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Abstract Most of the introduced transformations have many applications in reliability. For example, the total time on test
(TTT) and excess wealth (EW) transforms are useful concepts in various fields. This paper presents bivariate TTT and EW
transforms. Also, the bivariate location independent riskier (LIR) transform has been considered. In addition, we present the
conditions for establishing the TTT transform ordering in the bivariate mode and its relationship with EW order and some
stochastic orders. Also, we establish that the bivariate TTT transform order as well as the presentation of the new better than
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1. Introduction

The total time on test (TTT) transform has attracted the attention of researchers in several fields of applications, such
as reliability engineering, economics, analysis of censored data, maintenance schedule, model identity, stochastic
orders, and so on. This concept and its plot were first introduced by Barlow and Proschan (1975). We refer to
Barlow and Campo (1975), Barlow (1979), and Klefsjo and Westberg (1996) for further study on the application of
the TTT plot. In the context of reliability analysis, Nair et al. (2008) investigated the properties of the TTT transform
order and its applications via quantiles. The TTT plot is also a useful tool for analyzing lifetime data. Bergman and
Klefsjö (2014) have used this chart to examine the behavior of the failure rate function. Especially, the TTT plots
were used by Rao and Prasad (2001) to estimate maintenance intervals for failure data with the increasing failure
rate. Recently, Gamiz et al. (2020) also used the TTT plot as a graphical tool for aging trends recognition.

One of the practical and useful concepts in the study of bivariate distributions is the copula. First presented by
Sklar (1959), copulas represent a helpful approach to demonstrating multivariate peculiarities by unraveling the
joint dependence structure from the marginal behavior. This approach is especially valid for applications where
the adaptability of copulas seems desirable over the immediate fitting of multivariate distributions, which might be
challenging to characterize and manage Nelsen (2006).

In this article, we express the three transforms, TTT, excess wealth (EW), and location independent riskier (LIR),
for the bivariate state when we have nonnegative variables and then examine their relationship with each other. Also,
we specifically examine the properties of TTT transform and express its relation with the concepts of dependence
and some concepts of reliability, such as the aging and new better than used in bivariate total time on test transform
(NBUT).
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2. Preliminaries

Let n units be placed on life test at age 0 and let N(u) be the number of units alive (on test ) at age u (time u).
Then the TTT at time x shows by Tn(x) =

∫ x

0
N(u)du. Barlow and Proschan (1975) called {Tn(x);x ≥ 0} the

total time on a test process. Since N(u)
n = F̄ (u), where F̄n = 1− Fn is the empirical survival function, it is clear

that 1
nTn(x) →

∫ x

0
F̄ (u)du almost surely as n→ ∞.

Let X1 and X2 be two random variables with the corresponding cumulative distribution functions F1 and F2 and
probability density functions f1 and f2, respectively. In addition, for i = 1, 2, let F̄i = 1− Fi be the survival (tail)
function, let F−1

i (ui) = inf{xi : Fi(xi) ≥ ui}, ui ∈ (0, 1), be the quantile function, and let F−1
i (0) and F−1

i (1) be
the lower bound and upper bound of the support of the random variable Xi, say SFi

.

Definition 2.1. For the nonnegative continuous random variable X , the TTT transform is defined as

TX(u) =

∫ F−1(u)

0

F̄ (x)dx.

Given the fact that 0 < µ = E(X) <∞, the scaled TTT transform φ(u) of X is shown as φF (u) =
TX(u)

µ . Barlow
and Campo (1975) was the first that introduced the scaled TTT transform, which is also free scale. The scaled
TTT transform has proved to be an extremely useful tool in a variety of reliability applications, including model
recognition, characterizing different aging properties, and analyzing various maintenance and burn-in problems.

Definition 2.2. LetX and Y be two random variables with distribution functions F andG that have finite means.
Then X is said to be smaller than Y in TTT transform order, denoted by X ≤ttt Y , if

TX(u) ≤ TY (u) for all u ∈ (0, 1).

Definition 2.3. In the bivariate mode, consider the two-variable function

C : [0, 1]2 −→ [0, 1].

Then C(u, v) is a two-dimensional copula if

• C(u, 0) = C(0, v) = 0 for every u, v ∈ [0, 1],
• C(u, 1) = u and C(1, v) = v for every u, v ∈ [0, 1],
• C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 for every u1, v1, u2, v2 ∈ [0, 1], such that u1 ≤ u2 and
v1 ≤ v2.

Sklar’s theorem shows that if (X1, X2) is a random vector with joint distribution F and marginal distribution
functions F1 and F2, then

F (x1, x2) = C(F1(x1), F2(x2)).

