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Abstract The aim of this study is to investigate different methods of estimating the stress-strength reliability parameter,
0 = P(Y < X), when the strength (X) and the stress (Y) are independent random variables taken from the inverse Weibull
distribution (IWD), with the same shape parameter and different scale parameters. Based on adaptive Type-II hybrid
progressive censored samples, we employ classical and Bayesian approaches. In the classical approach, we use the maximum
likelihood estimator (MLE), the approximate maximum likelihood estimator (AMLE), and the least squares estimator (LSE).
In contrast, the Bayesian approach utilizes symmetric and asymmetric loss functions. Due to the absence of explicit forms
for Bayes estimators, we propose using Lindley’s approximation method for computing the Bayes estimators. We compare
these estimators using extensive simulations and two criteria: the bias and the mean square error (MSE). Finally, two real-life
data examples based on breakdown times of an insulated fluid and the survival times of Head and Neck Cancer patients are
provided for illustrations. It was evident based on our results that the Bayesian estimation methods surpassed at estimating
the reliability under the adaptive Type-II progressive hybrid censoring for the IWD. Moreover, the results of our real-life
examples corroborate those of the simulation and support that the IWD is a suitable fit for both examples.
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1. Introduction

In recent years, manufacturers have been under increasing pressure to produce high-quality products and reduce
production costs and times. With global competition growing, reliability study becomes more vital. Lifetime
testing, structural reliability, and machine maintenance are the foundations of reliability estimation, prediction,
and optimization. A well-known measure of reliability is the stress-strength model, § = P(Y < X), where X and
Y are random variables. For this model, the reliability 6 of the system is the probability that the system can cope
with the stresses imposed upon it.

The reliability of aircraft windshields is an example of both aerodynamics and mechanical engineering. The
windshields consist of several layers of materials to withstand extreme temperatures and pressure. Therefore, to

maintain a regular performance of aircraft, it is vital to know the probability of windshield failure at different stages
of the windshield life (after 1000, 2000.. ., etc., of flight hours).

Considering that there is a reasonable estimate of windshield reliability by defining stress as the temperature
and/or pressure differential and strength as the thickness and/or composition of the windshield layers, it will be
possible to make a rational judgment regarding whether or not windshields will need to be repaired or replaced.

0 is not only a stress-strength model but also provides a general measure of the differences between two
populations and is undoubtedly applicable in various fields. For example, in clinical studies, we may compare
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the efficacy of two drugs to measure X, the patient’s life expectancy when treated with one medication, and Y, the
patient’s life expectancy when treated with another drug.

Life-testing experiments are notorious for their challenges of controlling the test time and conserving the
experimental units while estimating efficiently. However, it is possible to solve this problem by stopping the
experiment before all units fail by utilizing censoring strategies carried out by removing active units from the
experiment. During these experiments, units may be lost or removed for different reasons, and this is where the
importance of progressive censoring comes into play in which units are removed in a life test experiment at some
predetermined or random time points during the experiment.

Many models of progressive censoring have been discussed throughout the years. The majority of these models
can be traced back to one of two sources: progressive Type-I censoring, which terminates the experiment after a
prefixed time point, or progressive Type-II censoring, which terminates the experiment after a prefixed number of
observed failures. Both censoring schemes give the experimenter more flexibility by allowing the removal of test
units at non-terminal time points during the experiment.

In progressive Type-I censoring, the total time of the experiment is predetermined, and the censoring occurs
at prefixed time points 737,75, ...,T,. In addition, a prefixed number of active units are removed during the
experiment at the end of each specified time interval, making the number of observed failure lifetimes random.
Hence, in Type-I progressive censoring, one might observe a few, if any, failures when units under the test have
long lifetimes.

In progressive Type-II censoring scheme, only m units are completely observed until failure out of n units placed
on a life-test. When the first failure occurs, Ry active units are removed from the n — 1 remaining units. After the
second failure, Ry active units are removed from the n — R; — 2 remaining units. Lastly, at the m-th failure, all
the remaining n — Ry — Ry - - - — R,,—1 units are removed and the experiment is terminated. Since the time of the
experiment is random, when units undertaking the life test have long life times, it results in a long test duration,
which is considered a disadvantage for progressive Type-II censoring.

Two progressive hybrid censoring schemes were proposed by Kundu and Joarder (2006) by stopping a
progressive Type-II censoring experiment at time 7. In Type-I progressive hybrid censoring scheme, 7" =
min(Xm.n, T), where we may have fewer than m observations. In Type-II progressive hybrid censoring scheme,
T* = max(Xm.n, T'), where we may have at least m observations but a long test duration.

In real-life experiments, having a fixed censoring scheme may not be convenient because the censoring scheme
may change, intentionally or unintentionally, during the experiment. Therefore, Ng et al. (2009) proposed a newer
model (see Figure 1) that allows changing the censoring scheme during the experiment. Such a model is called
the adaptive Type-II progressive hybrid censoring, in which a threshold time T is used to switch from the initially
planned censoring scheme to a modified one.

In a sample of size n, where m failures will be observed, and after a threshold time T, the censoring number
R; (j = max(i; Xi.m:n < T')) will adaptively change based on the previous failure times as well as the censored
samples before the j-th failure. That is, when the first observed failure time that exceeds the threshold time T,
the applied censoring scheme will be changed to R* = (Ry,...,R;,0,...,0,n —m —Y_7_, R;). The initially
planned progressive censoring scheme is used as long as the failures occur before time T (see Figure 1(a)).
Otherwise, when time T occurs before the m-th failure, no units are withdrawn after time T except for the time of
the m-th failure where all remaining surviving units are removed (see Figure 1(b)). By setting 7' = co and T' = 0,
we get Type-II progressive censoring and Type-II censoring, respectively.

