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Abstract Named entity recognition (NER) is one of the preprocessing stages in natural language processing (NLP), which
functions to detect and classify entities in the corpus. NER results are used in various NLP applications, including sentiment
analysis, text summarization, chatbot, machine translation, and question answering. Several previous reviews partially
discussed NER, for instance, NER reviews in specific domains, NER classification, and NER deep learning. This paper
provides a comprehensive and systematic review on NER topic studies published from 2011 to 2020. The main contribution
of this review is to present a comprehensive systematic literature review on NER from preprocessing techniques, datasets,
application domains, feature extraction techniques, approaches, methods, and evaluation techniques. The result concludes
that the deep learning approach and the Bi-directional long short-term memory with a conditional random field (Bi-LSTM-
CRF) method are the most interesting methods among NER researchers. At the same time, medical and health are NER
researchers’ most popular domains. These developments have also led to an increasing number of public datasets in the
medical and health fields. At the end of this review, we recommend some opportunities and challenges for NER research
going forward.
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1. Introduction

Information extraction (IE) is one of the main problems in text mining, aims to find structured information from
unstructured or semi-structured text [1,2]. In natural language processing (NLP) study, IE has two tasks, namely:
1) Named Entity Recognition (NER), and 2) Relationship Extraction (RE) [1,2]. Pirskorski and Yangarber [3],
added two more tasks, which are 3) Co-Reference Resolution (CRR) and 4) Event Extraction (EE). NER presents
challenges because text data, such as new vocabulary, are constantly changing [4]. In addition, NER also has an
essential role in NLP because it is one of the preprocessing stages used is several tasks such as text summarization,
machine translation, information retrieval, question answering, and chatbot [5].

Named Entity was first introduced in MUC-6 [6], as the forerunner of named entity recognition, which is used for
identifying entities in free-text and classifying them into person (PER), location (LOC), and organization entities
(ORG) [2,4,5,7–9]. Today, it can identify entities in various knowledge domains.

NER has several stages to complete its functions, as seen in Figure 1. The first stage of NER is making a
dataset/corpus by taking a website or social media script. The popular term for this first stage is “scraping”.
Some methods and tools can be used for scraping, including Octoparse and Scrapingbee. The next step is
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Figure 1. NER Phase.

preprocessing, which is helpful to clean the data from various noises. Several preprocessing steps are described
in more detail in sub-section 3.3. The next stage is feature extraction which can be done using multiple techniques,
as shown in subsection 3.6. Some extracted features include linguistic, orthographic, morphological, context, and
lexicon features. Each feature has different uses, as explained by Eltayeb and Salim [10]. The next stage is the
implementation of the NER method. The most widely used methods for NER work are discussed in detail in
subsection 3.8. The final stage is to evaluate the performance of NER. The learning rate is also discussed in this
article. The learning rate is an important discus-sion in developing deep learning as a method for determining
parameters that control how much the model parameters change at each step during the training process, affecting
the convergence speed and stability of the training, discussed in subsection 3.9. The evalua-tion methods used are
Precision, Recall, and F-Score, discussed in subsection 3.10.

NER consists of two tasks:1) entity identification, 2) entity classification [11-13], where these tasks become
structured data suppliers in the next NLP stage [7]. Entity identification is the process of determining words/phrases
in the corpus (regardless of whether entities or not). It is followed by entity classification, which determines the
entity type based on the defined entity class [13]. The entity classes commonly used are person (PER), location
(LOC), and organization (ORG). Nadeau and Satoshi mentioned several strategies to solve NER problems: 1)
a rule-based approach, 2) dictionaries-based, 3) supervised machine learning, 4) a combination of rule-based,
dictionaries-based and supervised machine learning [12]. However, according to Akkasi and Varoglu, these
methods have many drawbacks, making them challenging to implement, for example, the difficulty of a rule-based
approach to explore updated rules and patterns in the newly created text [14].

Studies of NER have increased in recent years, and researchers have proposed various methods, approaches,
datasets, feature extraction, preprocessing, and application domains. A large number of NER publications provide
an opportunity to review this topic. Wen et al., [15], studied NER with an emphasis on a) rule-based and
dictionary-based methods, b) statistical learning-based, c) hybrid method, and d) deep learning-based method.
Other researchers conducted NER reviews in the chemical [10], clinical [16], biomedicals [17,18], and food
domains [19]. Several NER reviews discuss method approaches, namely classification [20,21], decision tree [22],
active learning [16], and unsupervised [23]. Thomas et al. [24] and Li et al. [25] conducted an NER review that
specifically uses a deep learning approach. Dandhasi et al. [26] and Shalaan [27] reviewed NER publications
specifically for Arabic. Several NER review articles indicate that NER is one of the popular topics in NLP topic
research.

This article aims to discuss NER research more comprehensively than previous research. This NER review uses
a systematic literature review (SLR) technique. We present the development of NER research from 2011 to 2020.
The study includes a discussion of a) NER research trends from year to year; b) researchers and journals that
publish many NER articles; c) dataset and preprocessing; d) application domain; e) type of feature and feature
extraction technique; f) the approach used; g) the NER method and its performance evaluation technique. This

Stat., Optim. Inf. Comput. Vol. 12, July 2024



WARTO ET. AL 909

Figure 2. SLR Phase [29].

article begins with an introduction and continues with Section 2, which describes the review method, Section 3
presents the results and analysis; and Section 4 contains conclusions and suggestions.

2. Method

2.1. Review method

This NER review uses a systematic literature review technique adopted from medical and health science to
computer science by Kitchenham [28]. The advantage of this SLR technique is that other researchers can later
perform the same technique on the same topic. In general, SLR consists of four stages, namely (1) planning, (2)
selection, (3) extraction, and (4) execution, as shown in Figure 2 The planning stage contains the determination of
PICOC criteria, as shown in Table 1.

2.2. Research question

This review aims to answer several research questions (RQ), as seen in Table 2. This review aims to answer several
research questions (RQ), as seen in Table 2. RQ1 and RQ2 identify published journals and productive authors
contributing to NER research. RQ3-RQ5 discusses preprocessing, datasets, and NER application domains, RQ6-
RQ8 discusses techniques feature extraction, NER approach, and method, and RQ9 identifies NER evaluation
techniques.

Table 1. PICOC Criteria.

Population Named Entity Recognition, Entity Extraction

Intervention Approach or method preprocessing, dataset or
corpus, feature extraction, feature decomposition,

classification, and optimization, in NER

Comparison -

Outcomes Method performance

Context Studies in general and domain-specific
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Table 2. Research question.

RQ number Research Question Goal

RQ1 What journals publish NER articles? Identify which journals publish the most
NER articles.

RQ2 Who are the most prolific NER-themed
writers?

Identify the authors who have published the
most NER articles.

RQ3 What are the most widely used
preprocessing methods?

Identify the preprocessing methods that
NER researchers widely use.

RQ4 What datasets do the researchers use in
NER?

Identify datasets that are popular and
widely used for NER research.

RQ5 Where is the NER application domain
used?

Identify popular application domains in
NER research.

RQ6 What are the feature extraction methods
widely used in NER?

Identify which NER researchers widely use
feature extraction methods.

RQ7 What approaches do the researchers widely
use to solve the NER problem?

Identify what approaches the researchers
widely use to solve NER problems.

RQ8 What methods do the researchers widely
implement to solve NER problems?

Identify widely implemented methods to
solve NER problems.

RQ9 What evaluation techniques do researchers
use widely to measure NER performance?

Identify widely used evaluation techniques
to measure NER performance.

2.3. Search strategy

As shown in Figure 3, the search strategy begins with selecting a digital library. We chose IEEExplore, ACM,
Springer, and ScienceDirect digital libraries. IEEExplore and ACM are the main choices because they are scientific
associations with a high reputation in computers and information technology. Both associations are also publishers
of reputable scientific journals. Meanwhile, Springer and ScienceDirect were chosen because they are publishers
of scientific journals with a good reputation among scholars. Search for strings used Boolean OR and AND with
structure (named entity recognition OR entity recognition OR entity recognition OR NER OR named entity OR
extraction entity) AND (approach * OR technique * OR Method * OR procedure * OR way) AND (performance
OR evaluation OR measure OR Assessment) AND (general OR general OR conventional OR application OR
domain-specific). However, because the creators of the data search on the database indexer of scientific articles are
different, the query adapts to the characteristics of the search engine. For example, ScienceDirect only allows a
maximum of eight Boolean strings. The basic search was on English-language articles published from 2011-2022.
This process of repairing this query, as illustrated in Figure 3, was repeated until the search results were more
accurate. At this search stage, it produced 3108 article titles containing the keywords we had defined. A search
of the ACM digital library returned 628 titles, IEEExplore 473 titles, ScienceDirect 721 titles, and Springer 1286
titles.