The most important copula families are Frechet, Gumbel, Normal, FGM, Clayton, and so on. As mentioned, one
of the most important copulations that shows a positive dependence is the Clayton copula, which is also used in
this article and defined as follows.
Definition 2.4.

a) If C(·) has the form CC(u, v) = [u−θ + v−θ − 1]
−
1

θ , then we say it Clayton copula with parameter θ ≥
−1, θ ̸= 0. When θ → 0, it is reduced to an independent copula.

b) If C(·) has the form CC(u, v) = uv exp{−θ ln(u) ln(v)}, then we say it Clayton copula with parameter θ ≥ 1.
There are various criteria for measuring the relationship between random variables. Some of these criteria do

not depend on marginal distributions and are called nonparametric correlation criteria. One of the most famous of
these criteria is the Kendall’s tau, which is denoted by τ and is defined as follows.
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2 SOME PROPERTIES OF TOTAL TIME ON TEST AND EXCESS WEALTH IN BIVARIATE CASES

Definition 2.5. Let (X1, X2) be a random vector with joint distribution F , marginal distribution functions F1

and F2, and copula function C. Then

τ(X1, X2) = 4

∫ ∞

−∞

∫ ∞

−∞
F (x1, x2)dF (x1, x2)− 1

= 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1.

Definition 2.6. Let X = (X1, X2) be a bivariate random variable with F (x1, x2). The distribution F (x1, x2) is
said to have
a) Bivariate New Better than Used (BNBU ) if

F̄ (x1 + t, x2 + s) ≤ F̄ (x1, x2)F̄ (t, s), x1, x2, t, s > 0;

b) Bivariate New Better than Used in Average (BNBUA) if∫ x1

0

∫ x2

0

F̄ (u+ t, v + s)dvdu ≤ F̄ (t, s)

∫ x1

0

∫ x2

0

F̄ (u, v)dvdu, x1, x2, t, s > 0;

c) Bivariate New Better than Used in Failure Rate (BNBUFR) if

F̄ (x1 + t, x2 + s) ≤ exp[−r(0, 0)
√
t2 + s2]F̄ (x1, x2), x1, x2, t, s > 0,

where r(·, ·) = f(·,·)
F̄ (·,·) denotes the failure rate of F ;

d) Bivariate New Better than Used of Second Order (BNBU(2)) if and only if∫ x1

0

∫ x2

0

F̄ (u, v)dvdu ≥
∫ x1

0

∫ x2

0

F̄ (u+ t, v + s)

F̄ (t, s)
dvdu, x1, x2, t, s ≥ 0;

e) Bivariate Harmonic New Better than Used Expectation (BHNBUE) if∫ ∞

x1

∫ ∞

x2

F̄ (u, v)dvdu ≤ µ exp{−x1 + x2
µ

}, x1, x2 ≥ 0,

wherein µ = E(X1X2) =
∫∞
0

∫∞
0
F̄ (x1, x2)dx1dx2.

3. Main Results

The concept of TTT transform is well known due to its applications in different fields of study such as reliability
analysis, econometrics, stochastic modeling, tail orderings, and ordering distributions. Bralow and Proschan (1975)
extended the TTT concept to the multivariate case. They assumed that (X,Y ) have joint life distribution F (x, y),
that (X1, Y1), . . . , (Xn, Yn) are n independent observations on (X,Y ), and also that N(u, v) is the number of
pairs (Xi, Yi) such that Xi ≥ u and Yi ≥ v. Then N(u, v) is the number of pairs “on test” at joint times u and
v. They called Tn(x, y) =

∫ x

0

∫ y

0
N(u, v)dudv, the joint TTT. If F̄n(x, y) =

N(x,y)
n is the joint empirical survival

probability, then 1
nTn(x, y) =

∫ x

0

∫ y

0
F̄n(u, v)dudv and

lim
n→∞

1

n
Tn(x, y) =

∫ x

0

∫ y

0

F̄ (u, v)dudv, (1)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



M. ESFAHANI, M. AMINI AND G. R. MOHTAFHAMI BORZADARAN 3

where F̄ (u, v) = P (X > u, Y > v). It is obvious that∫ ∞

0

∫ ∞

0

F̄n(u, v)dudv =
1

n

n∑
i=1

XiYi.

Definition 3.1. Let (X1, Y1), . . . , (Xn, Yn) be n independent observations of nonnegative vector variable (X,Y )
and let (X(i), Y(i)) be order statistics. In this case, we define the bivariate total time on test statistic in (0,t) as
follows:

TTT (t1, t2) = n(X(1), Y(1)) + · · ·+ (n− s+ 1)(X(s) −X(s−1), Y(s) − Y(s−1))

+(n− s)(t1 −X(s), t2 − Y(s)), (2)

wherein X(s) ≤ t1 ≤ X(s+1) and Y(s) ≤ t2 ≤ Y(s+1).
According to the concept presented by Barlow and Proschan (1975), the TTT transform in the bivariate mode

can be written as follows.
Definition 3.2. Let X = (X1, X2) be a bivariate vector variable that has joint life distribution F (x1, x2) and

marginal distribution functions F1 and F2, respectively. The bivariate TTT transform is shown by TX1,X2
(p1, p2)

and thus expressed as

TX1,X2
(p1, p2) =

∫ F−1
1 (p1)

