored validity under a new Chen extension with some
applications in reliability and medicine, Yousof et al. [40] for another Chen extension with characterizations
and different estimation methods, and Korkmaz et al. [24] for a new unit-Chen model with associated quantile
regression.

Following Shrahili et al. [36], we define a new size-of-loss synthetic autoregressive model (SAR) for the left
skewed insurance claims datasets. The technique basically depends on exploring the insurance claims under all
possible ARIMA models for selecting the best model. Then, this selection will depend on suitability for the
insurance claims. The significance of the parameter model is statistically checked. The model with less number
of significant parameter is preferable. The first step in developing a certain Box–Jenkins model for the time series
insurance claims is determining whether the time series is stationary or not and whether there is any significant
seasonality that requires to be modelled. After the Box–Jenkins model identification, the autoregressive model
is chosen. The insurance claims are modeled using the SAR. Its adequacy is assessed through some simulation
experiments. The optimal parameter is determined artificially.

The rest of the paper is organized as follows: Section 2 presents the SAR model along with its main statistical
results. An assessment and application to historical insurance real data are addressed in Section 3. Finally, some
concluding remakes are offered in Section 4.

2. The SAR model

The ARIMA is a class of statistical models that explains a given time series based on its own past values, i.e., its
own lags and the lagged forecast errors, so that it can be used to forecast future values. The first step to construct
a strong ARIMA model is to make the time series stationary. The SAR(p) is a linear regression model that uses its
own lags as predictors, where p is the order of the SAR model. The linear regression models are adequate when the
predictors are not correlated, and are independent of each other. We can explore and find out the required number of
AR terms by inspecting the autocorrelation function (ACF) and the partial autocorrelation function (PACF) plots.
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However, the PACF plots are more accurate than the ACF plots. For exploring the required number of AR terms,
we shall present some simulated results.

Following Shrahili et al. [36], the new SAR model of order p (SAR(p)) can be expressed as

yt = c+ ϑ1yt−1 + ϑ2yt−2...+ ϑpyt−p + ϵt, (1)

where ϵt is the white noise, c is a constant, the lagged values of yt are the predictors, and ϑ1, . . . , ϑp are the
unknown parameters. We normally restrict autoregressive models to stationary data, where some constraints on the
parameter values are required.

For the SAR(1) model:

• when ϑ1 = 0, then yt is equivalent to white noise model which is ARIMA model with parameters (0,0,0);
• when ϑ1 = 1 and c = 0, then yt is equivalent to a random walk model;
• when ϑ1 = 1 and c = 0, then yt is equivalent to a random walk model with drift;
• when ϑ1 < 0, then yt tends to oscillate around the mean.

Further, we can write

yt = c+ ϑ1yt−1 + ϵt | − 1 < ϑ1 < 1, ∀ t = 0,±1,±2, . . . . (2)

Here, the expected value of yt is
E (yt) = 0|t = 0,±1,±2, ..., (3)

and its variance can be expressed as

Var (yt) = γ (0) |t = 0,±1,±2, . . . , (4)

where
γ (0) = ∆

(
ϑ2
1

)
σ2
ϵ |∆

(
ϑ2
1

)
=

1

1− ϑ2
1

,

σ2
ϵ is the variance of the residuals, and the covariance Cov(yt, yt−1) reduces to

Cov (yt, yt−1) = ∆
(
ϑ2
1

)
ϑ1σ

2
ϵ .

Analogously, the covariance Cov(yt, yt−2) has the form

Cov (yt, yt−2) = ∆
(
ϑ2
1

)
ϑ2
1σ

2
ϵ .

For the SAR(2) model (or the ARIMA(2,0,0) model)

yt = c+ ϑ1yt−1 + ϑ2yt−2 + ϵt|−1<ϑ1<1,ϑ2+ϑ1<1 and ϑ2−ϑ1<1. (5)

The SAR in Equation (2) and some of its mathematical results will be used for statistical modeling of the claims
payment data, and future prediction.