RQ1 and RQ2 identify published journals and productive authors contributing to NER research. RQ3-
RQ5 discusses preprocessing, datasets, and NER application domains, RQ6-RQ8 discusses techniques feature
extraction, NER approach, and method, and RQ9 identifies NER evaluation techniques.

2.4. Study selection

Literature search and selection were conducted in the second stage with source searches from the IEEEXplore,
ACM, ScienceDirect, and Springer article indexers. At this stage, 2748 articles from journals and conferences were
obtained, as shown in Figure 3. In the next step, a quality review was carried out based on the title and abstract.
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Figure 3. Journal search and selection phase.

Articles that not meet the criteria were excluded, while those that met the requirements were included and entered
at the next stage. The included criteria are NER articles that list topics, problems, datasets, and methods used. The
following criteria are articles published in the period 2011 to 2022.

Meanwhile, the exclude criteria are: a) articles that display unclear experimental results, b) only use private
datasets, and c) articles not written in English. This exclude-include process resulted in 345 article titles which
were then extracted based on nine RQs. The included criteria were further analyzed to find answers based on the
nine research questions, as shown in Table 2.

2.5. Data extraction

After retrieving 345 articles, the next step was creating a matrix using a spreadsheet to extract data according
to RQ1-RQ9. The data extraction process was carried out by reading the articles in detail. Then if data were
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found matched to one of the RQs, they were entered into the matrix. After the extraction process was complete, it
processed the data for each RQ and visualized the graph for pattern analysis on each RQ.

3. Result and Analysis

3.1. Journals publishing NER articles

The number of journal manuscripts of NER has increased significantly during the last decade, with an average of
17 articles per year. A significant increase occurred in 2020 with as many as 61 titles and 2020 with 92 articles, as
shown in Figure 4. Article publications increased sharply from 2018 to 2022, along with the popularity of the deep
learning approach, seen from the many deep learning approaches published in 2018-2022. For example, in 2020
and 2021, from 61 and 92 titles, 53 and 87 used a deep learning approach (discussed in more detail in Section 3.7).
NER publications until August 2022 have reached 63 articles.

NER topic articles were published in 134 journals, with the top ten journals shown in Figure 5. From 134
journals, 60% were in Q1, 30% were in Q2, and the remaining 9% were in Q3. IEEE Access became the journal
that published the most articles about NER (32 titles), followed by the Journal of Biomedical Informatics (28 titles).
A journal list can be considered for NER researchers to determine where NER articles should be published. The
number of articles published in the Journal of Bioinformatics is the largest in the medical and health field. A journal

Figure 4. NER publications from 2011 to 2022.

Figure 5. List of journals that publish NER articles.
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list can be a consideration for NER researchers to publish articles on NER topics. Journal and publisher selection
in publishing scientific papers are essential because many predatory journals are circulating lately, journals whose
publication does not heed the publication code of ethics. The journals included in this review are reputable journals
published by scientific associations. The novelty of each article can be scientifically justified. In addition, these
journals are indexed by Scopus from Q1-Q3.

3.2. Active and influential researchers on NER topics

Researchers play an essential role in the sustainability of a research topic. A researcher with many publications
on a case can be considered an expert in that field. Among the 190 curated articles, two names stand out, namely
Asif Ekbal, with ten titles (seven titles as the first author [30–35], and three titles as the second author [36–38].
Sriparna Saha has ten (one title as the first author [36], and seven as the second author [30–35], and two as the
third author [37,38]. There are at least ten articles in collaboration between Sriparna Saha and Asif Ekbal, two
of them as the second or third authors. They combine many techniques of machine learning (genetic algorithm
(GA), support vector machine (SVM), Conditional Random Field (CRF), maximum entropy (ME), memory-based
learning (MBL), Hidden Markov model (HMM), and naı̈ve Bayes (NB)) to improve their NER performance.
Asif and Sriparna’s NER research activities dominated from 2011 to 2016. In 2017, the two researchers began
to decrease the intensity of publication of the NER topic, where the deep learning approach began to dominate. For
example, articles still use a machine learning instead of deep learning [37].

Lin Sun published three titles as the first author of a deep learning approach.[39]–[41] As seen in Figure 6,
several researchers active on the topic of NER are Akasi [14,42], Cho [43,44] Gao [45,46], Qiu [47,48] Tang
[49,50], Yadav [37,38], and Naixin [51,52].

Figure 6. The authors with the most NER articles.

Stat., Optim. Inf. Comput. Vol. 12, July 2024



914 SYSTEMATIC LITERATURE REVIEW ON NAMED ENTITY RECOGNITION

Figure 7. Various NER preprocessing techniques. Horizontal axes indicate several publications using these techniques.

Discussions about researchers who are influential on the topic of NER cannot only be based on the number of
articles published by that person but can also use the number of citations. A search using the semanticscholar.org
search engine shows that the author has the highest number of sources in articles on the topic of NER is Lample et
al. [53]. Their paper was published in the Proceedings of NAACL-HLT 2016 under the title ”Neural Architectures
for Named Entity Recognition” was cited up to 2,446 times. Lample proposed two approaches: the Bi-LSTM neural
architecture with CRF and segment labeling using a transition-based method inspired by the shift-reduce parser.
He explored a new architecture that constructs chunks and labels a sequence of inputs using a similar algorithm to
transition-based dependency [54]. It is called Stack-LSTM for ”simplicity,” in which the LSTM is augmented with
a ”stack pointer”. Ritter et al. [55], wrote an article titled “Named Entity Recognition in Tweets: An Experimental
Study”, which was cited 1,231 times. They proposed that T-NER outperforms the state-of-the-art news-trained
counterparts, reducing error by 41%. T-POS and T-CHUNK in segmenting Named entities perform much better
than other POS tagging and Chunking tools.

3.3. NER preprocessing techniques

In the NLP research field, NER includes a preprocessing stage. Meanwhile, the NER topic also has a preprocessing
step. We need to emphasize here that what we discuss in this article is not placing NER as a preprocessing stage in
NLP, but NER as a computational process with several step ranging from preprocessing, representation, detection,
and classification to evaluation stages. As shown in Figure 7, there are many preprocessing methods, shuch
as tokenization, POS-Tagging, cleaning, sentence segmentation, stopword removal, lemmatization, chunking,
stemming, and normalization. All these methods do not replace each other but are interrelated and complementary.
Some NER researchers use several stages [56–60], others use just one preprocessing stage [42,61–64]. The use of
various preprocessing techniques depends on the scope of the research, the dataset used, and the adjustment to the
NER project being undertaken. For example, a study by Mu et al. [65], does not explicitly state the preprocessing
stage because their research uses the CoNLL2003 “ready to classify” dataset.

Tokenization is the most widely used preprocessing technique, followed by part-of-speech (POS)-tagging and
data cleaning, as shown in Figure 7. Tokenization is responsible for changing the sequence of characters in
raw data into a word sequence (or token) [66]. Data cleaning is performed to remove noise that reduces NER
performance, e.g., deleting ”empty tokens” on bigram tokenization. NER researchers mostly do data cleaning to
clean up data, including punctuation mark deletion, hashtags, URL removal, and excess space removal. The most
common tokenization technique is white space to break raw text data into tokens. Tokenization is the most preferred
choice in the NER preprocessing stage; it prepares the manuscript for NER annotation. The entity detection process
is carried out on tokens generated by this preprocessing stage. Spaces-based tokenization is excellent for Roman-
type-based languages like English and Indonesian.
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A large dataset/corpus is generally performed segmentation, breaking the large corpus into smaller units [66].
Segmenting pieces can be either a paragraph or a sentence. Furthermore, common words such as a, an, any, are, by,
etc., and, so, are removed using a stop-word removal technique, reducing the dataset volume so that computations
can be done more quickly. Many NER researchers also carry out the preprocessing stage with lemmatization to
find the root form of a word, for example, studied, spoke, spent, told, converted into a study, speak, spend, tell.
Lemmatization is more widely used because the results are more accurate than stemming, which only removes
additives using a rule-based method.