0

∫ F−1
2 (p2)

0

F̄ (u, v)dvdu, p1, p2 ∈ (0, 1), (3)

where F−1
1 (p1) and F−1

2 (p2) are quantile functions. It can be easily shown that TX1,X2(p1, 0) = TX1,X2(0, p2) = 0.
Also, the scale bivariate TTT transform is defined as below:

φX1,X2
(p1, p2) =

∫ F−1
1 (p1)

0

∫ F−1
2 (p2)

0
F̄ (u, v)dvdu∫∞

0

∫∞
0
F̄ (u, v)dvdu

, p1, p2 ∈ (0, 1). (4)

We define a nonparametric estimate for TX1,X2(p1, p2), p1, p2 ∈ (0, 1), as follows:

T̂X1,X2
(p1, p2) =n(p1X(1), p2Y(1))I[0≤p1,p2≤ 1

n ]

+
1

n
[n(X(1), Y(1)) + · · ·+ (n− j + 1)(X(j) −X(j−1), Y(j) − Y(j−1))]

+ (n− j)(p1 −
j

n
, p2 −

j

n
)(X(j+1) −X(j), Y(j+1) − Y(j))I[ j

n≤pi≤ j+1
n ],

j = 1, 2, . . . , n− 1. (5)

Remark 3.3. The transform introduced in (3) is nondecreasing relative to p1 and p2 because

∂TX1,X2
(p1, p2)

∂p1
=

∫ F−1
2 (p2)

0

F̄ (F−1
1 (p1), v)

f1(F
−1
1 (p1))

dv ≥ 0,

∂TX1,X2(p1, p2)

∂p2
=

∫ F−1
1 (p1)

0

F̄ (u, F−1
2 (p2))

f2(F
−1
2 (p2))

du ≥ 0,

∂2TX1,X2(p1, p2)

∂p2∂p1
=

F̄ (F−1
1 (p1), F

−1
2 (p2))

f1(F
−1
1 (p1))f2(F

−1
2 (p2))

≥ 0.

Definition 3.4. Let X = (X1, X2) and Y = (Y1, Y2) be two nonnegative random vectors with finite dual
expectation. Then X is said to be smaller than Y in the sense of bivariate TTT order and denoted by (X1, X2) ≤ttt

(Y1, Y2) if
TX1,X2(p1, p2) ≤ TY1,Y2(p1, p2), (p1, p2) ∈ (0, 1)2.
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4 SOME PROPERTIES OF TOTAL TIME ON TEST AND EXCESS WEALTH IN BIVARIATE CASES

In the following paragraphs, by examining the bivariate TTT plot of the random vector (X1, X2) that X1 and X2

have Weibull and exponential marginal distribution, respectively, we study the sensitivity analysis of the diagram
to the change of parameters.

Remark 3.5. Equation (1) can be written as follows for EW transform:

lim
n→∞

1

n
Wn(x, y) =

∫ ∞

x

∫ ∞

y

F̄ (u, v)dudv, (6)

and as a result the bivariate EW transform is

WX1,X2(p1, p2) =

∫ ∞

F−1
1 (p1)

∫ ∞

F−1
2 (p2)

F̄ (u, v)dvdu, p1, p2 ∈ (0, 1). (7)

Also, the scale bivariate EW transform is defined as below:

ψX1,X2(p1, p2) =

∫∞
F−1

1 (p1)

∫∞
F−1

2 (p2)
F̄ (u, v)dvdu∫∞

0

∫∞
0
F̄ (u, v)dvdu

, p1, p2 ∈ (0, 1). (8)

Bivariate LIR transform for nonnegative variables can be obtained similarly. For this purpose, assume that
(X,Y ) is a vector variable consisting of nonnegative variables that have joint life distribution F (x, y), that
(X1, Y1), . . . , (Xn, Yn) are n independent observations on (X,Y ), and also that N∗(u, v) is the number of
pairs (Xi, Yi) such that Xi ≤ u and Yi ≤ v. Then LIRn(x, y) =

∫ x

0

∫ y

0
N∗(u, v)dudv, is the joint location

independent riskier. If Fn(x, y) =
N∗(x,y)

n is the joint empirical cumulative distribution, then 1
nLIRn(x, y) =∫ x

0

∫ y

0
Fn(u, v)dudv and

lim
n→∞

1

n
LIRn(x, y) =

∫ x

0

∫ y

0

F (u, v)dudv, (9)

As a result, the bivariate LIR transform is

LIRX1,X2
(p1, p2) =

∫ F−1
1 (p1)

0

∫ F−1
2 (p2)

0

F (u, v)dvdu, p1, p2 ∈ (0, 1). (10)