3. Assessment and application to historical insurance real data

Analyzing insurance claim amounts is a cornerstone of sound financial and actuarial management within the
insurance industry. It serves as a critical mechanism for understanding the behavior of past claims and for
projecting future liabilities with greater accuracy. By examining claim values across time, insurers can detect
patterns, trends, and anomalies that reveal not only the frequency and severity of losses but also the operational
performance of the claims process itself. This analysis enables insurers to estimate reserves for both reported and
incurred-but-not-reported (IBNR) claims, which is vital for maintaining financial solvency and complying with
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regulatory frameworks such as Solvency II. Misestimating these reserves, either through under-reserving or over-
reserving, can have significant consequences. Under-reserving may result in an inability to fulfill policyholder
obligations, while over-reserving could lead to inefficient use of capital, reducing profitability and limiting
investment opportunities.

From a financial standpoint, accurate claim analysis enhances the insurer’s ability to manage risk exposure and
make informed strategic decisions. It supports the development and refinement of pricing models by validating the
assumptions upon which premiums are based. If historical claims data reveal that losses are consistently exceeding
expectations, this may necessitate a review of underwriting guidelines, product pricing, or even the insurer’s risk
appetite. On the other hand, stable or improving claims performance can justify competitive pricing or expansion
into new markets. Furthermore, detailed analysis of claim values aids in cash flow forecasting, helping insurers
allocate capital efficiently to meet future claim obligations without holding excessive liquidity.

Additionally, analyzing claim amounts provides valuable insights into customer behavior, claim fraud risks, and
process inefficiencies. It allows insurers to segment policyholders, identify high-risk profiles, and adjust coverage
options accordingly. Operationally, it can expose systemic delays, data quality issues, or lapses in claims handling
that may impact customer satisfaction and financial outcomes. Over time, continuous monitoring and analysis
of claims data become a feedback loop that not only enhances internal processes but also contributes to better
product design, customer service, and overall risk management. In summary, the analytical study of insurance
claim amounts bridges the technical with the strategic—it is both a financial necessity and a competitive advantage
in today’s complex insurance landscape.

Estimating the parameters for all Box–Jenkins models involves numerically approximating the solutions of
certain nonlinear equations. For this purpose, it is very common to use some statistical software like R. The two
main approaches for fitting all these models are the nonlinear least squares and maximum likelihood methods.
The second method is generally the most used in statistical literature, although it is too complicated for the full
Box–Jenkins models, and then it is not included in this work.

The historical insurance real data are often reported in the form of a triangle presentation for showing the
temporal development of claims overtime for each corresponding exposure (or origin) period. The exposure period
could be considered as the year the insurance policy was earned, or the loss occurrence period. Clearly, the origin
period does not have to be yearly. For example, it could be quarterly or monthly origin periods. The “claim age”
or “claim lag” can be defined as the development period of an origin period. Data of individual policies are usually
aggregated to homogeneous lines of business, division levels or perils. We analyze the insurance claims payment
triangle from a U.K. Motor Non-Comprehensive account. For convenience, we set the origin period from 2007 to
2013 (Charpentier [6]). The insurance claims payment data frame presents the claims data in its typical form as it
would be stored in a database. The first column holds the origin year (from 2007 to 2013), the second column is the
development year, and the third column has the incremental payments. It is worth mentioning that these insurance
claims data are firstly analyzed under a probability-based distribution.

We explore the insurance claims data. Exploring real data can be used either numerically or graphically or under
both techniques. We consider many graphical techniques such as the skewness-kurtosis plot (or the Cullen and
Frey plot) for exploring initial fits of theoretical distributions such as normal, uniform, exponential, logistic, beta,
lognormal and Weibull. Bootstrapping is applied and also plotted for more accuracy. Cullen and Frey plot just
compare distributions in the space of (the squared skewness, kurtosis), which is a good summary but still only a
summary of the distribution properties.