Tokenization has a significant effect on information extraction tasks, including NER. Khabsa and Giles compare
three tokenizer techniques for accuracy in the chemical domain [67]. Among the three tokenizers, OSCAR4 gave
the highest accuracy percentage of 87%, compared to ChemSpot and ChemXSeer, approximately 77.03% and
83.06%, respectively. Akkasi et al. [68] proposed ChemTok and compared it with other tokenization techniques
(Whitespace, ChempSpot, and tmVar) on two datasets (DrugBank and Medline). They proved that the use of
different tokenization affects NER performance. In testing using the DrugBank dataset with the SVM classification
algorithm, ChemTok’s tokenization can increase the F-Score value to 91.79. Meanwhile, WhiteSpace, ChemSpot,
and tmVar only gave 82.85, 89.10, and 90.34 F-Score, respectively [68]. Besides tokenization, POS-Tagging is an
option for the NER preprocessing step. Familiar entities, such as PER, LOC, and ORG, are nouns. POS-tagging
can speed up and simplify recognizing entities based on nouns.

POS-Tagging conceptually has a similar task to NER: annotating the text. POS-Tagging performs text
annotations based on part-of-speech such as nouns, pronouns, verbs, adverbs, prepositions, and others. Meanwhile,
NER performs annotations based on certain entities such as a person, location, and organization. Many researchers
use POS-Tag information to improve NER performance, as done by Atkinson and Bull [59], Cai et al. [69], Cho et
al. [70], and Suárez-Paniagua et al. [71], Gaur et al. [72], use POS tag as a feature to identify entity based on proper
noun tags. Entities are generally nouns, but, as revealed by Zhou et al. [73], who researched bugs in software,
entities can also be adjectives or adverbs. By adding the POS-Tag feature to NER, you can add to the entity’s
treasury, such as in Zhou’s system and software domain [73]. POS-Tag on ChER (chemical entity recognizer)
performed by Navvaro et al. claims to improve the performance of NER compared to ChemSpot and MetaboliNER
[74]. As shown in Figure 7, cleaning is also popularly used by NER researchers to clean raw data. Raw data from
generic websites contain many HTML and XML tags, advertisements, and menus [75]. Raw data emails contain
signatures and attachments. Meanwhile, raw PDF data contain many extra spaces between words, inconsistent
parentheses, and inconsistent sentence segmentation [72]. Punctuation like (+, -, /, *, (, ), , & ,%, ., ), ÷, ×, ], ], },
{, <, >, \, —, @, #) also need to be cleaned from the corpus [76]. These various noises must be cleaned to produce
a clean corpus ready to be annotated. This cleaning step is also useful for reducing the dimensions of the corpus.

Sentence segmentation is a preprocessing stage that is useful for parsing the text in the document into sentences.
One segment contains one sentence. Sentence detection is done using a period (.), a question mark (?), an
exclamation mark (!), and a suspension point (. . . ) [57]. Some researchers apply sentence segmentation using
various tools such as Stanford parser,[77] Jieba segmentation system [40,78] and Apache OpenNLP Maxent
Sentence Detector [56,79]. Other researchers do segmentation not based on sentences but words, as done by Sun
et al. [40] and Song et al. [80], and Song et al. [80] combine word segmentation with POS-Tag to increase the
accuracy of CRF-based entity recognition.

3.4. Dataset on NER topics

Research that uses the ”ready to classify” dataset - for example, CoNLL2003, JNLPBA, BC2GM dataset - generally
does not carry out the preprocessing stage. While NER research uses raw data, preprocessing steps are essential
for entity detection and classification. Some studies that use raw data write down the preprocessing actions taken
[73,77,81]. However, some others do not explicitly carry out the preprocessing stage [82–85]. As seen in Figure 8,
more NER researchers use public datasets than private datasets (Figure 9). This trend is consistent yearly, and
researchers using public datasets is increasing.

As shown in Figure 10, the most popular public dataset NER researchers use is CoNLL2003. It consists of three
entities, namely (PER), location (LOC), and organization (ORG). CoNLL2003 dataset was still widely used until
2022, including by Gaur et al. [72], Wang et al. [86], Zhong et al. [87], Liu et al. [88], Xiaofeng et al. [65], and
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Figure 8. Use of private and public datasets from year to year.

Figure 9. Use of public and private datasets.

Figure 10. Popular NER datasets.

Chang et al. [89]. Its advantage is the gold-standard dataset used by NER research to benchmark the proposed NER
performance evaluation [4]. Another CoNLL2003 dataset advantage is the balanced annotation of PER (10059),
LOC (10.645), MISC (5062), and ORG (9323) entities [90]. Wang et al. [91] proposed the Adversarial Trained
LSTM-CNN (ASTRAL) method to produce a robust NER system. The test results using the CoNLL2003 dataset
showed the highest F-Score value of 93.32, compared to the OntoNote5.0 dataset of 89.44 and WNUT-17 of
49.72. The result seems influenced by the ratio between the size of the corpus and the number of entities. The
OntoNotes5.0 dataset has more tokens and entity types but fewer entities than ConLL2003 and WNUT-17, as
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Table 3. Dataset comparison statistic.

Dataset Tokens Entity frequency Entity type

CoNLL-2003 23499 11.6% 4

OntoNotes 5.0 81828 7.5% 18

WNUT-17 3160 5.9% 6

Table 4. Data used based on languages.

Language Amount

English 204

Chinese 86

Arabic 10

Indian 9

Spanish 7

Korean 7

Portuguese 3

Persian 3

Turkish 2

Indonesian 2

shown in Table 3. The WNUT-17 dataset comes from various sources: Twitter, comments on YouTube, Reddit, and
Stackexchange. While OntoNotes 5.0 comes from the Linguistic Data Consortium [91]. Other experiments using
the CoNLL2003 dataset were conducted by Lample et al. [53], Chiu and Nichols [92], Aguilar et al. [93], Peters
et al. [94], Clark et al. [95], Devlin et al. [96], and Akbik et al. [97] and also showed much higher F-Score values
than the OntoNote 5.0 and WNUT-17 datasets [91].

Numerous studies on the medical and health domain constitute many datasets in that domain, such as JNLPBA,
CCKS, NCBI, BioCreative, and GENIA. The introduction of disease entities (NCBI), DNA cell entities (JNLPBA),
disease symptom entities (CCKS), gene entities (BioCreative), and viral entities (GENIA) has become the
benchmark for NER research in the medical and health fields. Recognition of these entities becomes input at later
stages of NLP, such as disease detection and guidance on prescribing patients [16]. There are so many datasets in
the medical and health domain that building the NER COVID-19 dataset is an opportunity and urgent to work on.
The role of NER as a preprocessing stage in NLP research has a strategic position to be realized immediately.

Using public rather than private datasets shows enthusiasm for NER research on improving methods and
algorithms. Private datasets are generally utilized for NER implementations in specific application domains, such
as automotive [98], geology [48], agriculture [99], and law [83]. A public dataset is also chosen for benchmarking
with a private dataset. Although some researchers use private datasets, they still use them as a comparison, as was
done by Ekbal and Saha [34], Liu et al. [100], Kim et al. [101], and Kim et al. [102]. The proposed method can be
more reliable when using public dataset testing.

As seen in Table 4, most of the datasets are in English, Chinese and Arabic. NER researchers mostly use English
as a dataset for various reasons. Firstly, English is the international language with the most speakers. Second,
preprocessing tools (stemming, POS-Tagging, lemmatization, parsing, stopword removal, chunking) are widely
available in English. Third, because NER’s primary mission is to develop methods, creating datasets in languages
other than English is not a significant concern. Fourth, there are still few references or scientific publications that
use non-English languages. As shown in Table 4, based on 345 articles, 204 articles used an English dataset, 86
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articles used a Chinese dataset, ten articles used the Arabic dataset, nine titles in Indian, 7 in Spanish and Korean,
respectively, and three articles in Portuguese and Persian. It is challenging for NER researchers to develop a corpus
in low-resources languages.