Example 3.6. Let X = (X1, X2) be a nonnegative random vector that variables X1 and X2 are two components
of a system that have Weibull marginal distribution and exponential distribution, respectively, and whose lifetime
is positively dependent. We use the Clayton and Gumbel copulas to investigate the lifetime dependence of these
two components. The sensitivity analysis of bivariate TTT is performed according to changes in the exponential
distribution parameter, parameter of copulas, and Weibull distribution shape parameter. To do this, the two
parameters are considered constant, and the results are studied based on the changes of the third parameter.

a) As a basic case, we obtain the value of integral (4) for the Weibull distribution with the parameters shape 2
and the scale 1, the standard exponential distribution, and Clayton copula with the parameter θ = 1, which is equal
to 58.61538. The value of the integral is called the TTT value, and it is obtained by a calculation for 20 values of
p1 and p2 of [0, 1]. Increasing the exponential distribution parameter has no effect on the amount of TTT value and
its surface. Indeed with increasing the value of θ, its surface increases slightly in the interval [−1,−0.6], and as a
result, the TTT value increases. Then it decreases slightly in the interval [−0.6, 1.9] and finally increases slightly
for θ > 1.9. Table 1 shows the values in τ -Kendall and the TTT value in terms of different θ. Finally, increasing
the Weibull distribution shape parameter also increases the TTT value. This result is well illustrated in Table 2 and
Figure 1. As can be seen, increasing the shape parameter of the Weibull distribution and keeping other parameters
constant increase the bivariate TTT statistic and the distance of its surface from the origin.
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Table 1. TTT value and τ -Kendall for different Clayton copula parameters.

θ τ TTT value
-1 -1 59.49852

-0.9 -0.818 59.61836
-0.6 -0.429 59.74324

-0.59 -0.418 59.74109
-0.5 -0.333 59.70456
-0.1 -0.053 59.30375

-0.001 -0.0005 59.19368
0.1 0.048 59.09114
0.5 0.2 58.79597
0.9 0.310 58.63971
1 0.375 58.61538

1.5 0.394 58.54916
1.8 0.474 58.53882
1.9 0.487 58.53852
1.91 0.489 58.53856

2 0.5 58.53945
6 0.75 58.81151

200 0.99 59.51554

Table 2. TTT value for different shape parameters with Clayton copula.

α TTT value
2 58.61538
4 73.02312
10 80.30703
20 87.03152

b) By considering the Gumbel copula with parameter θ = 1, the TTT value is equal to 59.19261 for marginal
distributions Weibull(2,1) and Exp(1). As before, increasing the exponential distribution parameter has no effect
on the amount of TTT value, but by increasing the value of θ, the TTT value and its surface increase slightly in
the interval [1, 2.1]. Then it decreases slightly in the interval [2.1, 164] and finally increases slightly for θ > 164.
Table 3 shows the values in τ -Kendall and TTT value in terms of different values of the Gumbel copula parameter.
Finally, increasing the shape parameter increases the TTT value. This result is well illustrated in Table 4 and Figure
2.
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(c) α = 10
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(d) α = 20

Figure 1. Bivariate TTT plot for different values of shape parameter α with Clayton copula.

3.1. Bivariate TTT transform

The univariate right-spread or EW function was introduced by Fernandez-Ponce et al. (1996), and it was extended
to a multivariate case by Fernandez-Ponce et al. (2011). In this section, we present a new definition of bivariate
TTT and LIR transforms based on the multivariate case of Fernandez-Ponce et al. (2011). Also, the bivariate TTT
transform enables us to define a new stochastic order based on the new transform. For this purpose, let x = (x1, x2)
be a vector in R2. Let X be a random vector in R2 with distribution function F (·, ·). The Bivariate u-quantile for
X , also called regression representation, was introduced by O’brien (1975) as follows.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



M. ESFAHANI, M. AMINI AND G. R. MOHTAFHAMI BORZADARAN 7

Table 3. TTT value and τ -Kendall for different Gumbel copula parameters.

θ τ TTT value
1 0 59.19261

1.1 0.091 59.40976
1.6 0.375 59.75881
2 0.5 59.76551

2.1 0.524 59.75849
2.2 0.545 59.75015
3 0.667 59.67657
4 0.75 59.61146
20 0.95 59.49075

100 0.99 59.48428
164 0.994 59.48411
165 0.994 59.48436
170 0.994 59.4857
200 0.995 59.52231
1000 0.999 68.52647

Table 4. TTT value for different shape parameters with Gumbel copula.