Hence, many other graphical techniques are considered such as the “nonparametric Kernel density estimation
(NKDE)” approach for exploring initial insurance claims density shape, the “Quantile-Quantile (Q-Q)” plot for
exploring “normality” of the current data, the “total time on test (TTT)” plot for exploring the initial shape of
the empirical hazard rate function (HRF), and the “box plot” for detecting the extreme claims. For more details
about those graphical tools and their interpretation see Shrahili et al. [36], Mansour et al. [26], Mansour et al.
[27], Mansour et al. [28], Hamedani et al. ([15],[16],[17],[18]), Nascimento et al. [30], Elgohari and Yousof [10],
Goual et al. [13], Ibrahim et al. [20], Shehata et al. [34], Yousof et al. [39], Aboraya et al. [1], boraya et al. [2],
El-Morshedy et al. [12], Elgohari and Yousof [11], Al-babtain et al. [3], Al-babtain et al. [4], Yadav et al. [38] and
Shehata et al. [35]. For revealing the correlation between any two values of the signal changes as their separation
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Figure 1. Cullen and Frey plot for the original insurance claims data (left) and the converted insurance claims data (right).

changes, we present the ACF. The theoretical ACF is a time domain measure of the stochastic process memory and
does not reveal any information about the frequency content of the process. It provides some information about the
distribution of hills and valleys across the surface with lag= k = 1.

Figure 1 displays the Cullen and Frey plot for the original insurance claims data (left plot) and the converted
insurance claims data (right). Figure 2 and Figure 3 (top left plot) gives the NKDE plot for the original insurance
claims data and the converted insurance claims data. Figure 2 and Figure 3 (top right plot) gives the Q-Q plot
for the original insurance claims data and the converted insurance claims data. Figure 2 and Figure 3 (bottom
left plot) displays the TTT plot for the original insurance claims data and the converted insurance claims data,
and Figure 2 and Figure 3 (bottom right plot) gives the box plot for the original insurance claims data and the
converted insurance claims data. Figure 4 shows the scattergrams (top plots), theoretical ACF (bottom left plot)
and theoretical partial ACF (bottom right plot) for the original insurance claims data under lag= k = 1. Figure 5
displays the scattergrams (top plots), theoretical ACF (bottom left plot) and theoretical partial ACF (bottom right
plot) for the converted insurance claims data under lag= k = 1. Figure 2 (top left plot) shows that the initial density
for the the original insurance claims data is an asymmetric and bimodal function. Figure 3 (top left plot) indicates
that the initial density for the the converted insurance claims data is an asymmetric function with left tail.

No extreme observations are spotted based on Figure 2 (bottom right plot) due to the original insurance
claims data. Based one Figure 3 (bottom right plot), no extreme observations are spotted due to the converted
insurance claims data. Further, Figure 2 (bottom left plot) shows that the HRF for the original insurance claims
data is “monotonically increasing”, Figure 3 (bottom left plot) indicates that the HRF for the converted insurance
claims data is “monotonically increasing”. Figure 4 (last plot) reveals that the first lag value are not statistically
significant. Figure 5 (last plot) shows that the first lag value is statistically significant, whereas the other partial
autocorrelations for all other lags are not statistically significant. This suggests a possible autoregressive (SAR(1))
model for these data. For the converted insurance claim’s payments data, skewness=−0.748278 (left-skewed data),
kurtosis=2.788464<3 and dispersion index (Dis. Ix)=0.0708352 (underdispersed data). Based on these results, the
SAR(1) model is suggested to explain the insurance claims data.
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Figure 2. NKDE plot, Q-Q plot, TTT plot and box plot for the original insurance claims data.

Figures 6-13 display some artificial insurance claims data with generated ACF and partial ACF based on some
positive and negative values of the parameter

ϑ = (±0.0001,±0.01,±0.1,±0.15) and ϑ = (±0.20,±0.30,±0.40,±0.50) .

For positive values of ϑ, the ACF exponentially decreases to 0 when the lag increases. For negative values of
the parameter ϑ, the ACF also decays exponentially to 0 when the lag increases but the algebraic signs for the
autocorrelations alternate between positive and negative. For positive values of ϑ, the partial ACF shuts off after
the first lag since ϑ < 1. For negative values of ϑ, the partial ACF shuts off after the first lag since ϑ < 1.