Failure times of units under a life-testing experiment are assumed to be identically distributed and follow a lifetime
distribution. One of the most widely used lifetime distributions to model progressive censoring schemes is the
Weibull distribution (WD). If a random variable T follows the WD with a shape parameter « and a scale parameter
B, then the probability density function (PDF) is given by

ft;a, B) = afe P71+ t>0,a,8>0, (1)

and the hazard function (HF), which measures the probability of failure of a unit at a given time, is given by
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Figure 1. Adaptive Type-II progressive hybrid censoring model as proposed by Ng et al. (2009). (a)
Experiment ends before time T. (b) Experiment ends after time T.
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Figure 2. HF of the WD. The HF of the WD with scale parameter 5 = 4 and different values for the shape
parameter a.

h(t;o, B) = a3t~ 112 t > 0. )

The HF of the WD given in (2) cannot be used to model life time data with a bathtub shaped hazard function, since
it is increasing, decreasing, or constant as shown in Figure 2. This is considered a drawback for the WD.

The Inverse Weibull distribution (IWD), also known as the Frechet distribution (Johnson et al. (1994)), is used to
model a variety of failure characteristics such as infant mortality, useful life, and wear-out periods (Kim and Han,
2010).

The HF of the IWD given in (4), is uni-modal (see Figure 3). Having a uni-modal hazard function is essential in
many practical situations where the risk increases and then decreases as the study continues, like the process of
recovery after a patient undergoes a surgery.

IfX = %, then X follows the IWD with PDF, cumulative distribution function (CDF), and HF given by (3), (4),
and (5), respectively.
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Figure 3. HF of the IWD. HF of the IWD with a shape parameter ov = 1.5 and different values for the scale
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Figure 4. PDF of the IWD when Figure 5. CDF of the IWD when
a=15 a=1.5

Many studies have considered the IWD under progressive censoring; for example, Marusic et al. (2010),
estimated the unknown parameters of the three-parameter IWD and, as a result, obtained a theorem on the existence
of the least squares estimates, Musleh and Helu (2014) considered statistical inferences about the unknown
parameters of the IWD based on progressively Type-II censoring using. For recent references see Shawky and
Khan (2022).

Ubiquitous applications on the adaptive Type-II progressive hybrid censoring can be found in the literature due
to its importance and efficacy in rel-life applications. Most recently, Asadi, Saeid, et al. (2022) implemented an
adaptive Type-II progressive hybrid censored accelerated life test for the average diameter of virus containing
micro droplets data to detect the persistence of the Virus-MD in a single cough at different time points. A chemical
application is used to test lifetimes (in cycles) of sodium sulfur for twenty batteries using the XLindley distribution
(Alotaibi, R., et al. (2022)). Panahi, H., and Asadi, P. (2022) used the generalized inverted exponential distribution
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to estimate the micro plasma spread factor under the adaptive Type-II progressive hybrid censoring. Helu and
Samawi (2021) employed the adaptive Type-II hybrid progressive censoring for a data representing radar-evaluated
rainfall from 52 south Florida cumulus clouds. The stress-strength model has been the subject of a considerable
investigation by researchers. Birnbaum (1956) was the first to combine the stress-strength model with the Man-
Whitney statistic to estimate 6 in situations where X and Y are independent. Further studies have been carried
out that provide point and interval estimations of ¢ using multiple techniques. Kotz and Pensky ( 2003) provided a
comprehensive overview of the development of stress-strength reliability and its applications through 2003. Kumar,
S. (2021) considered Chen distribution and derived UMVUEs and MLEs for the unknown parameters, hazard rate
h (t) and two measures of reliability under type II censoring scheme. In recent research, Helu and Samawi (2022)
used both classical and Bayesian methods to derive estimates of § when X and Y are dependent random variables
from a Bivariate Lomax distribution based on a progressive Type II censored sample. Musleh et al. (2022) derived
a kernel estimate of ¢ and examined its properties based on progressively Type-II censored data.

Although reliability is applicable to many real-life situations, not many estimate it with the adaptive Type-II
progressive hybrid censoring under the IWD and hence the main objective of this study is to compare classical
and Bayesian approaches to estimating § = P(Y < X), where X and Y are two independent IWD variables under
adaptive hybrid progressive censoring with the same shape parameter and different scale parameters. It is observed
that the MLEs can not be obtained in a closed form. In this case, we suggest using the AMLE. We derive the
AMLE by expanding the normal equations using Taylor approximation method. Although the MLE appears to
be the most popular method from a theoretical perspective, the least square method is computationally easier
to handle and provides simple closed-form solutions for the estimates (Hossain and Zimmer (2003)). Further,
we consider the Bayesian estimates based on squared error (SEL) and LINEX loss functions as examples of
symmetric and asymmetric loss functions, respectively. Bayesian methods have the disadvantage that they cannot
be expressed explicitly, so rather than applying numerical techniques, an approximation method, such as the
Lindley approximation, is utilized.

This article is organized as follows: In Section 2, the classical estimation methods for 6 are derived, namely
MLE, AMLE, and LSE. In Section 3, the Bayes estimates are provided. In Section 4, we present the simulation
study and results. In Section 5, two real-life data examples are provided. Finally, conclusions and recommendations
are presented in Section 6.