3.5. NER research application domain

NER application covers both general and specific domains. NER, in a general domain, is responsible for
recognizing entities such as a person (PER), location (LOC), and organization (ORG) recognition. As seen in
Table 5, there are 137 of 190 titles in a general domain. NER in specific domains include medical and health,
biomedical and chemical, network and security, biology, chemistry, geoscience, business and economics, history
and culture, sport science, military, and agricultural. Entities in the farming domain are such pests and diseases
[99], geology (e.g., rock, stratum, toponym) [48], sports science (e.g., competition name, level of competition,
match time) [103], and military domain (e.g., weapons, mission, location, organization) [104]. However, there are
some studies in several fields at once, such as those conducted by Zhong et al. [87], Johnson et al. [105], Jin et al.
[106], Ekbal and Saha [107], Xu et al. [108],band Song et al.[109].

Publication in the medical and health domain reached 36%. Medical and health fields have become popular
domains in NER research because of many medical records data in various hospitals. These data can support
doctors in determining the right patient drug prescription [229]. Even if expert reviews, a massive medical record
will be very long and tiring. Artificial intelligence has become a solution for processing patient data more quickly

Table 5. NER research domain.

Domain Research

General [12, 31, 32, 34–36, 39, 50–52, 64, 65, 72, 80, 84, 86–89, 91, 100, 101,
105, 106, 110–148]

Medical and health [13, 30, 33, 37, 38, 43–46, 49, 56, 60–63, 69–71, 77–79, 85, 102,
149–203]

Biomedical and chemical [14, 41, 204–207]

Network and security [57, 208–213]

Biology [59, 214–220]

Chemistry [58, 74, 221–224]

Geoscience [47,48, 225]

Business and economics [40, 81, 226]

History and culture [316-320]

Agriculture [99, 321-323]

Law [83, 227]

Social media [108, 109]

Automotive and
engineering

[98, 325-328]

Military [104]

Neuroscience [228]

Sport science [103]

System and software [73]
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and accurately. NER in the medical and health domain identifies important entities such as disease symptoms and
drug prescriptions [62, 63, 151, 203, 230].

NER researcher enthusiasm in the medical and health domain is because it directly contributes to human life.
Modern human lifestyle is constantly changing, which affects their health. The COVID-19 pandemic increases the
chance for NER researchers to identify entities related to symptoms, vaccines, organizations, number of sufferers,
patient status, organizational entities, health worker entities, hospital location entities, and other related entities
[231–233]. Its results can be valuable for different NLP tasks, such as text summarization, question answering,
chatbots, machine translation, and information retrieval related to handling the COVID-19 pandemic.

Nozza et al. propose the L2AWE method as an ontological entity mapping schem.153 L2AWE (Learning To
Adapt with Word Embeddings) aims to adapt the NER system trained on the source classification scheme to a given
target. L2AWE does not need to retrain the underlying NER model to match the new target generic classification
scheme. Because the amount of training data requires a large volume, Nozza et al. [153] use three pre-training
models simultaneously, namely Wiki2Vec, GoogleNews (W2V), and BERT. Most domain adaptation methods
focus on one domain without considering all annotations. When there is a shift between domains too large, the
decline in NER performance is even more significant. This weakness is corrected by the method proposed by Li et
al. taking multi-aspect relevance learning (MARL) [152]. The fine-tuning process uses BERT with the lost function
formula, as shown in equation 1.

LNER = − 1

m+ n

m+n∑
j=1

yj logŷj (1)

Furthermore, by calculating the vector mean at the sentence level, the domain-level representation uses the cosine
equation of the two domain-level vectors to find the domain distance.

Qsi =
1

mi

mi∑
j=i

BERT (xj) (2)

dsa,sb = similarity(qsa , qsb) (3)

The relevance learning sample level uses domain labels to design a binary domain discriminator classifier,
determining whether the sample belongs to the target domain. That output value determines the proximity of the
model to the target domain. The general entities can be the baseline in multidomain research by looking at the size
of the public domain, as shown in Table 5

3.6. Features Extraction

NER dataset is a collection of texts or corpus. Computers cannot read a text like humans but can only read numbers.
Therefore, a corpus needs to be represented in numbers. Various representation and feature extraction techniques
are shown in Figure 11. Popular feature extraction techniques include word embedding and character embedding,
POS-Tag and word2vec, n-gram, chunk, and skip-gram.

Word embedding is converting words into numbers in the form of vectors or arrays [76]. Word embedding ranks
at the top of feature extraction techniques. It relates to the deep learning approach that NER researchers have widely
used in recent years. The deep learning approach uses word embedding as a feature extraction technique. It has
several advantages such as: a) it can reduce the size of a vector or array to smaller dimensions when compared
to one-hot-encoding [234]; b) it does not require tagging during the training stage [235]; c) it can give a richer
semantic meaning [236]. However, word embedding also shows some drawbacks: out-of-vocabulary, antonymy,
polysemy, and biased embedding [237]. Regarding this deficiency, it is an opportunity for future researchers to
improve word embedding to provide maximum text vectorization performance.

The next feature is POS-Tagging. It is responsible for annotating words/tokens according to part-of-speech
[238]. Part-of-speech is a class of words with grammatical properties that play a role in the syntax of similar
sentences [237]. POS-Tagging has similarities to NER, which tag the corpus. Labels on POS Tags use nouns,
verbs, adjectives, adverbs, exclamations, and others [239]. Labels on NER are defined based on entities such as
a person (PER), location (LOC), organization (ORG), and others. POS tags can be implemented in any domain
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Figure 11. Various feature extractions on NER.

because the POS structure has the same pattern in all disciplines. NER is suitable for identifying entities in a
particular domain because the entities can be defined during the corpus annotation process. For example, medical
entities are different from entities in the automotive area. NER uses POS Tag to identify nouns in the corpus for
determining the institution [72] person, location, etc. Lin et al. [240] state syntactic information, including POS
Tag, explicitly as a contextual feature of each word in a sentence.

The number of NER researchers using word embedding, word2vec, character embedding, GloVe, and BERT
feature extraction cannot be separated from the popularity of deep learning. BERT provides better word
representation performance when compared to word2vec, GloVe, and ELMo [241]. Word2vec is a machine learning
model for producing word vector representations based on the context of the words in the corpus. Word2Vec uses
a neural network model to learn vector representations of words that reflect deep semantic relationships in the
cor-pus. These representations are then used in various NLP tasks, including NER. Word2vec, first introduced by
Mikolov in 2013, uses two architectures, Continuous Bag-of-Word (CBOW) and Skip-gram [242]. CBOW predicts
the wt target word based on its context, while Skip-gram predicts the word context based on the target word. The
vector representation of words is obtained from both architectures by updating the parameters through a neural
network-based training process. The context here is the words around wt, namely wt-2, wt-1, wt+1, and wt+2, two
words to the left of the target and two words to the right [66].

To predict wt, CBOW uses the probability formula, as shown in formula 4.

P (wt|wj(j|j−t|≤l,j ̸=t)) = Softmax

M

 ∑
|j−t|≤l,j ̸=t

Wj

 (4)

where, P (wt|wj(|j−t|≤l,j ̸=t)) is the word probability wt, l is the training context measure, M is the weighting matrix
on R|V |m, V is the number of vocabulary words, and the m dimensions of the word vector. The CBOW model is
optimized by minimizing the sum of the negative log probabilities, according to the formula 5.

L = −
∑
t

logP (wt|wj(|j−t|≤l,j ̸=t)) (5)

We can adjust the number of window sizes as needed. If l increases the window size, the accuracy will increase,
but the training time becomes longer, and vice versa.

The skip-gram model, opposite CBOW, predicts the word context based on the target word using formula 6.

P (wj |wt) = Softmax(Mw)(|j − t| ≤ l, j ̸= t) (6)
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where, P (wj |wt) is the word context probability wj given wt, and M is the weighting matrix. The calculation of
the loss function in the skip-gram uses the formula 7.

L = −
∑
t

∑
|j−t|≤l,j ̸=t

P (wj |wt) (7)

The implementation of Word2vec in the proposed model aims to reap the advantages of Word2vec, namely: 1)
computational efficiency because it only requires the context around the target word to make predictions, 2) being
able to learn word representations in a large corpus by reducing the dimensions of the vector representation, and 3)
being able to express semantic relationships between words in the form of vector operations, for example, ”king”
- ”man” + ”women” will be predicted to become ”queen”.