Since the insurance claims data are quarterly time series, we will analyze the data using the SAR(1) model based
on Figures 6-13. The SAR(1) model can be adopted for statistical forecasting of future insurance claims. However,
the estimates of the parameter ϑ requires more efforts to be determined exactly. Table 1 provides r[1], r[2], r[3], r[4]
and ξ[11] to find the exact value of ϑ. Note that

ξ[kk] = 0, ∀ k > 1.

The point prediction of the future values of (Q1)2014, (Q2)2014, (Q3)2014, (Q4)2014 and (Q4)2014 for the claim’s
payments in million. The future values (Q1)2014, (Q2)2014, (Q3)2014 and (Q4)2014 are very important for the
insurance companies for avoiding the big losses under uncertainty which may be produced from the future claims.
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Figure 3. NKDE plot, Q-Q plot, TTT plot and box plot for the converted insurance claims data.

Tables 2-6 report the prediction errors (PEs), sum of prediction errors (SEs), mean errors of prediction (MEs),
absolute percentage errors (APEs), sum of APEs (SAPEs), mean absolute percentage errors (MAPEs), absolute
errors (AEs), sum of AEs, mean of AEs (MAEs), square errors (SEs), sum of square errors (SSEs), and mean
square errors (MSEs) for (Q1)2014, (Q2)2014, (Q3)2014 and (Q4)2014. The results of (Q4)2013 are determined only
for evaluating the SAR(1) model since the value of (Q1)2014 is already known. Based on Table 2-6, the SAR(1)
model is suggested for determining the future values of (Q1)2014, (Q2)2014, (Q3)2014 and (Q4)2014 with ϑ = 0.5.
We have

• For (Q4)2013|ϑ = 0.5 and ξ[kk] = 0 ∀ k > 1 :
PE(Q4)2013=| PE(Q4)2013 |=0.387899, APE(Q4)2013=0.0460554, PE2

(Q4)2013
=0.1504656;

• For (Q1)2014|ϑ = 0.5 and ξ[kk] = 0 ∀ k > 1 :
PE(Q1)2014=|PE(Q1)2014 |=0.581849, APE(Q4)2013=0.06908316, PE2

(Q1)2014
=0.3385483;

• For (Q2)2014|ϑ = 0.5 and ξ[kk] = 0 ∀ k > 1 :
PE(Q2)2014=|PE(Q2)2014 |=0.678823, APE(Q2)2013=0.08059692 , PE2

(Q2)2014
=0.4608007;

• For (Q3)2014|ϑ = 0.5 and ξ[kk] = 0 ∀ k > 1 :
PE(Q3)2014=|PE(Q3)2014 |=0.727311, APE(Q2)2013=0.08635392 , PE2

(Q3)2014
=0.5289813;

• For (Q4)2014|ϑ = 0.5 and ξ[kk] = 0 ∀ k > 1 : PE(Q4)2014=|PE(Q4)2014 |=0.751554, APE(Q4)2013=0.08923230,
and PE2

(Q4)2014
=0.5648334.
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Figure 4. Scattergrams and autocorrelation function for the original insurance claims data.

It is also noted that MSEs<(MEs=MAEs)<MAPE for all cases (see Table 2). Figure 14 displays the scattergrams
for the forecasting residuals under ϑ+ for the future values (Q4)2013, (Q1)2014, (Q2)2014, (Q3)2014 and (Q4)2014.
Figure 15 displays the scattergrams for the forecasting residuals under ϑ− for the future values (Q4)2013, (Q1)2014,
(Q2)2014, (Q3)2014 and (Q4)2014. The MSEs are preferable than the values of MEs if we have some negative errors.

Fortunately, we have no negative errors. The AEs, sum of AEs, MAEs are equal to the Es, SEs, MEs, respectively,
since all errors are positive in this case. Hence, the results of absolute errors, sum of absolute errors, and mean
absolute errors are omitted.
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Figure 5. Scattergrams and autocorrelation function for insurance claims data.
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Figure 6. Artificial insurance claims data with ACF and partial ACF for ϑ = 0.0001,−0.0001
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Figure 7. Artificial insurance claims data with ACF and partial ACF for ϑ = 0.01,−0.01.