2. Classical estimation methods

2.1. Maximum likelihood estimation

Suppose X ~ IWD(«, 81) and Y ~ IW D(«, 32) are two independent random variables representing the strength
and stress components, respectively. Then it can be easily seen that

9:13(1/<X):51i152 (6)

Let X = X1y < Xoimying < oo < Ximyim,m, be an adaptive Type-II hybrid progressive censoring sample
from IW D(«, 81) under the censoring scheme {ni,mi, Ry,..., R5,,0,....,0,R;,, = ny —my — ZZ;I R;} such
that X, mymy <711 < Xj41mymy- And, Y = {Y1m,0m, < Youmoms < oo < Yin,:mam,p b€ an adaptive Type-
IT hybrid progressive censoring sample from IW D(«, 2) under the scheme {nz,ms, S1,...,5s,,0,...,0,Spm, =
N9 — Mo — Z;fil S; } such that Yy < T2 < Yit1:myim,. For simplicity, let X; = X, 0, and Y; = Yiin,n, .
Then the joint likelihood function of the adaptive Type-II hybrid progressively censored sample (see Balakrishnan
and Cramer, 2014) can be written as
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L(a, p1, 521X, Y) = C1Ca[1 — Fi(zm,)] Hfl Z; H [1— Fy(z;)]™
mo - (7)
(1 — Fy(ym, )] me Hf2 (v4) H 1— Fa(y;)]%,
=1

where,
Cl = nl(nl — R1 — 1)(77,1 — R1 - R2 — 2)(”1 — Rl — R2 — . — Rm171 —my + 1)
Cy = ’ng(ng — S — 1)(712 -85 — 85y — 2)...(%2 - S =85y —...— Sm2,1 — M9 + 1)
flzia, pr) = ape P “gmie x> 0,a,B > 0. (8)
Fi(z;a,81) = e P x>0 )]
fa(yi o, B2) = afae 2V Ty Tioe y> 0,0, >0 (10)
Fy(y;a,fBy) = e P2y ° y >0 (11)

After substituting Egs. 8 - 11 into Eq. 7, then taking the log-likelihood function, we get the following:

l=InC, +1nC'2—|—(m1 —|—m2)lnoz—|—m1 11’161 +m21n52
my
+ Ry, In (1 — i) — (14 ) Zln x;) Blzx;a
i=1

1 P - 12
+ ZRi In(1—e %) 48, In(1- e*ﬁzym) (12)

mo mo Jo
—(1+a)) () =B )y + ) siln(1—eu),
=1 i=1 =1

If the shape parameter « is known, the MLEs of the parameters /3; and (32 can be obtained by deriving (12) with
respect to 51 and (3> and equating the normal equations to 0 as follows:

m J —a
ol m iy le m? - —a L e~ Pz, RMZ_Q
s - A T T o —a ; Dkt S 1
0B B1 + 1—e¢ —Bizm i:leZ + ; 1— e,ﬁlx;a 0, (13)
ol my € P2ma Sma¥m® -B2y;° G, y —a
9B By T _gome L =0. 14
0B B2 * 1 — e—B2Ums Z Yi Z o B2, (14)

It is noted that Eqs. (13) and (14) do not yield explicit forms. Therefore, we apply numerical methods using
Mathematica 12 to find 51,,, . and 3s,,, , and hence, Oy/1E.

2.2. Approximate maximum likelihood method

As seen in equations (13) and (14), the MLEs do not provide explicit forms, thus we derive the approximate MLE.
The AMLE method, which was developed by Balakrishnan (1989a), uses Taylor series expansion to the PDF of
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location-scale families, but the IWD model is not a location-scale distribution. To solve this issue, we consider the
transformations
W=—-InXand W* =—InY to get

Fy(w)=1—eAe™" (15)

Fype(w*) = 1 — ¢~ B2¢""" (16)

Next, let 8y = e "1, By = e #2% and a = %, then based on equations (15) and (16), W and W* both have
the Extreme Value Distribution (EVD), namely EV D(u1,0) and EV D(us, o) respectively. Hence, the EVD is
a location-scale distribution. Let ¢; = “*=f and z; = % then, if T = (¢1,...,tm) and Z = (21, ..., 2;). The
likelihood and the Log-likelihood functions (ignoring the additive constants) are given in equations (17) and (18),
respectively.

my _eti 1 ma2 ez J2

* —etm1 R etl i —etiR; —e*m2 8 e e —e%i S;

(T, Zlp1, pz, 0) = e~ " o I [Jee e ] [Te s, amn
. g X - g -
=1 i=1 =1 =1

mi

l*(T7 Z|M17M27U) = _leetml —my Ino + th - Z ti ZR etb
i=1 i=1 (18)

mao J-
— Sm,e™2 —mglno + Z Zi — Z e” — Z S;eZi
i=1 i=1 i=1
Taking the derivatives with respect to p; and p2 and equating them to zero, we obtain the following:

o —(my—e'™ Ry, — 30 e — ZJ;1 " R;)
= L : =0 (19)
8,11,1 g

* Zm m i J: i g,
ol _ —(mg — €72 S, — 3 e =32 €7 Sh) -0 (20)
Opa o

Notice that Egs. (19) and (20) do not yield explicit forms. Therefore, first-order Taylor approximation
is implemented by expanding the terms e'' and e* in the likelihood function around the points v; =
In(1-In(1—-¢;))andv, =In(1—1In(1—g;)), respectively.