α TTT value
2 59.19261
4 73.37082
10 83.45642
20 87.10735

Let u2 = (u1, u2) be a vector in [0, 1]2. Then the bivariate u-quantile for X , denoted by x̂(u2), is defined as

x̂1(u1) = F−
X1

(u1), x̂2(u2) = F−
X2|X1=x̂1(u1)

,

where F− = inf{x : F (x) ≥ u} and u2 = (u1, u2). Also the bivariate x-rate vector concept is denoted by x⋆(x),
and it is defined as x⋆1(x1) = P (X1 ≤ x1) and x⋆2(x2) = P (X2 ≤ x2|X1 = x1), where x2 = (x1, x2). The right-
upper orthant at a point z is denoted by C(z), and it is defined as C(z) = {x ∈ R2 : z ≤ x}. At the end, the upper-
corrected and lower-corrected orthant at a point z, for the random variable X , are shown as Rx(z) and R

′

x(z) and
defined as

Rx(z) = {x ∈ R2 : x1 ≥ F−
X1

(x⋆1(z1)), x2 ≥ F−
X2|X1=x1

(x⋆2(z2))},

R
′

x(z) = {x ∈ R2 : x1 ≤ F−
X1

(x⋆1(z1)), x2 ≤ F−
X2|X1=x1

(x⋆2(z2))}.

By considering that, the support of a random vector X is characterized as Supp(X) = {x ∈ R2 : P [X ∈ Bx(ϵ)] >
0, for all ϵ > 0}, where Bx(ϵ) is the centered ball at x with radius ϵ. Then the following definition can be given.
Definition 3.7. Let X be a nonnegative random vector. Then the dual expectation associated to X, when it exists,
is defined as the real value

µ̄X =

∫
Supp(X)

P [X ∈ RX(t)]dt.

Fernandez-Ponce et al. (2011) showed that for a bivariate random variable X = (X1, X2)

µ̄X = νX −
∫ ∞

F−
X1

(0)

F̄1(t)F
−
X2|X1=t(0)dt,

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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(a) α = 2
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(c) α = 10
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(d) α = 20

Figure 2. Bivariate TTT plot for different values of shape parameter α with Gumbel copula.

where νX =
∫∞
F−

X1
(0)
F̄1(t)E[X2|X1 = t]dt. Especially, if X is a nonnegative lifetime random variable, then

µ̄X ≤ νX. Also, if Supp(X) = [0,+∞)2, then µ̄X = νX holds. Fernandez-Ponce et al. (2011) defined the bivariate
EW transform as follows:

EWX(u) =

∫
RX[x̂(u)]

P [X ∈ RX(t)]dt, u ∈ [0, 1)2. (11)
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Now, based on the said content, we denote the lower-corrected orthant at a point z for the random variable X , by
R

′

x(z), defined as

R
′

x(z) = {x ∈ R2 : x1 ≤ F−
X1

(x⋆1(z1)), x2 ≤ F−
X2|X1=x1

(x⋆2(z2))}.

Now based on this concept, we define the TTT and LIR transforms in a bivariate mode and their corresponding
stochastic orders in Definitions 3.8 and 3.9.

Definition 3.8. Let X be a nonnegative random vector with finite dual expectation. The bivariate TTT and LIR
transforms associated to X is, respectively, defined as

TX(u) =

∫
R

′
X[x̂(u)]

P [X ∈ RX(t)]dt, u ∈ [0, 1)2, (12)

LIRX(u) =

∫
R

′
X[x̂(u)]

P [X ∈ R
′

X(t)]dt, u ∈ [0, 1)2. (13)

If X is a nonnegative random vector with finite dual expectation, then the following results can be easily obtained:

• TX(u) is increasing.
• 0 ≤ TX(u) ≤ TX(∞) = µ̄X for all u in [0, 1)2.
• If X1 and X2 are independent, then TX(u) = TX1(u1)TX2(u2).

Definition 3.9. Let X and Y are two nonnegative random vectors with finite dual expectation. Then X is said to
be smaller than Y in the sense of bivariate TTT order, denoted by X ≤ttt Y, if

TX(u) ≤ TY(u), u ∈ (0, 1)2, (14)

also Y is in the sense of bivariate location independent riskier order, denoted by X ≤lir Y, if

LIRX(u) ≤ LIRY(u), u ∈ (0, 1)2. (15)

It can be easily written

TX(u1, u2) =

∫ F−
X1

(u1)

0

F̄X1(t1)TX2|X1=t1(u2)dt1.

Therefore for X = (X1, X2) and Y = (Y1, Y2), we can write X ≤ttt Y if

X1 ≤ttt Y1,

[X2|X1 = x1] ≤ttt [Y2|Y1 = y1] whenever x1 ≤ y1.

According to the results of section 6.B of the Shaked and Shantikomar (2007), the following results are easily
obtained.

Remark 3.10. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors.

• If X ≤st Y, then X ≤ttt Y, wherein ≤st is a usual stochastic order.
• If X ≤sst Y, then X ≤ttt Y, wherein ≤sst is a strong stochastic order.
• If Xi ≤st Yi, i = 1, 2, . . . , n, X , and Y have a common copula, then X ≤ttt Y.
• If Xi ≤ttt Yi, i = 1, 2, . . . , n, X , and Y have a common copula and E(Xi) = E(Yi), then X ≤ew Y.
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Also, consider the relationship between stochastic order and TTT transform order. Then Theorem 6.B.15 of
Shaked and Shantikomar (2007) can be rewritten as follows.