Time

C
la

im
s

0 400 800

−
2

−
1

0
1

2
3

0 5 15 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  Claims

0 5 15 25

−
0

.0
6

−
0

.0
4

−
0

.0
2

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Lag

P
a

rt
ia

l 
A

C
F

Series  Claims

Time

C
la

im
s

0 400 800

−
2

−
1

0
1

2
3

0 5 15 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  Claims

0 5 15 25

−
0

.0
6

−
0

.0
4

−
0

.0
2

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Lag

P
a

rt
ia

l 
A

C
F

Series  Claims

Figure 8. Artificial insurance claims data with ACF and partial ACF for ϑ = 0.1,−0.1.
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Figure 9. Artificial insurance claims data with ACF and partial ACF for ϑ = 0.15,−0.15.
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Figure 10. Artificial insurance claims data with ACF and partial ACF for ϑ = 0.2,−0.2.
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Figure 11. Artificial insurance claims data with ACF and partial ACF for ϑ = 0.3,−0.3.
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Figure 12. Artificial insurance claims data with ACF and partial ACF for ϑ = 0.4,−0.4.
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Figure 13. Artificial insurance claims data with ACF and partial ACF for ϑ = 0.5,−0.5.
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Figure 14. Q-Q analysis for the residuals.
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Figure 15. Scattergrams for the residuals.
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Table 1: Point forecasting for the claim’s payments in million.

r[k]|k≥1 ξ[kk] Point Forecasting
ϑ↓ r[1], r[2],r[3],r[4] ξ[11] (Q4)2013 (Q1)2014 (Q2)2014 (Q3)2014 (Q4)2014

10−4 10−4,10−8,10−12,10−16 10−4 7.646723 7.646645 7.646645 7.646645 7.646645
10−2 10−2,10−4,10−8,10−16 10−2 7.654403 7.646723 7.646646 7.646645 7.646645
0.10 0.1,10−2,10−3,10−4 0.10 7.724225 7.654403 7.647421 7.646723 7.646653
0.15 0.15, 0.023, 0.003, 0.001 0.15 7.763015 7.664100 7.649263 7.647038 7.646704
0.20 0.20, 0.04, 0.008, 0.002 0.20 7.801805 7.677677 7.652851 7.647886 7.646893
0.30 0.3, 0.09, 0.027, 0.008 0.3 7.879384 7.716467 7.667592 7.652929 7.648530
0.40 0.40, 0.16, 0.64, 0.026 0.40 7.956964 7.770773 7.696296 7.666505 7.654589
0.50 0.50, 0.063, 0.016, 0.004 0.50 8.034544 7.840594 7.743620 7.695132 7.670889

−10−4 −10−4,10−8,−10−12,10−16 10−4 7.646567 7.646645 7.646645 7.646645 7.646645
−10−2 −10−2,10−4,−10−8,10−16 10−2 7.638887 7.646723 7.646644 7.646645 7.646645
−0.10 −0.1,10−2,−10−3,10−4 0.10 7.569065 7.654403 7.645869 7.646723 7.646637
−0.15 −0.15, 0.024,−0.003, 0.001 0.15 7.530275 7.664100 7.644027 7.647038 7.646586
−0.20 −0.20, 0.04,−0.008, 0.0016 0.20 7.491485 7.677677 7.640439 7.647886 7.646397
−0.30 −0.3, 0.09,−0.027, 0.0081 0.3 7.413906 7.716467 7.625698 7.652929 7.64476
−0.40 −0.40, 0.16− 0.64, 0.026 0.40 7.336326 7.770773 7.596994 7.666505 7.638701
−0.50 −0.50, 0.06,−0.016, 0.004 0.50 7.258746 7.840594 7.54967 7.695132 7.622401

Table 2: Forecasting residual analysis.
2013(Q4) 2014(Q1)

ϑ E(Q4)2013 APE(Q4) |E(Q4)2013 | E2
(Q4)2013

E2014(Q1)
APE(Q1) |E2014(Q1)

| E2
2014(Q1)