Where,
mi
J+ 2 R ‘
¢ =1- , i=1,2...,m 1)
j—m];[i+1 (L7 + 205 Rl)

ma
, JH+ i1 S
g =1- : i=1,2...,ms 22)
Z j—T’EQH—i-‘rl (1 i+ Zl =ma—j+1 S)

Next, expand g; (t;) = e and g2 (z;) = e* around the points v; and v; using first-order Taylor expansions to get

g1 (ti) = g1 (i) + gy (vi) (t; — v;)

23
€'~ i + dity, =
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g2(2i) = 92(v;) + go(v;)(2i —v;)
¥ > ; + ¢izi.
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24

Where, v; = ei(1 — v;), ¢; = ¥ and §; = evi (1- v;), $; = e¥i, using equations (23) and (24), the log-likelihood

equations (19) and (20) are approximated as follows:

A (ma = Ry (Yms + Sy b)) = S0 (3 + Gti) = 2007 (3 + k) Re)

opr - g =0
AN (k= Sy (Yima + PmaZma) = Do (i + dizi) — 30120 (G + $i20)Si) _ 0
8/142 - o o

By solving equations (25) and (26), we get

Plaie = A1+ Byo
ﬂQAMLE = As+ Bao

where,

my J1 my J1
A= Ry, Gy Winy + Zi:l diw; + Zi:l Rip;w; B, — mi1 — (Rmy Ymy) — Zizl Yi — Zizl Ry

) 1
le ¢m1 + Z;’le 7 + Z;jil Rz¢z le ¢7n1 + Z:ill ¢z + Z;’;l Rz¢z

A= sz‘l;mzwf + 22121 ‘521”: + E;]il Sid;iw? B, — M2 — (SmyYms) — ;‘121 Vi — Z;]il i
2= ) 2 — = oo 7. =
Sm2 ¢m2 + 22:21 ¢z + Zzil Siﬂj)i

7 mo [ J: g
sz ¢m2 + Zi:21 ¢z + Zzil Sz‘(bi
Hence, AMLE:s of 31 and 35 are used to obtain the AMLE of 6. Where,

2 _ —ap A __—ajia A _ 61AMLE
ﬁlAMLE =e 1AMLE /62AMLE =e AMLE OamMLE = =

Tamee T 52AZWLE

2.3. Least squares method

(25)

(26)

27
(28)

Using the same settings as in Section 2, we aim to use a combination of non-parametric and parametric CDFs to

find the LSE (see Marusic et al. (2010)).

For X = {X1, X>,..., X, }, the LSE of 3; is obtained by minimizing >, (Fy(X;) — F1(X;))2, such that
Fl(Xi) is the non-parametric distribution function proposed by Cacciari & Montanari(1987), which is given by

Eq. 29.
R K;,—-05
Fi(X)) = —L——
1( ]) n1+0_257
where,
Kj:Kj*l"f‘Ay j:1721“'1m1 and KO:O’
and
n+1—-K;_4

A:

(mi—j+2+Rj+Rjy1+...+Rp))

(29)
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F1(X;) is the parametric distribution function proposed by Kim & Han (2010) which is given by

J
Qg j

Fl(Xj) = 1—[_7'_12 (I—F(l‘j))ri, j: 1,2,...,m1, (30)
-1 !
where,
where, _
lj I—Hi 1Tu7 1§j§m1,
Ty = m171+1+z’”1R 1<i<my,
aij =Tt iy 1<i<j<m

Similarly, for Y = {¥7,Ys,..., Y;,, }. Upon obtaining the least squares estimates /3y, . and /35, , the LSE of # can
be obtained as follows

BlLSh

e (3D
/BILSE + /82LSE

OLse =

3. Bayesian estimation

In this section, we derive the Bayes estimate of 6 using symmetric and asymmetric loss functions. A commonly
used loss function is the squared error loss function (SEL).

L(#,7) = (% — )% (32)

The Bayesian estimate under (32) is the posterior mean. Given by ysgr, = Er7v. The SEL is widely used in
Bayesian inference due to its computational simplicity. It is a symmetric loss function that is equally adverse to
overestimation and underestimation. Practically, however, this is not a very useful criterion. In estimating reliability
and failure rate functions, an overestimation causes more damage than an underestimation. For example, Feynman
(1987) argued that in the Challenger disaster, management may have overestimated the average life or reliability
of solid-fuel rocket boosters. To resolve such situation, asymmetrical loss functions are more appropriate. Varian
(1975) introduces the LINEX loss function (Linear- Exponential) in response to the criticism of the SEL. The
LINEX loss function is defined as follows:

L(%,7) = exp(A(¥ = 7)) = A7 —7) =1, A#0. (33)

The magnitude of A reflects the degree of symmetry while the sign of A reflects the direction of symmetry. Zellner
(1986) obtained the Bayesian estimator under LINEX loss function by minimizing the posterior expected loss,
provided that E, (e~*?) exists and finite.

~ 1 _
’yL[N:—XlnEﬂ(e )«y)' (34)

The LINEX loss function is suitable for situations where overestimation may lead to serious consequences, and
it is known for its flexibility and popularity. A common feature of lifetime distributions with a shape parameter is
that the Bayes estimators cannot be expressed in closed forms. We suggest using Lindley’s approximation to derive
the Bayes estimators the reliability model 6.