Corollary 3.11. Let {Zi}ni=1 be a sequence of independent random variables. If Z1 ≤lr Z2 ≤lr≤lr · · · ≤lr Zn,
then

(Z1, Z1 + Z2, . . . ,

n∑
i=1

Zi) ≤ttt (Zπ1
, Zπ1

+ Zπ2
, . . . ,

n∑
i=1

Zπi
)

≤ttt (Zn, Zn + Zn−1, . . . ,

n∑
i=1

Zi),

for every permutation (π1, π2, . . . , πn) of (1, 2, . . . , n).
In a special case, if X1 ≤lr X2, then

(X1, X1 +X2) ≤ttt (X2, X1 +X2).

Fagiuoli et al. (1999) showed that X ≤lir Y ⇐⇒ X ≤ew Y . Accordingly, every result that holds for the EW
order can be reworded by means of the location independent riskier order.

Example 3.12. Let X = (X1, X2) and Y = (Y1, Y2) be two vector variables with bivariate exponential
distribution introduced by Marshall and Olkin (1967), given by

F̄ (x1, x2) = exp{−λ1x1 − λ2x2 − λ12 max(x1, x2)}, (16)

wherein x1, x2, λ1, λ2 > 0 and λ12 ≥ 0. Marshall and Olkin (1967) presented the properties of the
introduced bivariate distribution and its applications and used the BV E(λ1, λ2, λ12) to represent it. Now let
X ∼ BV E(λ1, λ2, λ12) and let Y ∼ BV E(θ1, θ2, θ12). By performing simple calculations, for i = 1, 2, we have
F̄i(xi) = exp{−(λi + λ12)xi} and F−1

i (p) = − ln(1−p)
λi+λ12

.

As a result, if λi + λ12 ≥ θi + θ12, i = 1, 2, and λ2 ≥ θ2, then it is simply shown that

X1 ≤ttt Y1,

[X2|X1 = x1] ≤ttt [Y2|Y1 = y1] whenever x1 ≤ y1,

and consequently, X ≤ttt Y.

Example 3.13. Let X = (X1, X2) and Y = (Y1, Y2) be two vector variables with bivariate exponential
distribution introduced by Gumbel (1960), given by

F̄ (x1, x2) = exp{−λ1x1 − λ2x2 − δx1x2}, x1, x2, λ1, λ2, δ > 0. (17)

Lai and Xie (2006) also studied this distribution and examined its aging properties. We use BGE(λ1, λ2, δ) to
represent it. Now let X ∼ BGE(λ1, λ2, δ1) and let Y ∼ BGE(θ1, θ2, δ2). By performing simple calculations, for
i = 1, 2, we have F̄i(xi) = exp{−λixi} and F−1

i (p) = − ln(1−p)
λi

.
If λ1 ≥ θ1 and λ2 + δ1x1 ≥ θ2 + δ2x2, then

X1 ≤ttt Y1,

[X2|X1 = x1] ≤ttt [Y2|Y1 = y1] whenever x1 ≤ y1,

and as a result X ≤ttt Y.
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4. New Better than Used in Total Time on Test Transform

The NBUT concept was introduced by Ahmad et al. (2005). Based on that a random variable X or F is said to be
new better than used in TTT transform order, denoted by NBUT , if

Xt ≤ttt X,

or equivalently, X ∈ NBUT if and only if∫ F−1
Xt

(p)

0

F̄ (x+ t)dx ≤ F̄ (t)

∫ F−1(p)

0

F̄ (x)dx, p ∈ (0, 1),

whereXt = [X − t|X > t], t ∈ {x : F (x) < 1}, named residual life variable, and denotes a random variable whose
distribution is the same as the conditional distribution of Xt given that X > t. When X is the lifetime of a device,
Xt can be regarded as the residual lifetime of the device at time t, given that the device has survived up to time t.
We have a simple calculation for p ∈ (0, 1),

F−1
Xt

(p) = F−1(F (t)(1− p) + p)− t.

In this section, the NBUT concept for the bivariate mode is presented, and its properties are examined. Also the
bivariate TTT , EW , and LIR transforms provided for inactivity time variables. Zahedi (1985) defined a residual
life variable in bivariate as follows:

Xt = [X1 − t1, X2 − t2|X1 > t1, X2 > t2], t1, t2 > 0, (18)

The survival function of Xt is defined as below:

F̄Xt(x1, x2) =
F̄ (x1 + t1, x2 + t2)

F̄ (t1, t2)
. (19)

Now the NBUT concept is defined as follows in the bivariate case:

X ∈ NBUT ⇐⇒ Xt ≤ttt X.

