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derived. Different estimation methods are used for estimating the unknown parameter. We assessed the performance of
all methods via simulation study. Two real data applications are used for comparing competitive estimation methods. The
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1. Introduction and physical motivation

A probability distribution is a mathematical function used in probability theory and statistics that estimates
the likelihood that various possible outcomes of an experiment will occur. In many practical fields, including
engineering, medicine, and finance, among others, right or left skewness, bi-modality, or multi-modality are
features of data sets that can be modelled using statistical distributions. Because of their straightforward shapes
and identifiability characteristics, well-known distributions including normal, Weibull, gamma, and Lindley are
frequently utilised. However, during the past ten or so years, much research has concentrated on the more flexible
and complicated Generalized or simply G families of continuous distributions, with the aim of improving their
modelling capabilities by including one or more shape parameters. The inverse Weibull distribution (IW) has the
ability to model failure hazard rates which are common in reliability analysis and biological studies. De Gusmo et
al. [36] defined and studied a new three-parameter IW distribution with monotonically decreasing and upside down
failure rate. They provide some mathematical properties of the new IW distribution and proposed a location-scale
regression model for modeling lifetime real data. Due to de Gusmo et al. [36], a random variable (r.v.) Y is said to
have the IW distribution if its probability density function (PDF) and cumulative distribution function (CDF) are
given by (for y ≥ 0)

h(y) = hc(y; a, b) = cbaby−b−1exp

[
−c

(
a
1

y

)b
]
,
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and

H(y) = Hc(y; a, b) = ∆V (y) = exp

[
−c

(
a
1

y

)b
]
|V=a,b,c,

respectively, where a > 0 is a scale parameter, c and b > 0 are a shape parameters, respectively. We can easily prove

that hc(y; a, b) is a density function by substituting u = −c
(
a 1
y

)b

. The standard IW distribution is a special case
of hc(y; a, b) when c = 1. For c = 1, we get the standard IW distribution. The IW distribution can be simulated by

using the nonlinear equation yu = a
{

1
c [− log (u)]

}− 1
b where u has the uniform U(0, 1) distribution. For b = 2, we

get the generalized Inverse Rayleigh distribution (GIR). For a = 1, we have the generalized Inverse Exponential
(GIEx) distribution. For c = 1 and b = 2, we get the standard IR distribution. For c = a = 1 we get the standard
IEx model. For more details about the IW model see Gusmao et al. (2011), Harlow [52], Zaharim et al. [112],
Krishna et.al. [70], Barreto-Souza et al. [30], Afify et al. [11], Korkmaz et al. [68], Ul-Haq et al. [97], Yousof
et al. ([99], [104], [109] and [106]), Chakraborty et al. [32], Elbiely and Yousof [39], Jahanshahi et al. [62] and
Elsayed and Yousof [46]. Recentely, Yousof et al. [110] expanded the IW model by defining a new G family of
distributions called extended odd inverse Weibull distribution (EOIW) and studied its properties, applications and
then presented a regression mode based on the new family. Salah et al. [83] defined and studied a new IW model
called the odd-Burr inverse Weibull (OBIW) model. In their study Salah et al. [83] presented some new bivariate
type extensions using Farlie-Gumbel-Morgenstern copula, modified Farlie-Gumbel-Morgenstern copula, Clayton
copula, and Renyi’s entropy copula. Yousof et al. [108] defined and studied the two-parameter Xgamma inverse
Weibull (XgIW) distribution with some Characterization results, different copulas and different classical estimation
methods. Al-Babtain et al. [9] presented a new three parameter inverse Weibull model called the generalized
odd generalized exponential inverse Weibull (GOGEIW) model with simple type copula, mathematical properties
and some applications to breaking stress of carbon fibres and strengths data sets. Bhatti et al. [29] defined and
studied the modified Burr XII Inverse Weibull (BXIIIW) distribution. Goual et al. [49] studied the Lomax inverse
Weibull (LxIW) model and its properties, applications and presented a modified chi-squared goodness-of-fit test
for censored validation.