3.1. Lindley’s approximation method

It is assumed that the shape parameter « is known and 3; and /32 have two independent gamma priors

T(B1) = =—B{ e w(Ba) = 5@ te=dPz (35)

() ()
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where a,b,c,d are non-negative known parameters. The joint prior distribution is given by

bed°
I(a)I'(¢)

Based on the likelihood function (12) and equation (36), the joint posterior distribution, given the adaptive censored
data described in Section 2, is as follows

w(Br, B2) = 5 B B e (BB, (36)

(O‘ 51762|X’Y)7T(51752) '
fo fo (a, Br, B2| X, Y )7 (1, B2)dB2d 1

Therefore, the Bayes estimators of any function of Siandfs say wu(531, f2) are the posterior expected value of
u(p1, P2) and is given by

(B, B2|X,Y) = (37)

fO fO 51752 (p(B1,82)) ol (X, Y |B1,82) dﬂZdﬂl

a4 = ( (61)62)|X Y) f f eP(ﬁl,ﬁQ) el (X.Y161,62) dBydBy
0 0

(38)

Wheres P(ﬂhBZ) = lnﬂ—(ﬁl?BQ) and’ Z(XvY‘avﬁlaﬂQ) =In L(X,Y|O{,ﬁ1,ﬁg).

It can be noticed that 4 cannot be simplified in a closed form. Hence, Lindley (1980) provided asymptotic
solution. Lindley’s approximation method which is used to find an asymptotic solution for the ratio of two integrals
often encountered for various lifetime distributions in Bayesian estimation (Sharma et al. (2015)). Thus, Eq. 38 is
reduced to the following expression:

. 5 5 1, . oA s . N A A
u 2u(ﬂlMLEa 62MLE) + 5((“5151 + 2uﬁlpﬁ1)aﬁ1ﬁ1 + (uﬁ2/32 + 2u52p[32052ﬁ2)) (39)
1

+ 5(/&‘51 (65151)21515151 + ’&BQ (6ﬁ2ﬁ2)2lﬂ25252)a

where, Bl and Bg are the MLEs of 5; and 3, respectively,

a :M‘ B S Gk 7 § =
B181 951051 (B1.B2) Phy 3  PBy = B

Other expressions can be defined similarly (see the Appendix).

3.2. Squared error loss function
Ifu(ﬁla 52) = p1, then ug, = 1, UBy = UB By = UBiBy = UByBy = UByBy = 0, and
R A 1. "
Bisp, = b1+ PBLOBip T 5(06151) lﬂlﬁlﬁl (40

Similarly, if u(ﬂl, 52) = fa, ug, = 1, then UBy = UBsBy = UBefy = UB, B = UB By = 0, and

~ ~ A 1 ~
523EL = B2+ PB20B28: T+ 5(05252)215#3#32 (41)

Hence,

HSEL — Bls# (42)
BlSEL + 625EL

Stat., Optim. Inf. Comput. Vol. 11, March 2023



226

3.3. LINEX loss function
Ifu(ﬁh 62) = e_)\ﬁl’ ug, = _)‘e_AﬁI’ Ugi 1 = _)‘26_)\617 UB, = UB,B, = U3, = U, B, = 0. Then,

A -1 A A 1 A 1. . N
/81LINEX :7 In [U’(Bla ﬁQ) + 5(“51[31 + 2pﬂ1u51)05151 + 5(“51 0§151 l51,31,31)]
-1 1

A 1 AB \g A4 N (43)
- 2,— 5 VIR —A61 2

:7111[@ ﬁ1+§()\ e M — 2pg, Ae 51)0ﬁ131 —§(>\6 ﬁlf’ﬂlgllﬂlﬂlﬂl)]
Proceeding similarly, if u(81, B2) = e 2, ug, = —Xe 2, ug,5, = —N2e M2 ug, = ug 5, = ug g, = Up,p, =
0. Then,

A —1 AA 1 . R 1, . -
ﬁQLINEX :T In [u(ﬂh B2) + i(uﬁzﬁz + 2P62Uﬁ2)0ﬁ2ﬁ2 + 2 (u52022ﬁ21ﬂ2ﬂ252)} (a4

-1 4 1 A ~ _ R 1 IRV S
= [ 4 ST = 2p5, 06T M2)Gg, 5, = S(AeTNRGE 5 g, )]

Hence,

fLNex = = Broinex . (45)

BlLINEX + /BQLINEX

4. Simulation Study and Conclusions

4.1. Simulation Criteria

In this section, we undertake a simulation study to test the performance of the various estimation methods that we
have discussed previously.

1. Values of /51 and 32 are generated from m; and 72 as given in equations (35) using pre-specified values of a,
b, ¢, and d. See Yadav et al.(2018).

2. Generate two independent Type-II censored samples X1, Xs, ..., X,,, and Y7,Y5,...,Y,,, from the IWD
distribution with shape parameter « and scale parameters /3; and 2 respectively with censoring schemes
(Rl, R27 . 7R7n1) and (S17 SQ, ey SmZ)

3. Determine the values of J; and J» , such that X; <77 < Xj4; and Yy, < T, <Yj,, then remove
XJIJFQ, N 7)(7”1 and YJ2+2, ey YmQ.