According to equation (3), this means that∫ A

0

∫ B

0

F̄ (x1 + t1, x2 + t2)

F̄ (t1, t2)
dx1dx2 ≤ TX1,X2

(p1, p2), (20)

wherein
A = F−1

1 (F1(t1)(1− p1) + p1)− t1,

B = F−1
2 (F2(t2)(1− p2) + p2)− t2.

Example 4.1. Let X = (X1, X2) and Y = (Y1, Y2) be two vector variables with bivariate Pareto distribution
introduced by Mardia (1970), given by

F̄ (x1, x2) = (1 + a1x1 + a2x2)
−λ, x1, x2, a1, a2, λ > 0. (21)

Lai and Xie (2006) also studied this distribution in Example 9.3, p. 272, and we use the BPE(a, b, λ) to represent

it. By performing simple calculations, for i = 1, 2, we have F̄i(xi) = (1 + aixi)
λ, F−1

i (p) = (1−p)−
1
λ −1

ai
, and

TX1,X2
(p1, p2) =

[(1− p1)
− 1

λ + (1− p2)
− 1

λ − 1]2−λ − (1− p1)
λ+2
λ − (1− p2)

λ+2
λ + 1

a1a2(1− λ)(2− λ)
,
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also F̄Xt(x1, x2) =
[1+a1(x1+t1)+a2(x2+t2)]

−λ

(1+a1t1+a2t2)−λ . Hence for t1, t2 > 0 and p1, p2 ∈ (0, 1), according to equation (20),
we have

X ∈ NBUT ⇐⇒
∫ A

0

∫ B

0

[1 + a1(x1 + t1) + a2(x2 + t2)]
−λ

(1 + a1t1 + a2t2)−λ
dx2dx1 ≤ TX1,X2

(p1, p2).

Remark 4.2. For any vector variable X = (X1, X2), let

Xt = [t1 −X1, t2 −X2|X1 < t1, X2 < t2], t ∈ {x : F (x) < 1}. (22)

When X is the lifetime of two devices, Xt can be regarded as the bivariate inactivity time of the devices at time
t and

F̄Xt(x1, x2) =
F (x1 + t1, x2 + t2)

F (t1, t2)
. (23)

Therefore

TXt(p) =
∫ A

′

0

∫ B
′

0

F (x1 + t1, x2 + t2)

F (t1, t2)
dx2dx1, (24)

EWXt(p) =
∫ ∞

A′

∫ ∞

B′

F (x1 + t1, x2 + t2)

F (t1, t2)
dx2dx1, (25)

LIRXt(p) =
∫ A

′

0

∫ B
′

0

1− F (x1 + t1, x2 + t2)

F (t1, t2)
dx2dx1, (26)

wherein
A

′
= F−1

1 (F1(t1)(1− p1))− t1,

B
′
= F−1

2 (F2(t2)(1− p2))− t2.

5. Relationship Aging Classes in Bivariate

Rizwan and Hussainy (2016) and Basu et al. (1983) have expressed some aging classes in a bivariate mode and
examined their properties. In this section, we describe the relationship between TTT transform and aging classes
in a bivariate mode.

Proposition 5.1. Let X = (X1, X2) be a bivariate random variable with F (x1, x2). The following results can be
written, for F (x1, x2), as follows:
a) F (x1, x2) ∈ BNBU,BNBU(2), BNBUA if

TX1,X2(p1, p2) ≥
∫ F−1

1 (p1)

0

∫ F−1
2 (p2)

0

F̄Xt(u, v)dudv, p1, p2 ∈ (0, 1).

b) F (x1, x2) ∈ BNBUFR if

TX1,X2
(p1, p2) ≥

∫ F−1
1 (p1)

0

∫ F−1
2 (p2)

0

F̄ (u+ t, v + s)

exp[−r(0, 0)
√
t2 + s2]

dudv, p1, p2 ∈ (0, 1).
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c) F (x1, x2) ∈ BHNBUE if

EWX1,X2
≤ µ exp{−F

−1
1 (p1) + F−1

1 (p2)

µ
}, p1, p2 ∈ (0, 1),

wherein µ =
∫∞
0

∫∞
0
F̄ (u, v)dvdu.

Proof To prove each of the cases, use Definition 2.6. By integrating the sides of the relevant inequalities and
also replacing x1 = F−1

1 (p1) and x2 = F−1
2 (p2) by performing simple calculations, the desired result is obtained.