In this paper we propose and study a new extension of the IW distribution using the zero truncated Poisson (ZTP)
distribution. Suppose that a system has N subsystems functioning independently at a given time where N has ZTP
distribution with parameter λ = 1. It is the conditional probability distribution of a Poisson-distributed r.v., given
that the value of the r.v. is not zero. The probability mass function (PMF) of N is given by

PMF (N = n) |(n=1,2,...) =
1

n!

exp (−1)

1− exp (−1)
. (1)

Note that for ZTP r.v., the expected value E(N |λ) and variance V ar(N |λ) are, respectively, given by

E(N |λ = 1) =
1

1− exp (−1)
,

and

V ar(N |λ) = 1

1− exp (−1)

(
2− 1

1− exp (−1)

)
.

Suppose that the failure time of each subsystem has the Burr X inverse Weibull (“BXIW(θ, c, a, b)” for short)
defined by the cumulative distribution function (CDF) given by

G(y)=
{
1− exp

[
−O2

V (y)
]}θ

, (2)

where

OV (y) =
∆V (y)

1−∆V (y)
.

Stat., Optim. Inf. Comput. Vol. 13, March 2025



1122 A NEW INVERSE WEIBULL DISTRIBUTION

Let Xi denote the failure time of the ith subsystem and let

Y = min{X1, X2, · · · , XN}. (3)

Then the conditional CDF of Y given N is

F (y|N) = 1− Pr (Y > y | N) = 1− [1−G(y)]
N
. (4)

Therefore using (4), the unconditional CDF of the PBXIW model can be expressed as

FΘ (y) =
1

1− exp (−1)

[
1− exp

(
−
{
1− exp

[
−O2

V (y)
]}θ

)]
, (5)

with the corresponding probability density function (PDF) as

fΘ (y) =
2θbc

1− exp (−1)

y−(b+1)
[
1−∆V (y)

]−3

exp

[
2
(
a 1
y

)b

+O2
V (y)

]
{
1− exp

[
−O2

V (y)
]}θ−1

exp

({
1− exp

[
−O2

V (y)
]}θ

) . (6)

The hazard rate function (HRF) of the new model can be calculated via f(y)/ [1− F (y)]. For θ = 1, the PBXIW
model will reduce to Poisson Rayleigh IW (PRIW) model. For c = 1, the PBXIW model will reduce to the four
parameter PBXIW. For b = 2, the PBXIW model will reduce to PBXIR model. For a = 1, the PBXIW model
will reduce to PBXIEx model. For θ = 1, b = 2 the PBXIW model will reduce to PRIR model. For θ = a = 1,
the PBXIW model will reduce to PRIEx model. For θ = c = 1, b = 2 the PBXIW model will reduce to the two
parameter PRIR model. For θ = c = a = 1, the PBXIW model will reduce to the two parameter PRIEx model.
For c = 1, b = 2 the PBXIW model will reduce to the three parameter PBXIR model. For c = a = 1, the PBXIW
model will reduce to the three parameter PBXEx model. The PDF of the new model can be right skewed and
unimodal with symmetric and asymmetric shapes (see Figure 1) also it can be left skewed (see Table 1). The
HRF of the new model can be decreasing-constant-increasing (U-shape or bathtub shape), increasing-constant-
increasing, increasing, upside down-bathtub, monomaniacal decreasing, upside down-increasing, monomaniacal
increasing and upside down (see Figure 2).

Recently, many researchers have been keen to derive new probability distributions, but they have taken care of
some applied aspects in practical fields such as insurance and actuarial science, and we mention them, for example,
see Mohamed et al. ([78], [79] and [81]). While others were concerned with discretizing the continuous probability
distributions (continuous G families of probability distributions) and applying the new discrete distributions
(discrete G families of probability distributions) to different count and zero-inflated data, for more details see
Aboraya et al. [2], Yousof et al. [107], Ibrahim et al. [56], Eliwa et al. [44] and Chesneau t al. [34]. By examining
the statistical literature in the field of statistical hypothesis tests, we find that there are many practical applications
for commonly used tests and new ones using many of the new probability distributions. For example, many new
useful goodness-of-fit tests for right censored validation such as the Nikulin-Rao-Robson goodness-of-fit test and
modified Nikulin-Rao-Robson goodness-of-fit test are considered by Ibrahim et al. [61], Goual et al. ([48], [49]),
Mansour et al. ([72], [73], [74], [75], [76], [77]), Yadav et al. [98], Goual and Yousof [47], and Ibrahim et al. [54]
among others. However, the Bagdonavičius-Nikulin goodness-of-fit test and the modified Bagdonavičius-Nikulin
goodness-of-fit test are considered by Aidi et al [7], Ibrahim et al. [55], Yousof et al. ([100], [105] and [102]).