4. Generate the first m — j; — 1 order statistics from the truncated distribution

f(@)
1—F(IJ1+1)

and the censoring scheme will change to (Ry,...,Rj,,0,...,0, Ry, =n1 —mq — Zlgl R;). Similarly,
we generate Yj,4o2,...,Y,,, with modified censoring scheme (Si,...,S5,,0,...,0,S,, =ngs —mg —
5. Obtain the MLE, AMLE, LSE, and Bayes estimates of the model parameters using iterative process when
A=1land A = —1.
6. Define the Bias and the MSE of the estimates of (f) as follows:

as Xy 42,..., Xm,

* Bias = |6; — fcpact|, Where 6; is the average of the 3000 values of 6; for each one of the estimators.
. _ (0 —Oewact)®
MSE ===
In this study, the simulation has been performed by considering the shape parameter a = 1.5, and three cases for the
hyper parameters: (a,b, c,d) = (2,1,3,1);(3,1,2,1); (4.5,1, 1, 2). The resulting values of 6., are approximately
0.4, 0.6, and 0.9 respectively. Three main stopping times are considered: 77 = X EXE T =X |4 | and T3 =

4
X, + 2, with the following censoring schemes (C.s):
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* Cs 1: {n—m, O*(mfl)}, which is known as First-step censoring, i.e., n-m units are removed just after the
first failure

* C.s2: {0*(™=1 ' —m}, which is known as Right censoring, i.e., n-m units are removed after the last failure

* Cs 3: {57, O*(mfz),%} When removals take place at the beginning and at the end of the experiment,

i.e., 5™ units are withdrawn just after the first failure and after the last failure

The sample sizes of the strength and stress components are chosen to be n = ny; = ny = {20, 40, 60,100} and
m =m; = mg = {4,10} when n=20, {12, 20} when n=40, {18, 30} when n=60, and {20, 50} when n=100. Results
are summarized in tables 1-6 as follows: Tables 1-3 provide the estimates at three stopping times and three
censoring schemes when 6 = 0.4. Similarly for Tables 4-6 when 6 = 0.9.

4.2. Simulation Analysis and Results

Results are summarized as follows:

* The AMLE performs better under the third censoring scheme in most cases in terms of MSE.

* Bayes estimates perform better than all other estimates in general.

* When comparing Bayes estimates it is noted that the LINEX loss function with A = 1 performs better than
the SEL.

¢ In general, Bias and MSE of the calculated estimates decreases as effective sample sizes increases.

* It is noted that most estimates perform better under the second censoring scheme when removals take place
after the m-th failure.

* It is noted that all estimators perform best when 6 = 0.9
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5. Real-life Examples

In this section, we examine two real-life data sets, to illustrate our proposed methods and further verify how our
estimates work in practice. First, we checked the validity of the IW model using Kolmogorov-Smirnov (K — S),
Anderson-Darling (A — D), and chi-square tests. Next, we created three different artificial adaptive Type-II hybrid
progressive censored samples from each data using the same censoring schemes as those in Section 4.

Example 1: This application is provided by Nelson (2003). It represents the breakdown times (in minutes) of an
insulating fluid between two electrodes recorded at different voltages; 34 kilo-volts (data I) and 36 Kilo-volt (data
II), as presented in table 7. We have fitted the IWD (0.70151, 1.8886) for data set I and IWD (1.0823,1.3309) for
data set II. The results are summarized in table 8 with a significance level of 0.05.

Table 7. Breakdown times (in minutes) for data set I and II

Datal 0.19 0.78 096 131 278 3.16 415 467 485 65
7.35 8.01 827 1206 31.75 3252 3391 36.71 72.89
Datall 035 059 096 0.99 1.69 197 207 258 271 29

3.67 399 535 13777 25.50

Table 8. Test statistic and p-value associated with each test for example 1

Data K-S (p-value) A-D (p-value) Chi-Squared (p-value)
1 0.1873 (0.4625)  0.7723 (0.4986) 0.8865 (0.6420)
I 0.2037 (0.4991)  0.4929 (0.7509) 1.4421 (0.2298)

Based on the above results, it appears that the IWD model fits the data well. Further, Figures 6 - 9 show that
Nelson’s data are well-suited to the IWD.

[0 Histogram of data | 0.15 [ Histogram of data I

— POF i, — POF

&0

Figure 6. Estimated PDF of data I Figure 7. Estimated PDF of data II

Table 9 presents the generated adaptive Type-II hybrid progressive censored samples and the associated stopping
time for each scheme. The estimates of ¢ are calculated based on m; = 11, my = 9. Bayes estimates are computed
based on a non-informative prior.

Table 10 shows that estimates of 6 based on adaptive Type-II hybrid progressive samples are comparable to those
derived from complete data. Furthermore, the classical and Bayesian estimates of 6 are pretty close to each other.
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Figure 8. Q-Q plot for data I

Quantile

Figure 9. Q-Q plot for data II

Table 9. Adaptive Type-II censored samples form data I and data 11

Scheme 77 Censored sample from data I
1 2 019 0.78 1.31 2.78 3.16 4.67 7.35 8.01 12.06 31.75 32.52
2 8 0.19 078 096 1.31 2.78 3.16 4.15 4.67 485 6.5 7.35
3 7.5 0.19 0.78 1.31 3.16 4.15 4.67 4.85 7.35 8.01 12.06 31.75
Scheme 75 Censored sample from data II
1 1 0.35 0.59 0.99 197 2.07 258 2.9 3.67 3.99
2 3 0.35 0.59 096 099 1.69 197 2.07 2.58 2.71
3 2 035 059 099 1.69 1.97 258 271 3.67 535
Table 10. Estimates of 6 for example 1
Cs MLE AMLE LSE SEL \ ITINFXX
Complete | 0.5690 0.5771 0.5914 0.5690 0.5687 0.5693
1 0.5626  0.5845 0.6087 0.562 0.5601 0.5636
2 0.5695 0.5089 0.5859 0.5694 0.5691 0.5698
3 0.5714  0.5304 0.5811 0.5707 0.5695 0.5719

In addition, the parametric bootstrap percentile method is used to compute 95% bootstrap confidence intervals,
standard error, and average values of §. All results are shown in Table 11 & 12. As can be seen from Tables 11
& 12, the standard error is the least for most of the estimates of 6 under the second censoring scheme. Moreover,
Bayes estimates under LINEX loss function when A = 1 has the lowest error under the second scheme. Average
values of the estimates of 6 are close to those in Table 10.