With the increasing number of deep learning approaches implemented by NER researchers, BERT is a promising
option. The advantage of BERT is that it can detect words in the OOV (out of vocabulary) category compared to Bi-
directional long short-term memory with a conditional random field (BiLSTM-CRF) [196]. BERT is designed for
in-depth two-way train representation by putting together the left and proper context across all layers. A pre-trained
BERT can be well-tuned to create a competitive model for various tasks [244]. Since the appearance of word2vec in
2013, until now, it is still widely used by NER researchers to represent text features. Word2vec representations are
great for capturing syntax and semantic forms of an order of language, and a relation-specific vector characterizes
each relationship. However, with the increasingly widespread implementation of deep learning, word2vec is slowly
shifted by the presence of BiLSTM and BERT, which are improvements from LSTM RNN. One of the advantages
of BiLSTM is that it can store long memory from two directions [143]. and better capture the context of the
sentence better when compared to vanilla RNN or LSTM. BiLSTM is a development of LSTM in two directions.
The LSTM architecture has four gates: 1) learn gate, 2) forget gate, 3) remember gate, and 4) use gate, as shown in
figure 12.

Figure 12. CBOW architecture predicts the current word based on context, and Skip-gram predicts surrounding words given
the current word [243].

The learn gate serves as a memory to store short-term memory results coupled with input values. The forget
gate serves as the long-term memory of the token sequence. The remember gate serves as a memory that stores
short-term and long-term memory. This gate will later become a new long-term in the following sequence. The
use gate is tasked with storing short-term and long-term memory, which subsequently becomes the new short-term
memory for the next sequence.
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Recurrent neural networks are designed to handle input sequences in variable sequences but cannot model the
long-term dependencies of those input sequences. Although RNN output is based on previous calculations, long-
term dependencies are still a challenging problem in RNN training [347]. LSTM is a type of RNN that mitigates
this problem by keeping memory cells that serve as summaries of previous elements of the input sequence [348].
LSTM is a development of the hidden layer of the RNN into a more detailed unit called a cell. Inside the hidden
layer, a cell consists of several gates that can be controlled to store or erase memory information throughout the
sequential input [349]. Therefore, LSTM improves the ability to maintain remote context information. Longer
contextual information can help models study semantics more precisely.

As shown in Figure 13, the elements in an LSTM cell have a gate it (input gate), ft (forget gate), and ot (output
gate). While W and b are, respectively, weight values and biases in vectors. Forget gate ft, with the output of the

Figure 13. The smallest element in the LSTM, called a cell.

previous cell ht and current input xt in connection to prior circumstances ct − 1 determine what proportions to
forget some information. The output of the forget gate is calculated as a sigmoid value σ, as seen in equation 8.

ft = σ(Wf [ht−1, xt] + bf ) (8)

The input gate determines which values should be updated considering the current input, xt, candidate value ct,
and the previous state ht−1. These values are updated with formulas 9, 10, and 11.

it = σ(Wi[ht−1, xt] + bi), (9)
C̃t = tanh(Wc)[ht−1, xt] + bC), and (10)
Ct = ft ∗ Ct−1 + it ∗ C̃t (11)

Where the * is the multiplication element, the ht value is calculated using the output gate by combining currents
Ct, ht−1, and xt, as seen in equations 12 and 13.

ot = σ(Wo[ht−1, xt] + bo), (12)
ht = ot tanhCt (13)

The LSTM addresses significant gradient reductions during training procedures through gate mechanisms.
BiLSTM consists of two directions LSTM, forward and backward. LSTM ahead performs the hidden state to the
right (

−→
h1,
−→
h2,. . . ,

−→
hn ), with input from x1 to xn. Meanwhile, LSTM retreats to carry out the process of calculating

the hidden state from the opposite direction (
←−
h1,
←−
h2,. . . ,

←−
hn), with inputs in descending order from xn ke x1, as

shown in figure 13. Depending on the application of the LSTM, in one case, it may require an output sequence
corresponding to each element in the sequence, or a single output encapsulates the entire sequence. In the previous
case, the sequence of output (

−→
h1,
−→
h2,. . . ,

−→
hn) of LSTM is obtained by combining the hidden state of forwarding

and backward LSTM for each element,
−→
ht = (

−→
ht ;
←−
ht) for t = 1, . . . , n. In another case, the output is obtained by

combining the last hidden state of the forward and backward LSTM,
−→
h = (

−→
hn;
←−
hn) [350].
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3.7. NER approaches

Initially, researchers used traditional approaches, i.e., rule-based, dictionary-based, and knowledge-based.
Currently, many studies use machine learning approaches, including deep learning. As the oldest approach, rule-
based is now being abandoned because it has several disadvantages, such as depending on manual rules based
on textual patterns [125,243]. The subsequent weakness is time-consuming and labor-intensive maintenance,
especially if the linguist’s knowledge and background are insufficient [125]. On the other hand, machine learning
in NER can recognize entities better than that produced by traditional rule-based and dictionary-based [166].

Deep learning and machine learning are the most widely used, as shown in Figure 14. However, some researchers

Figure 14. Various approaches in NER research.

combine rule-based or dictionary-based with machine learning [77, 110, 139, 155, 175, 178, 217], and deep
learning [65, 156, 157, 179]. The knowledge-based approach is the least implemented approach, namely by Al-
Jumaily et al. [133], Cabot et al. [61], followed by Munkhdalai et al. [204], which combines knowledge-based
and machine learning. As shown in Table 6, each approach has its strengths and weaknesses. The combination
of several approaches can improve performance, with the philosophy of maximizing the strengths and reducing
the disadvantages of each. For example [155], combining dictionary-based, rule-based, and machine learning can
improve the quality of NER data input, especially for Chinese electronic medical records (CEMR). Deep learning,
a weakness in a few datasets, can be overcome using a dictionary-based method to improve performance; -4%
compared to using only CRF. Performance is further enhanced by combining deep learning with rule-based to
perform entity extraction. Here, researchers have vast opportunities to improve methods by combining several
approaches and considering each approach’s weaknesses and strengths, as shown in Table 6.

Xu et al. [157] proposed a hybrid model SBLC (Semantic Bi-Directional LSTM CRF) which combines rule-
based and deep learning approaches. The rule-based approach used is Ab3P (Abbreviation Plus Pseudo-Precision)
which is in charge of detecting abbreviations in the corpus [157]. The precision of each rule is estimated by
applying randomized data (pseudo-precision). The rule-based approach embedded in deep learning improves NER
performance with a precision value of 0.866, recall of 0.858, and F1-score of 0.862. The rule-based approach,
although said to be the oldest approach, can provide improved performance. Hsu and Kao utilize curators to detect
entities based on rule-based rankings. The results of the curation are then rule-based and then used to develop a
dictionary-based NER system and machine learning using CRF. The test results show a significant increase in the
F1 value from 0.54 to 0.61.

Neural network (NN), the pioneer of deep learning, has been found since the 1980s. However, the popularity
slowed down because, at the time, computation speed was still slow, the dataset was small, and it was not thought
about doing an in-depth training dataset with many layers [246]. NN, which later developed into a deep neural
network (DNN), is currently a new approach widely used in NER research because it has many advantages. One
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Table 6. Advantages and disadvantages of the NER approach.

Approaches Advantage Disadvantage

Knowledge base It is a good performance for
specific domains based on domain

knowledge.

Use is limited to specific domains
only. It takes a long time to build

representative knowledge.

Dictionary-based Fast process with precision results.
By comparing the target entity

with the vocabulary in the
dictionary.

It requires great effort to build a
dictionary. Weak on adaptability

Rule-based Rules are built on the expertise of
linguistic experts. They can deliver

high performance.

Different expert knowledge can
lead to ambiguity. Weak

adaptability.

Machine learning-based Continuous self- improvement.
Quickly identifies trends and

patterns. No human intervention.

High error-susceptibility.
Time-consuming. The result

depends on data quality.

Deep learning-based Good performance for large
datasets.

Computing is complex and takes a
long time. Requires huge

resources.

of the advantages of DNN is automatically generating features from a corpus [73]. DNN can also describe local
data characteristics very well, and the merged layer can extract the most representative part of local features [88].
Increasingly large NER datasets with good annotation quality make deep learning performance better [101, 245],
Murthy et al. [112] added the POS-Tag feature to improve NER performance with a deep learning approach.
Combining deep learning and machine learning could provide better prospects for future NER research.