10−4 0.775720 0.09210154 0.775720 0.6017415 0.775798 0.09211080 0.775798 0.6018625
10−2 0.768040 0.09118969 0.768040 0.5898854 0.775720 0.09210154 0.775720 0.6017415
0.10 0.698218 0.08289970 0.698218 0.4875084 0.768040 0.09118969 0.768040 0.5898854
0.15 0.659428 0.07829415 0.659428 0.4348453 0.758343 0.09003837 0.758343 0.5750841
0.20 0.620638 0.07368860 0.620638 0.3851915 0.744766 0.08842636 0.744766 0.5546764
0.30 0.543059 0.06447761 0.543059 0.2949131 0.705976 0.08382081 0.705976 0.4984021
0.40 0.465479 0.05526651 0.465479 0.2166707 0.651670 0.07737304 0.651670 0.4246738
0.50 0.387899 0.04605540 0.387899 0.1504656 0.581849 0.06908316 0.581849 0.3385483

−10−4 0.775876 0.09212007 0.775876 0.6019836 0.775798 0.09211080 0.775798 0.6018625
−10−2 0.783556 0.09303191 0.783556 0.6139600 0.775720 0.09210154 0.775720 0.6017415
−0.10 0.853378 0.10132191 0.853378 0.7282540 0.768040 0.09118969 0.768040 0.5898854
−0.15 0.892168 0.10592746 0.892168 0.7959637 0.758343 0.09003837 0.758343 0.5750841
−0.20 0.930958 0.11053301 0.930958 0.8666828 0.744766 0.08842636 0.744766 0.5546764
−0.30 1.008537 0.11974400 1.008537 1.0171469 0.705976 0.08382081 0.705976 0.4984021
−0.40 1.086117 0.12895510 1.086117 1.1796501 0.651670 0.07737304 0.651670 0.4246738
−0.50 1.163697 0.13816621 1.163697 1.3541907 0.581849 0.06908316 0.581849 0.3385483∑

12.41277 1.473773 12.41277 10.31905 11.52432 1.368288 11.52432 8.369748
Mean 0.775798 9.21108 0.775798 0.6449408 0.7202702 8.551797 0.7202702 0.5231093

4. Concluding remarks, future points and discussions

The future values of the expected claims are very important for the insurance companies for avoiding the big losses
under uncertainty which may be produced from future claims. In this work, we defined a new size-of-loss synthetic
autoregressive model (“SAR” for short) for the left skewed insurance claims datasets. The technique basically
depends on exploring the time series insurance claims datasets under the all possible ARIMA models for selecting
the best model. The SAR model is assessed due to some simulations experiments. The optimal parameter is also
artificially determined. The insurance claims data is modeled using the synthetic autoregressive model. Many other
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Table 2: Residuals analysis. Continued.
2014(Q2) 2014(Q3)

ϑ E(Q2)2014 APE(Q2) |E(Q2)2014 | E2
(Q2)2014

E(Q3)2014 APE(Q3) |E(Q3)2014 | E2
(Q3)2014

10−4 0.775798 0.0921108 0.775798 0.6018625 0.775798 0.0921108 0.775798 0.6018625
10−2 0.775797 0.0921107 0.775797 0.6018610 0.775798 0.0921108 0.775798 0.6018625
0.10 0.775022 0.0920187 0.775022 0.6006591 0.775720 0.0921015 0.775720 0.6017415
0.15 0.773180 0.0917999 0.773180 0.5978073 0.775405 0.0920641 0.775405 0.6012529
0.20 0.769592 0.0913739 0.769592 0.5922718 0.774557 0.0919635 0.774557 0.5999385
0.30 0.754851 0.0896238 0.754851 0.5698000 0.769514 0.0913647 0.769514 0.5921518
0.40 0.726147 0.0862157 0.726147 0.5272895 0.755938 0.0897528 0.755938 0.5714423
0.50 0.678823 0.0805969 0.678823 0.4608007 0.727311 0.0863539 0.727311 0.5289813