Table 11. Bootstrap confidence intervals for the considered estimates of 6 for example 1

Cs

1

2

3

MLE

AMLE

LSE

SEL

LINEX (A = 1)

LINEX (A = —1)

(0.3019, 0.807)
(0.3486, 0.7793)
(0.3455, 0.801)
(0.3021, 0.8077)
(0.3138, 0.7957)
(0.2935, 0.8168)

(0.383, 0.7388)
(0.2912, 0.7414)
(0.3799, 0.7629)
(0.3829, 0.7389)
(0.3905, 0.7304)
(0.3755, 0.7458)

Stat.,

(0.3279, 0.7865)
(0.2767, 0.7833)
(0.3975, 0.7746)
(0.3275, 0.7863)
(0.3391, 0.7754)
(0.3189, 0.7953)
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Table 12. Standard error and average value for each estimate after bootstrapping for example 1

Standard Error
Cs | MLE AMLE LSE SEL \ _]TIN]%\X_

1 | 01302 0.1132 0.1102 0.13  0.1239 0.1349
0.0908 0.1198 0.0929 0.0909 0.0866 0.0947
3 012 0.1269  0.0971 0.1201 0.1138 0.1251
Average Value

Cs | MLE AMLE LSE SEL LINEX
A=1 A=-1
1 | 05668 0.5782 0.6083 0.5665 0.5654 0.5674
2 | 05713 05272 0.5841 0.5713 05709 0.5716
3 | 0.5688 0.5405 0.5917 0.5684 0.5678 0.569

Example 2: Adaptive hybrid progressive Type-II is used here to analyze data used by Efron (1988). Head and neck
cancer (HNC) patients are divided into two groups. Radiotherapy (RT) was used to treat patients in the first group,
and their survival times were recorded in days (Data 1). While a combination of chemotherapy and radiotherapy
(CT+RT) was administered to patients in the second group, and their survival times were also recorded in days
(Data 2). Failure times for the two data sets are reported in Table (13). The survival times in bold indicate that
a patient left the treatment center and never reported back. Efron (1988) compared the two therapies based on
estimated survival functions under each model and found that (CT+RT) provides better HNC patient survival time
than (RT).

Table 13. Survival times (in days) for data 1 and data 2

Datal 7 34 42 63 64 74 83 84 91 108
112 119 133 133 139 140 140 146 149 154
157 160 160 165 173 176 185 218 225 241
248 273 271 279 279 319 405 417 420 440
523 523 583 594 1101 1116 1146 1226 1349 1412
1417

Data2 37 84 92 94 110 112 119 127 130 133
140 146 155 159 169 173 179 194 195 209
249 281 319 339 432 469 519 528 547 613
633 725 759 817 1092 1245 1331 1557 1642 1771
1776 1897 2023 2146 2297

Makkar et al. (2014) converted the survival times into months by dividing them by 30.438 before generating the
unknown censored data using the truncated lognormal distribution. Retrieved survival times are reported in Table
(14).

We checked the validity of the IW model based on the parameters «; = 1.0657 and 5, = 4.8044 for Data I and
ag = 1.0021 and B, = 7.117 for Data II, respectively. Results are summarized in Table (15) with a significance
level of 0.05.
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Table 14. Survival times (in months) for data 1 and data 2

Datal 0.23 1.12 1.38 2.07 2.10 2.73 2.76 2.99 3.55
3.68 4.24 4.37 4.37 4.57 4.60 4.60 4.80 4.90
5.06 5.16 5.26 5.26 5.42 5.68 5.78 6.53 7.16
7.39 7.02 8.15 8.97 9.10 9.76 1042 1331 13.70
13.80 14.46 1448 16.10 1718 19.15 19.52 2270 36.17
37.65 4155 4528 46,55 4940 53.62

Data2 1.22 2.76 3.02 3.09 3.61 3.68 391 4.17 4.27
4.37 4.60 4.80 5.09 5.22 5.68 5.88 6.37 6.41
6.87 8.18 9.23 1048 11.14 1220 1491 1541 17.05
20.80 2356 2374 2382 2587 26.84 3198 4135 4738
51.15 5546 5838 5836 6347 6846 7447 7826 81.43

Table 15. Test statistic and p-value associated with each test for example 2

Data K-S (p-value)  A-D (p-value) Chi-Squared (p-value)
1 0.1606 (0.1290) 1.383 (0.2065) 5.6975 (0.3368)
2 0.1175 (0.5248)  0.7716 (0.5003) 3.7435 (0.4418)

Table (15) indicates that the IW model is a good fit for both data sets. In addition, the fitted PDFs and Q-Q plots are
plotted for both data sets and reported in Figures 10 - 13 also confirm that the IW model is a good fit for Efron’s
data sets.

flx] fly
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Figure 12. Q-Q plot for data 1 Figure 13. Q-Q plot for data 2
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The three adaptive Type-II censoring schemes for the simulation study are used to generate adaptive Type-II hybrid
progressive censored samples, the associated stopping time for each scheme and the generated censored samples
are given in Table (16).