3.8. Various NER methods

The BiLSTM-CRF combination method is the most widely used choice, followed by the conditional random field
(CRF) method, as shown in Figure 15. CRF method was first proposed by Lafferty et al. [248] for sequential data
segmentation and labeling based on probabilistic models. CRF was widely used, including in the NER topic. The
advantages of CRF are that it can estimate conditional probability distributions over labeled sequences and allows
information about decision confidence to be used by other components in text processing [247, 248]. CRF method
is also widely combined with other machine learning techniques, such as SVM [215,217], ME [32,36,107], and
RNN [205,207].

Recurrent neural networks are designed to handle input sequences with variable sequences but cannot model the
long-term dependencies of these input sequences. Even though the RNN output is based on previous calculations,
long-term dependencies are still a challenging problem in RNN training [251]. LSTM is a type of RNN that reduces
this problem by preserving memory cells that act as summaries of the previous elements of the input sequence
[252]. LSTM is the development of the RNN hidden layer into a more detailed unit called a cell. Within the hidden
layer, a cell consists of multiple gates that can be controlled to store or delete memory information along sequential
input [157]. Therefore, LSTM improves the ability to maintain remote context information. Longer contextual
information can help the model learn semantics more precisely.

As shown in Figure 15, the elements in an LSTM cell have it (input gate), ft (forget gate), and ot (output gate).
While W and b are weighted and biased, respectively, in the vector. The forget gate ft, with the previous cell output
ht−1 and the current input xt to the previous state ct−1 determines what proportion to forget some information.
The output of the forget gate is calculated as the sigmoid value of Bσ.
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Figure 15. The smallest element in the LSTM is called a cell.

ft = σ(Wf [ht−1, xt] + bf ) (14)

The input gate determines which value to update considering the current input xt, the new candidate value ct, and
the previous state on ht−1. Update these values using formulas 15 to 17.

it = σ(Wi[ht−1, xt] + bi), (15)
C̃t = tanh (Wc[h(t− 1), xt] + bC), and (16)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (17)

where the * sign represents the multiplication element and the ht output is calculated using the output gate by
combining Ct, ht−1, and xt currents.

ot = σ(Wo[ht−1, xt] + bo), (18)
ht = 0t ∗ tanhCt (19)

This LSTM is also designed to overcome significant gradient reduction during the training procedure via the gate
mechanism. BiLSTM consists of two forward and reverse LSTM directions. LSTM forward performs the hidden
state calculation process to the right (

−→
h1,
−→
h2,. . . ,

−→
hn), with input from x1 to xn. Whereas LSTM backward performs

the hidden state calculation process from the opposite direction, namely to the left (
←−
h1,
←−
h2,. . . ,

←−
hn), with inputs in

reverse order from xn to x1. Depending on the implementation of the LSTM, in one case, it may require an output
sequence that corresponds to every element in the sequence or a single output that encapsulates the entire sequence.
In the previous case, the output sequence (

−→
h1,
−→
h2,. . . ,

−→
hn) of the LSTM is obtained by combining the hidden state of

the forward and backward LSTM for each element, i.e.,
−→
ht=(
−→
ht;
←−
ht) for t = 1, . . . , n. For other cases, the output is

obtained by combining the last hidden state of the forward and backward LSTM, i.e.,
−→
h = (

−→
hn;
←−
hn)[252].

CRF is a conditionally trained model that can efficiently function with various non-independent features. CRFs
have specific properties of considering surrounding instances, unlike discrete classifiers. When predicting label
order for input sample sequences, CRF assumes contextual features [21]. CRF usually calculates the transition
probability between labels and the likelihood of the tag’s entire sequence [253].

CRF is combined with Bi-LSTM by putting it at the end of the NER algorithm to estimate that the entity label
sequence is correct [254]. For example, given input token x = {x1, . . . , xT } and the score of the output matrix
score [fil], score for labeling output y = {y1, . . . , yT } is given by: s(x, y) = ΣT

t=1(Ayt−1,yt + ft,yt) , where A is the
matrix of L× L parameters for transition between output labels. CRF then produces correct labeling possibilities
by normalizing this score across all possible output labeling: log P (y|x) = s(x, y)− logsumexp s(x, y′). The

log normalization referred to here is: logsumexp s(x, y′)
y′

= logΣy′ exp s(x, y′) [248]. CRF layer is designed to
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Figure 16. Several methods for NER task.

select the best tag sequence from all possible tag sequences considering the output of Bi-LSTM and correlation
between adjacent tags [255]. The CRF input is sequential data, which considers the previous context when making
predictions on the data state. This behavior modeling uses the feature function, which has several input values,
namely:

1. vector input set, X;
2. position i of the predicted data state;
3. data label i-1 in state x; And
4. label data state i on x.

where the feature function is defined as f(X, i, li−1, li). The purpose of feature functions is to express some
characteristic of the sequence represented by the data state. Each feature function is based on the label of the
previous word and the current word and is in the form of 0 or 1. Then assign each feature function a set of weights
(lambda), with the CRF distribution probability learning algorithm as formulas 20 and 21.

P (Y,X, λ) =
1

Z(X)
exp{

n∑
i=1

∑
j

λjfi(X, i, yi−1, yi)} (20)

where

Z(X) =
∑
yϵy

n∑
i=1

∑
j

λjfi(X, i, y′i−1, y
′
i) (21)

Calculating the lambda parameter uses the maximum estimation likelihood by taking the negative log of the
distribution to make it easier to calculate the partial derivatives, as in Formula 22, the negative log-likelihood
of the CRF probability distribution.

L(y,X, λ) = −log

{
m∏

k=1

P (yk|xk, λ)

}
(22)

= −
m∑

k−1

log

[
1

Z(xm)exp
{∑n

i=1 λjfj(Xm, i, yki−1, y
k
i )
}]

To apply maximum likelihood to a negative log function, you can use argmin, because minimizing negatives get the
maximum value. The lambda partial derivative function can be used to find the minimum value, as in formulas 23
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and 24.
∂L(X, y, λ)

∂λ
=
−1
m

n∑
i=1

Fj(y
k, xk) +

m∑
k=1

p(y|xk, λ)Fj(y, x
k) (23)

where

Fj(y, x) =

n∑
i=1

fi(X, i, yi−1, yi) (24)

The derivative formula above is used as a step in the gradient descent stage, where the gradient updates the
parameter values iteratively until it reaches a convergent value. Where is the updated gradient descent formula
used in CRF as in Formula 25

λ = λ+ α

[
m∑

k=1

Fj(y
k, xk) +

m∑
k=1

p(y|xk, λ)Fj(y, x
k)

]
(25)

Thus, in general, CRF consists of three steps: 1. define the required feature functions (formulas 20 and 21), 2.
initialize the weights to random values (formulas 22 and 23), and 3. apply gradient descent iteratively so that the
parameter values, in this case, the lambda values, reach convergence (formulas 24 and 25).

The CRF function is similar to logistic regression because it uses a conditional probability distribution with input
data in sequences or sequences. As stated in the definition, the first stage of probability calculation is related to
the CRF model and input/output order needed to calculate the conditional probabilities of the marginal distribution
P (Yi = yi|x) at a node and the marginal distribution P (Yi−1 = yi−1, Yi = yi|x). In the second stage, based on
the CRF parametric formula, two parameters λk and µj need to be studied using a training dataset to obtain a
P̂ (Y |X) model, which aims to find the maximum/highest probability in a particular sequence. After training the
CRF parameters based on the training dataset, we get a pleasant basic model P̂ (Y |X). In this third phase, we
need to calculate the output order Ŷ that maximizes the conditional probability P̂ (Y |X) based on the input x. The
algorithm to determine the output generally uses Viterbi [256].

3.9. Learning Rate

Learning rate is one of the methods used to control how many changes will be made to the model parameters in
each iteration during the training process. The learning rate determines how fast or slow the model learns from
the training data [257]. If the learning rate is too low, the model will learn slowly and need more iterations to
achieve optimal results. However, if the learning rate is too large, the model may ”skip” the minimum point in the
optimization process and fail to achieve good convergence.