−10−4 0.775798 0.0921108 0.775798 0.6018625 0.775798 0.0921108 0.775798 0.6018625
−10−2 0.775799 0.0921109 0.775799 0.6018641 0.775798 0.0921108 0.775798 0.6018625
−0.10 0.776574 0.0922029 0.776574 0.6030672 0.775720 0.0921015 0.775720 0.6017415
−0.15 0.778416 0.0924216 0.778416 0.6059315 0.775405 0.0920641 0.775405 0.6012529
−0.20 0.782004 0.0928477 0.782004 0.6115303 0.774557 0.0919635 0.774557 0.5999385
−0.30 0.796745 0.0945979 0.796745 0.6348026 0.769514 0.0913647 0.769514 0.5921518
−0.40 0.825449 0.0980059 0.825449 0.6813661 0.755938 0.0897528 0.755938 0.5714423
−0.50 0.872773 0.1036247 0.872773 0.7617327 0.727311 0.0863539 0.727311 0.5289813∑

12.41277 1.4737730 12.41277 9.654509 12.26008 1.455644 12.26008 9.398467
Mean 0.775798 9.211080 0.775798 0.6034068 0.766255 9.097778 0.766255 0.5874042

Table 2: Residuals analysis for (Q4)2014. Continued.
(Q4)2014

ϑ E(Q4)2014 APE(Q4) |E(Q4)2014 | E2
(Q4)2014

10−4 0.775798 0.09211080 0.775798 0.6018625
10−2 0.775798 0.09211080 0.775798 0.6018625
0.10 0.775790 0.09210985 0.775790 0.6018501
0.15 0.775739 0.09210380 0.775739 0.6017710
0.20 0.775550 0.09208136 0.775550 0.6014778
0.30 0.773913 0.09188700 0.773913 0.5989413
0.40 0.767854 0.09116761 0.767854 0.5895998
0.50 0.751554 0.08923230 0.751554 0.5648334

−10−4 0.775798 0.09211080 0.775798 0.6018625
−10−2 0.775798 0.09211080 0.775798 0.6018625
−0.10 0.775806 0.09211175 0.775806 0.6018749
−0.15 0.775857 0.09211781 0.775857 0.6019541
−0.20 0.776046 0.09214025 0.776046 0.6022474
−0.30 0.777683 0.09233461 0.777683 0.6047908
−0.40 0.783742 0.09305400 0.783742 0.6142515
−0.50 0.800042 0.09498930 0.800042 0.6400672∑

12.41277 1.473773 12.41277 9.63111
Mean 0.775798 9.211080 0.775798 0.6019443

graphical techniques are considered such as the “nonparametric Kernel density estimation” for exploring initial
insurance claims density shape, the “Quantile-Quantile” plot for exploring “normality” of the current data, the
“total time on test” plot for exploring the initial shape of the empirical HRF, and the “box plot” for detecting the
extreme claims. The SAR model is recommended for prediction under the left skewed insurance claims payment
data. The main advantage of the new model depended on its simple procedures in prediction especially if it has

Stat., Optim. Inf. Comput. Vol. 14, July 2025



HEBA SOLTAN MOHAME, GAUSS M. CORDEIRO AND HAITHAM M. YOUSOF 17

only one parameter. We hope that the SAR model will attract more researchers in future works. A potential study
on value-at-risk estimation based on the PORT mean-of-order-p methodology is considered.