Table 16. Adaptive Type-II censored samples form Efron’s data sets

Scheme 77 Censored sample from data 1

1 21 023 1.12 138 207 273 299
3.55 3.68 4.24 4.37 4.60 4.60
5.06 5.16 5.42 5.68 6.53 7.16
7.92 9.76 1042 1331 13.80 14.46
17.18 19.52

2 7 0.23 1.12 1.38 2.07 2.10 2.73
2.76 2.99 3.55 3.68 4.24 4.37
4.37 4.57 4.60 4.60 4.80 4.90
5.06 5.16 5.26 5.26 5.42 5.68
5.78 6.53

3 5 0.23 1.12 2.10 2.76 2.99 3.55
3.68 4.24 4.37 4.60 5.06 5.26
5.26 5.78 7.16 7.39 8.15 9.76
1042 13.31 1380 1446 17.18 19.15

19.52  22.70
Scheme 75 Censored sample from data 2
1 35 122 2.76 3.02 3.61 4.17 4.37

460 522 568 637 8.18 9.23
1048 1220 1491 17.05 20.80 23.82
26.84 3198 4135 4738

2 11 122 276 3.02 309 3.6l 3.68
391 4.17 427 437 460 4.80
509 522 568 588 637 641
6.87 818 9.23 10.48

3 9 122 276 309 368 417 427
460 480 509 588 641 9.23
1048 11.14 1491 1541 20.80 23.56
26.84 3198 4135 47.38
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The estimates of # are calculated based on m; = 26, mo = 22. Bayes estimates are computed based on a non-
informative prior. Table 17 shows that estimates of ¢ based on adaptive Type-II hybrid progressive samples are
comparable to those derived from complete data. Furthermore, the classical and Bayesian estimates of 6 are pretty
close to each other. It is worth mentioning that when calculating the MPSE, repeated data points are handled
differently, as suggested by Cheng and Amin (1983).

Table 17. Estimates of  for example 2

C.s MLE AMLE LSE SEL 5= IIINFS\X_
Complete | 0.3444 0.3937 0.4115 0.3444 0.3512 0.3383
1 02925 03641 0.4075 0.2907 0.3009 0.2833
2 0.3482 0.4388 0.4443 0.3482 0.3551 0.3421
3 0.3131 03628 0.3262 0.3129 0.322  0.3052

In addition, the parametric bootstrap percentile method is used to compute 95% bootstrap confidence intervals,
standard error, and average values of 0. All results are shown in Table 18 & 19. As can be seen from Tables 18
& 19, the standard error is the least for all estimates of § under the second censoring scheme. Moreover, average
values of the estimates of 6 are close to those in Table 17.

Table 18. Bootstrap confidence intervals for each estimate of ¢ for example 2

C.s 1 2 3

MLE (0.1287,0.548)  (0.2243,0.5102)  (0.1607, 0.5563)
AMLE (0.2616, 0.4969) (0.3916, 0.5136)  (0.2815, 0.4728)
LSE (0.1419, 0.5555)  (0.2696, 0.5729)  (0.07535, 0.5864)
SEL (0.1287,0.5477)  (0.2242,0.5102)  (0.1606, 0.5562)
LINEX A=1 (0.136, 0.549) (0.2326,0.5115)  (0.1698, 0.5564)

A=-1 (0.1227,0.5481)  (0.2165,0.5091)  (0.1533, 0.5553)

Table 19. Standard error and average value for each estimate after bootstrapping for example 2

Standard Error

Cs | MLE AMLE LSE SEL N IfINE)\ _

1 0.1175 0.06017 0.09677 0.1176  0.1158 0.1191
2 | 0.07964 0.02808 0.07796 0.07968 0.07755 0.08156
3 0.1106 0.04649  0.1262 0.1107  0.1079 0.113
Average Value

Cs| MLE AMLE LSE SEL LINEX
A=1 A=-1
1 0.3149 0.3712 0.3857 0.3141  0.3218 0.3083
2 0.3674 0.4369 0.4245 0.3673  0.3734 0.3619
3 0.3391 0.3678 0.3627 0.3389  0.3458 0.3332

6. Conclusions and Recommendations

Progressive censoring is widely used in reliability and life testing studies to address various concerns that
experimenters may have, such as reducing total test time, conserving experimental units, and developing efficient

Stat., Optim. Inf. Comput. Vol. 11, March 2023



240

estimation methods. But there is always a trade-off between these three concerns to reduce the cost and the
total test time of the experiment. Different types of progressive censoring have been developed to help mitigate
these concerns. For example, the adaptive Type-II hybrid progressive censoring allows more flexibility during the
experiment. It provides more control over the experiment, resulting in a shorter test duration and more observed
failures.

In this article, we study the statistical inference of the reliability model under adaptive Type-II hybrid progressive
censoring when the random stress and strength components are independent IWDs that share the same shape
parameter. Due to the inability to obtain the MLE in closed forms, the AMLE of 6 is derived. LSE of 0 is
also calculated. Bayesian estimators are obtained based on the SEL and LINEX loss function using Lindleys
approximation method due to the lack of explicit forms.

Our extensive simulations conclude that Bayes estimators derived by the LINEX loss function have the smallest
Bias and MSE for all sample sizes. Hence, we recommended using the Bayes estimates for estimating the reliability
under adaptive Type-II progressive hybrid censoring of the IWD distribution under the second censoring scheme,
where the random variables are independent and have common shape parameters.

A. Appendix

The entries for Lindley’s approximation are given by the following equations
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