Determining the right learning rate can use several techniques: trial and error, adaptive, and automatic. The trial
and error method for determining the learning rate is by manually determining the learning rate value, then looking
at the performance of NER. Researchers can start with a large learning rate, for example, 0.1, and gradually reduce
it to see changes in model performance. If the model does not converge or the results are bad, the learning rate
can be reduced gradually. The second technique is adaptive, where the learning rate value is adjusted based on
information from the gradient [258]. This adaptive model can use Adam’s optimization algorithm, which combines
the gradient’s first and second moment estimates to adapt the learning rate. Besides Adam’s algorithm, we can use
Adagrad and RMSProp. The third way is to use an automatic tuning algorithm such as Grid Search or Random
Search to find the optimal learning rate that combines with other hyperparameters. Like the experiments conducted
by Smith, the learning rate that provides the most optimal performance is Nesterov [259], followed later by Adam,
RMSProp, AdaGrad, and AdaDelta [257]. Meanwhile, the comparison of learning rates carried out by Warto shows
that the optimal learning rate for NER is the Adam algorithm [260], compared to SGD and AdaDelta. These
results differ highly depending on the dataset type and experimental device used. Nesterov introduced a method
for accelerating gradients in four steps [259]. First, at each iteration t, we have the model parameter w and the
function’s gradient concerning that parameter, which is notated in Formula 26.

▽Jt(w) (26)
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The second step is updating the model parameters using the momentum obtained from the previous iteration, using
the formula 27.

w̃t+1 = wt + µv̇t (27)

where µ is the momentum which is a hyperparameter that controls the extent to which momentum is used in the
update, usually a value between 0 and 1.

The third step calculates the gradient at the current position using the formula 28.

▽̃t(w) = ▽Jt(w̃t+1) (28)

It then calculates the final update of the model parameters using the gradients in formula 29.

wt+1 = w̃t+1 − η · ▽̃Jt(w) (29)

where η is the learning rate which controls how much changes are made to the model parameters.
AdaGrad individually adapts the learning rates of all model parameters by scaling them inversely to the square

root of the sum of all historical squared values of the gradients [261]. AdaGrad uses a vector v to store the sum of
the squares of the previous gradients, as in the formula 30.

vtvt−1 + (▽Jt(w))2 (30)

Then the adaptive learning rate is calculated for each wi parameter using the square root of the previous gradient
accumulation, using the formula ??.

Learning Ratei =
(learning rate)√

(vt,i + ϵ)
(31)

Where vt,i is the it− i element of the vt vector, namely the accumulation of the previous gradient squares for the
ith parameter. At the same time, ϵ is a small value added to maintain numerical stability, for example, 10−8. Then
the parameters are updated using the gradient adaptive learning rate using the formula 32.

wt+1 = wt − learning ratei · Jt(w) (32)

AdaGrad calculates and updates the learning rate based on accumulating previous gradients. This technique
effectively adjusts the learning rate for each parameter based on the previous gradient history.

RMSProp modifies AdaGrad to perform better in settings by converting the accumulated gradients into an
exponentially weighted moving average. RMSProp uses the vector v to store the exponential average of the squares
of the previous gradients, which is denoted in the formula 33.

vt = βvt−1 + (1− β)(▽Jt(w))2 (33)

Where ▽Jt(w)2 is the square of the gradient ▽Jt(w), β is the hyperparameter that governs the contribution of the
latest gradient in the calculation of vector v, the value is between 0.9 – 0.99. The adaptive learning rate is calculated
for each parameter wi using the square root of the previous gradient exponential average, as in Formula 32.

Adam (Adaptive Moment Estimation) was introduced by Kingma and Ba in 2014 as an alternative to determining
the learning rate. Adam’s method combines the momentum and RMSProp methods to calculate model parameter
changes [262]. First, Adam calculates the momentum mt based on the gt gradient using Formula 34.

mt = β1mt−1 + (1− β1)gt (34)

Then calculate RMSProp vt based on the squared gradient g2t using the Formula 35.

vt = β2vt−1 + (1− β2)g
2
t (35)
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Calculation of the adjusted momentum estimate m̃t and the adjusted RMSProp estimate ṽt , as shown in
formulas 36 and 37.

m̃t =
mt

1− βt
1

(36)

ṽt =
vt

1− βt
2

(37)

Where β1 and β2 are the momentum reduction factor and RMSProp, by using the momentum estimation and
RMSProp estimation as formulas 36 and 37, Adam can adjust the learning rate adaptively for each model parameter
so that it can help the algorithm quickly learn when approaching the minimum loss function and slow down when
approaching the optimum point.

The next RMSProp variant is AdaDelta, which Zeiler developed with additional adjustments [263]. AdaDelta
replaces the global learning rate with the difference from the previous model parameters to calculate the adaptive
learning rate. RMSProp E[g2]t calculation is based on the g2t gradient, as in formula 38.

E[g2]t = ρE[g2]t−1 + (1− ρ)g2t (38)

where ρ is the RMSProp reduction factor.
Then the adjusted model parameter changes are calculated using the formula 39.

δwt =
−
√

(E[δw2](t− 1) + ϵ)√
(E[g2]t + ϵ) · gt

(39)

Then the model updates the adjusted model parameters, namely. wt+1 = wt + δwt. Of the various learning rate
optimization methods described above, the Adam and SGD methods are the most widely used by NER researchers.
Adam can provide faster convergence and be adaptive to changes in learning rate. In contrast, SGD is more efficient
for large datasets with lower computational speeds.

3.10. NER performance evaluation technique

An evaluation of the proposed NER method or technique is necessary to measure the performance of the proposed
method or technique. Articles that do not demonstrate the results of evaluating the performance of the proposed
approach are not included in this review. Most papers we reviewed used precision, recall, and F1-score or F-
measure evaluation techniques. A combination of these three measurements is the most preferred choice, as shown
in Figure 17. However, many researchers also measure evaluation using only F-Score. It is understandable because
precision and recall are the first steps to calculating F-score. In other words, F-score is obtained by calculating
precision and recall, as shown in Eq. 27.

Precision =
TruePositive

TruePositive+ FalsePositive
(40)

Recall =
TruePositive

TruePostiive+ FalseNegative
(41)

F1Score =
2× recall × precision

precision+ recall
(42)

positive (TP) is positive data, and the predictive results are positive. True negative (TN) is negative data, and
the prediction results also show negative. TP and TN state that the classification model recognizes tuples correctly,
meaning that positive tuples are recognized as positive tuples, and negative tuples are recognized as negative tuples.
False positive (FP) is negative data, but the prediction results are positive. False negatives (FN) are positive data,
but the prediction results are negative. FP and FN stated that the classification model was misclassified, meaning
that positive tuples were recognized as negative tuples, and negative tuples were recognized as positive tuples.
Precision functions to measure accuracy, namely the percentage of tuples labeled positive by the classifier and the
label positive.
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Figure 17. Various NER evaluation methods.

Positive Negative

Actual Positive True Positive
(TP)

False Negative
(FN) P

Negative False Positive
(FP)

True Negative
(TN) N

P’ F’

Figure 18. Confusion matrix table.

Meanwhile, recall is used to measure completeness, the percentage of tuples labeled positive by the classifier as
positive. F-Score is the harmonic mean of precision and recall. So that when the researcher only shows the F-Score
value, he has calculated precision and recall values as seen in Eq. 40 and Eq. 41

Deng et al. [111] used speed evaluation to measure the speed of the filtering algorithm and the pruning technique
he proposed in the dictionary-based entity extraction process. The study’s proposed method proved to be faster
than the NGPP method proposed by Wang et al. [264] and ISH by Chakrabarti [265].

4. Discussion

NER is a preprocessing stage in NLP research. According to Larose [266], the preprocessing step contributes
60% of all time and effort for the entire data mining process. This large percentage opens up further research
opportunities that are increasingly challenging. The current development of the NER topic cannot be separated
from the deep learning trend, starting from corpus generation, preprocessing, feature extraction, etc. Deep learning
promises better performance compared to other machine learning methods. However, the computational complexity
of deep learning is resource-intensive. With the development of future computational speed, computational
complexity constraints can be overcome.

English is the largest language dataset available for NER research because English is the most widely spoken
language globally. NER research in other languages include Arabic [64, 117, 125, 132, 255], Chinese [51, 52,
105, 156, 159, 180, 256], German [269], Korean [115, 130, 196, 258] and Indian [35, 112, 119, 141]. Among the
NER studies in Bahasa Indonesia have been conducted by Wintaka et al. [271], Syachrul et al. [272], Azalia,[273],
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Wilie et al. [274], Wibawa and Purwarianti [275], and Gunawan et al. [276] NER research on Bahasa Indonesia
is up-and-coming because Indonesian speakers in 2021 will reach 260 million people. Indonesia is also one of the
countries with active social media users worldwide.