Example 5.2. Let X = (X1, X2) be a vector variable with bivariate exponential distribution introduced in (16).
By doing the desired calculations, we have

µ =

∫ ∞

0

∫ ∞

0

exp{−λ1x1 − λ2x2 − λ12 max(x1, x2)}dx2dx1

=
1

λ2
(

1

λ1 + λ12
)I[x1>x2] +

1

λ1
(

1

λ2 + λ12
)I[x2>x1] +

1

λ1 + λ2 + λ12
I[x1=x2],

TX1,X2
(p1, p2) =

∫ − ln(1−p1)
λ1+λ12

0

∫ − ln(1−p2)
λ2+λ12

0

exp{−λ1x1 − λ2x2 − λ12 max(x1, x2)}dx2dx1

=(
p1

λ1 + λ12
)(

1

λ2
(1− (1− p2)

λ2
λ2+λ12 ))I[x1>x2]

+(
p2

λ2 + λ12
)(

1

λ1
(1− (1− p1)

λ1
λ1+λ12 ))I[x2>x1] + TX(p)I[x1=x2],

wherein TX(p) = p
λ1+λ2+λ12

. Moreover,

EWX1,X2
(p1, p2) =

∫ ∞

− ln(1−p1)
λ1+λ12

∫ ∞

− ln(1−p2)
λ2+λ12

exp{−λ1x1 − λ2x2 − λ12 max(x1, x2)}dx2dx1

=(
1− p1
λ1 + λ12

)(
1

λ2
(1− p2)

λ2
λ2+λ12 )I[x1>x2]

+(
1− p2
λ2 + λ12

)(
1

λ1
(1− p1)

λ1
λ1+λ12 )I[x2>x1] + EWX(p)I[x1=x2],

wherein EWX(p) = 1−p
λ1+λ2+λ12

.

LIRX1,X2
(p1, p2) =

∫ − ln(1−p1)
λ1+λ12

0

∫ − ln(1−p2)
λ2+λ12

0

[exp{−λ1x1 − λ2x2 − λ12 max(x1, x2)}

+exp{−(λ1 + λ12)x1}+ exp{−(λ2 + λ12)x2} − 1]dx2dx1

={( p1
λ1 + λ12

)(
1

λ2
(1− (1− p2)

λ2
λ2+λ12 ))

−p1 ln(1− p2)− p2 ln(1− p1)

(λ1 + λ12)(λ2 + λ12)
}I[x1>x2]

+{( p2
λ2 + λ12

)(
1

λ1
(1− (1− p1)

λ1
λ1+λ12 ))

−p2 ln(1− p1)− p1 ln(1− p2)

(λ1 + λ12)(λ2 + λ12)
}I[x2>x1]

+
ln(1− p1) ln(1− p2)

(λ1 + λ12)(λ2 + λ12)
+ [− ln(1− p)

λ1 + λ2 + λ12
− TX(p)]I[x1=x2].
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Now, we can examine each of the cases of Proposition 5.1.

• For p1, p2 ∈ (0, 1), x1 > x2, we have
λ1

λ2

λ2+λ12

λ1+λ12
≤ (1− p1)

λ1(λ2+λ12)
λ1+λ12 (1− p2)

λ1− λ2
λ1+λ12 =⇒ F (x1, x2) ∈ BHNBUE.

• For p1, p2 ∈ (0, 1), x1 < x2, we have
λ2

λ1

λ1+λ12

λ2+λ12
≤ (1− p2)

λ2(λ1+λ12)
λ2+λ12 (1− p1)

λ2− λ1
λ2+λ12 =⇒ F (x1, x2) ∈ BHNBUE.

• For p1, p2 ∈ (0, 1), t1, t2 > 0 and x1 > x2,

F (x1, x2) ∈ BNBU,BNBU(2), BNBUA if

( p1

λ1+λ12
)( 1

λ2
(1− (1− p2)

λ2
λ2+λ12 ))F̄ (t1, t2)

≥ (p1 exp{−(λ1+λ12)t1}
λ1λ2+λ12λ2

)[exp{−λ2t2} − exp{ λ2

λ2+λ12
ln(1− p2)}],

and for x1 < x2, F (x1, x2) ∈ BNBU,BNBU(2), BNBUA if

( p2

λ2+λ12
)( 1

λ1
(1− (1− p1)

λ1
λ1+λ12 ))F̄ (t1, t2)

≥ (p2 exp{−(λ2+λ12)t2}
λ1λ2+λ12λ1

)[exp{−λ1t1} − exp{ λ1

λ1+λ12
ln(1− p1)}].

Note that for x1 = x2, the results will be the same as the univariate case.

6. Conclusions

In this article, we expressed the TTT, EW, and LIR transforms in a bivariate mode and examined its features.
Also, considering an example, drawing a diagram of this transform, and assuming different modes of changing the
parameters of the marginal distributions and the copula parameter were considered to show the dependence of the
two variables. We performed the sensitivity analysis for this diagram. In continuation, based on the right-upper
orthant concept, TTT and LIR transforms were rewritten, and some notes about stochastic orders in the bivariate
mode were stated. Then we introduced the class NBUT and all three transforms for the inactivity time variable in
a bivariate mode. Finally, the relation of bivariate TTT with some concepts of aging was obtained.
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