Finally, here are the highly-rated recommendations tailored specifically to help motor insurance companies
improve their operations, forecasting accuracy, risk management, and reserving practices , particularly in the U.K.
Motor Non-Comprehensive line of business. Implement SAR(p) models for accurate short-term forecasting of
motor insurance claims payments, especially when dealing with left-skewed historical data. Leverage ARIMA-
based approaches to model time-dependent claim development patterns and enhance claims reserving accuracy over
multiple quarters. Utilize graphical tools such as Cullen and Frey plots , Q-Q plots , Kernel density estimation , and
box plots to understand the distributional properties of claims data before modeling. Perform thorough residual
analysis (e.g., ACF/PACF plots, scattergrams) to ensure that the selected SAR or ARIMA model adequately
captures temporal dependencies in the data. Given that claims data is often reported quarterly, build separate
time series models for each quarter to better capture seasonality and trend components . Apply point forecasting
techniques along with error metrics like MAPE , MSE , and APE to quantify forecast accuracy and support
financial planning. Use predicted claims values to estimate solvency capital requirements and maintain adequate
reserves to meet future obligations under uncertainty. Incorporate historical claim trends identified through time
series analysis into premium pricing strategies to reflect actual risk exposure more accurately. Move beyond
traditional deterministic methods like chain-ladder; automate reserving using statistical models such as SAR
and ARIMA to reduce human bias and increase precision. Monitor deviations from expected claim development
patterns using time series diagnostics to detect fraudulent activities , operational inefficiencies, or underwriting
anomalies. Create dashboards integrating time series forecasts, residuals, and diagnostic plots to support real-
time monitoring and decision-making in claims departments. Invest in training actuaries and risk analysts in
modern statistical forecasting methods, including autoregressive modeling , to keep pace with evolving actuarial
science. These recommendations are designed to help U.K. motor insurers , particularly those dealing with Non-
Comprehensive policies , make data-driven decisions in areas such as reserving, pricing, solvency, fraud detection,
and operational efficiency . By embracing advanced time series modeling techniques like SAR and ARIMA,
insurers can significantly enhance their ability to manage uncertainty, comply with regulations, and optimize
financial performance.

This work is highly significant in the field of insurance as it provides an effective tool for predicting future
claim liabilities, which is essential for accurate reserving and risk management. The proposed SAR model allows
insurers to analyze historical claims data and generate reliable forecasts, helping them avoid financial losses due to
uncertainty. By applying time series techniques such as ARIMA and SAR modeling, the study enhances traditional
actuarial methods used in claims forecasting. The paper uses real-world U.K. Motor Non-Comprehensive insurance
claims data from 2007 to 2013, making it directly applicable to industry practices. Forecasting future payments
enables insurers to maintain solvency by setting aside adequate reserves and optimizing capital allocation. The
SAR(1) model, in particular, demonstrates strong forecasting accuracy, especially for short-term predictions like
quarterly claims. These forecasts are crucial for meeting regulatory requirements such as Solvency II, which
mandates precise estimation of outstanding liabilities. The paper contributes to the advancement of predictive
analytics in insurance by combining classical actuarial science with modern statistical modeling. It also encourages
further research into parametric time series models tailored for skewed insurance data. The ability to simulate
artificial data and estimate parameters artificially supports broader applications across different lines of insurance.
The methodology can be extended to other types of insurance such as health, life, and property, where similar
forecasting challenges exist. Moreover, the integration of statistical forecasting into pricing strategies improves
premium rate-setting based on actual claim trends. The study emphasizes the importance of identifying seasonality,
trend, and autocorrelation in claims data to improve forecasting precision. Ultimately, adopting such advanced
modeling techniques empowers insurers to make data-driven decisions, enhance operational efficiency, and
strengthen financial planning. The paper sets a foundation for future innovation in actuarial science and promotes
collaboration between academia and the insurance industry.

It is important to acknowledge that the insurance data used in this study may be somewhat dated. This is
primarily due to the inherent difficulty in accessing recent, high-quality insurance datasets, as such data is often
confidential, proprietary, or not readily available for public research. The dataset employed in this analysis serves

Stat., Optim. Inf. Comput. Vol. 14, July 2025



18 THE SYNTHETIC AUTOREGRESSIVE MODEL FOR THE INSURANCE CLAIMS PAYMENT DATA

as a practical illustrative example, intended to demonstrate the application of actuarial and statistical methods in a
real-world insurance context. While the data may not reflect the most current market conditions, it remains valuable
for exploring the dynamics of claim development and testing the proposed modeling approach. We hope that
future papers will be conducted using more recent and extensive insurance claims data, which would enhance the
relevance and applicability of the findings. The primary insurance-related objective of this research is to introduce
a novel predictive framework that could assist insurance companies in improving their financial forecasting of
claim liabilities. By offering an innovative modeling perspective, we aim to contribute to the ongoing efforts in
the industry to enhance reserve accuracy, strengthen solvency planning, and support data-driven decision-making
processes.
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