Some researchers are concerned with bilingual and multilingual NER, including Li et al. [113], Xie et al. [277],
Sabty et al. [278], Zafarian et al. [279], Winata et al. [280], Nguyen et al. [281], Dao et al. [282], Arkhipov et al.
[283], Ni and Florian [284]. There are still few who research this area, even though languages in this world are
prodigious. For example, Arkhiphov et al. [283] studied multilingual NER by performing NER tuning using the
CRF-BERT model in Russian, Bulgarian, Czechoslovak, and Polish. Ni and Florian [284], utilized the Wikipedia
corpus in various languages to improve NER in English, Spanish, Portuguese, Dutch, German, and Japanese.
Multilingual NER research on Asian languages can also be challenging because the countries with the largest
population are in Asia, such as China, India, and Indonesia.

NER performance with a machine learning approach depends on choosing the right features to create reliable
learning model [21]. Preprocessing techniques such as parsing, stemming, chunking, lemmatizing, and stopword
removal are the mainstays of machine learning-based NER preprocessing. As shown in Figure 7, these techniques
are becoming less and less used and have shifted to tokenization and POS-Tagging. This trend parallels the
increasing deep learning popularity, which can reduce long-time feature engineering [25]. The learning rate is
an important parameter in deep learning algorithms that determines how many steps it takes to update model
parameters during training. Choosing the right learning rate affects the success of training and the final performance
of the deep learning model. If the learning rate is too high or too low, the training process is at risk of failure, and
it can take a very long time to achieve good results [285].

CoNLL2003 dataset is still the benchmark for NER research, using the begin-inside-outside (B-I-O) annotation
scheme. In addition to these schemes, there are several other annotation schemes, including inside-outside (IO),
inside-outside-end (IOE), inside-outside-begin-end-single (IOBES), begin-inside (BI), and begin-inside-end-single
(BIES). Research on annotation schemes conducted by Alshammari and Alanazi [146], shows that selecting
annotation schemes affects NER performance. However, this performance is also influenced by the corpus
language factor [146]. The opportunity to research these annotation schemes in multiple languages can also present
challenges.

Medical and health domain is the largest sector in NER research, as shown in Table 3. Transportation, sports,
advertising, military, agriculture, automotive, and geoscience domain can be promising alternatives to NER
research. We argue that more research application domains imply NER is more advantageous. Therefore, there
are still extensive opportunities for NER researchers to explore new fields. Some of the new areas include civil
engineering, education, animal husbandry, marine, geography, forestry, and psychology. The challenge for NER
in new domain applications lies in the new entities that can be detected. More and more implementation of NER
research in new domains will increasingly add specific entities to that domain. In the future, a universal entity
library can be built for cross-domain NER research and present a versatile NER platform. The big data trend is
currently supporting the development of multi-domain NER.

The increasingly rapid development of big data, deep learning, and cloud computing has challenged NER
researchers to offer a universal entity library containing various cross-domain entities. But the biggest challenge is
regarding entity ambiguity. At the entity detection step, the same entity in one domain may have different meanings
in other domains. For example, ”Willian P. Hobby” can be interpreted as a political figure or an airport in Texas. In
the political domain, “Willian P. Hobby” is recognized as a “Person” entity, but in the transportation domain, it is
recognized as an airport, a “Location” entity.

The rapid development of big data opens up opportunities for NER research. The NER dataset is not only derived
from a text but can also be images, sounds, and videos. Zheng et al. [181], researched NER with text and image
datasets [181]. He proposed AGBAN (Adversarial Gated Bilinear Attention Neural Network), which combines
the extraction of image and text features. With this combination method, it can improve the overall performance
of NER. As Zheng et al. do, most multimodal NER researchers use microblog social media datasets. The social
media user added an image to the status he made on social media to corroborate the message he wanted to convey.
The uploaded image and the status update are related to the status. This background then motivated the multimodal
NER researchers to strengthen NER’s performance by extracting not only the text but on the accompanying image.
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Multimodal NER research has been conducted by Asgari-Chenaghlu et al. [116], Tian et al. [170], Seunghwan
et al. [388], and Liu et al.[146]. The datasets they use are all status posts on social media. NER’s multimodal
opportunities are still wide open, for example, in medicine and health, business and economics, and others.

5. Conclusion and Future Works

This review aims to map NER studies based on preprocessing data, datasets, application domains, feature
extraction, approaches, methods, and NER evaluation. By looking at a graph of a significant increase from 2011
to 2020, the NER topic in the future will still be a trend in the NLP area. Named entity ambiguity is another
challenge for research on NER. Research conducted by Zhou et al. [216] can be a starting point to continue the
entity ambiguity topic because entity ambiguity can reduce NER performance. The combination of deep learning
and other machine learning approaches is promising for future NER research.

NER for low-resource language is a future challenge in NER research. Most of NER’s research has been in
English, Chinese, and Arabic. There is little research and dataset for NER in Bahasa Indonesia, including NERgrit
and NERP. It is a challenge, especially for researchers in Indonesia, because Indonesian speakers reach more than
270 million people. The preprocessing stage has a large portion of NER research. A good preprocessing stage will
produce a quality dataset. Exploration of the preprocessing stage using various approaches could be an interesting
opportunity in the future. For example, at the tokenization stage, you can use sub-word tokenization such as Byte-
Pair Encoding (BPE) or WordPiece to deal with uncommon words or unusual entities.

The rapid development of big data opens up extensive opportunities to develop multimodal NER. Multimodal
NER datasets can come from various types, including images, audio, and video. The development of multimodal
NER applications can be state-of-the-art to provide an accurate data supply on IoT devices. IoT wearable devices
are required to recognize various entities around them in text, audio, and three-dimensional visual objects.
Identifying these IoT device entities will improve further if a multimodal NER module is embedded. This prediction
is in line with what was conveyed by Middleton et al., that this trend is likely to continue and could foresee the
progress made in approaches that exploit new sources of information such as personal mobile devices and data
connection from the Internet of Things (IoT) [389]. The more context available to associate with a user’s post, the
better the chances of getting the correct location extraction and disambiguation.

NER’s research related to the COVID-19 pandemic is wide open with the availability of public datasets from
various related institutions, for example, WHO, scientific publication publishers, health authorities of each country,
hospitals, and others. Entity recognition in the COVID-19 dataset can help perform sentiment analysis applications,
chatbots, speech recognition, and machine translation dedicated to helping solve pandemics. The future chances are
related to integrating NLP techniques in several ways, for example, morphological processing, syntactic analysis,
or determination of POS-tags with the preprocessing stage to obtain richer features.
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170. A. Casillas, N. Ezeiza, I. Goenaga, A. Pérez, and X. Soto, Measuring the effect of different types of unsupervised word representations
on Medical Named Entity Recognition, Int. J. Med. Inf., vol. 129, pp. 100–106, Sep. 2019, doi: 10.1016/j.ijmedinf.2019.05.022.

171. J. Chae et al., Identifying non-elliptical entity mentions in a coordinated NP with ellipses, J. Biomed. Inform., vol. 47, pp. 139–152,
Feb. 2014, doi: 10.1016/j.jbi.2013.10.002.

172. Y. Chen et al., Named entity recognition from Chinese adverse drug event reports with lexical feature based BiLSTM-CRF and
tri-training, J. Biomed. Inform., vol. 96, p. 103252, Aug. 2019, doi: 10.1016/j.jbi.2019.103252.

173. M. Cho, J. Ha, C. Park, and S. Park, Combinatorial feature embedding based on CNN and LSTM for biomedical named entity
recognition, J. Biomed. Inform., vol. 103, p. 103381, Mar. 2020, doi: 10.1016/j.jbi.2020.103381.

174. M. Gridach, Character-level neural network for biomedical named entity recognition, J. Biomed. Inform., vol. 70, pp. 85–91, Jun.
2017, doi: 10.1016/j.jbi.2017.05.002.

175. J. Guo, C. Blake, and Y. Guan, Evaluating automated entity extraction with respect to drug and non-drug treatment strategies, J.
Biomed. Inform., vol. 94, p. 103177, Jun. 2019, doi: 10.1016/j.jbi.2019.103177.

176. I. J. Unanue, E. Z. Borzeshi, and M. Piccardi, Recurrent neural networks with specialized word embeddings for health-domain
named-entity recognition, J. Biomed. Inform., vol. 76, pp. 102–109, Dec. 2017, doi: 10.1016/j.jbi.2017.11.007.
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