Recent developments in statistical modeling have introduced innovative distributions and methodologies that
align well with the potential applications of the PBXIW distribution. Ahmed et al. [4] developed a framework for
amputated life-testing using extended Dagum percentiles, emphasizing the role of advanced distributions in life-
testing and group inspection plans. Similarly, the PBXIW distribution can be tailored to model failure times under
group inspection schemes, optimizing sample sizes and analyzing termination time ratios in reliability studies.
Khan et al. [?] proposed a heavy-tailed Lomax model for extreme-value applications, incorporating peaks-over-
random-threshold Value-at-Risk (VaR) and mean-of-order-p analysis. These approaches highlight the importance
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Figure 1. Plots of the new PDF for selected values of the parameter.

of heavy-tailed distributions in risk modeling, which directly connects to PBXIW’s ability to capture extreme
values and provide effective tools for financial risk management and insurance claims analysis. The work of Abiad
et al. [1] on copula-based reliability applications using a new Fisk probability model underscores the importance of
modeling dependencies between variables in reliability analysis. PBXIW could be extended to incorporate copula-
based frameworks, enabling the modeling of dependent reliability systems and joint risk scenarios in engineering
and applied sciences. Alizadeh et al. [18] introduced a weighted Lindley model for analyzing extreme historical
insurance claims. This focus on extreme-value modeling in insurance aligns with PBXIW’s potential to handle tail
risk in claims distributions. PBXIW could also address challenges in modeling and predicting extreme insurance
claims, providing robust actuarial solutions. Finally, Das et al. [35] applied the Laplace distribution for economic
peaks and Value-at-Risk analysis in real estate markets. Similar to their work, the PBXIW distribution could serve
as a flexible model for economic and financial applications, particularly in assessing risk associated with economic
extremes, such as housing price volatility.

In this paper, the PBXIW model is studied through some aspects of mathematical theory and practical
application. After showing how the new distribution was derived, we dealt with some mathematical and statistical
aspects of the new distribution, such as its distinctive statistical properties. Three-dimensional skewness and
kurtosis plots are presented to show the wide flexibility of the PBXIW model. The flexibility of the new distribution
is influenced by the degrees of the skew coefficient, kurtosis coefficient, failure rate function, and variety in the PDF
and failure rate functions. Furthermore, the usefulness and efficiency of the probability distribution in statistical
modelling are significant in this context. We looked at the novel PDF and found that it was highly flexible in these
and other ways. This inspired us to conduct a detailed analysis of this probability distribution. Different estimation
methods of are used for estimating the unknown parameters including the maximum likelihood estimation method,
the Cramér–von Mises estimation method, the bootstrapping estimation method, the Kolmogorov estimation
method and the Anderson Darling method(left-tail of the second-order). We assessed the performance of all
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Figure 2. Plots of the new HRF for selected values of the parameter.

methods via simulation study. Two real data applications are used for comparing competitive estimation methods.
We are motivated to introduce the PBXIW model for the following reasons:

1. Generating new PDF that can be ”asymmetric and right skewed with a hefty tail”, ”symmetric”. Because the
PDF for every new model is so flexible, we may use it to analyze a variety of environmental data sets.

2. Presenting some new special models with different types of HRFs, such as decreasing-constant-increasing
(U-shape or bathtub shape), increasing-constant-increasing, increasing, upside down-bathtub, monomaniacal
decreasing, upside down-increasing, monomaniacal increasing and upside down. The distribution’s elasticity
increases with the number of different failure rate types. Many practitioners may utilise the new distribution in
statistical modelling and mathematical analysis thanks to these forms, which make their work easier. We pay a lot
of attention to the issue of monitoring the failure rate function for this specific reason.

3. The degree of skew coefficient and kurtosis coefficient both affect how flexible the new distribution is.
Furthermore, the usefulness and efficiency of the probability distribution in statistical modelling are significant
in this context. We looked at the novel PDF and found that it was highly flexible in these and other ways. This
inspired us to conduct a detailed analysis of this probability distribution.
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4. Proposing new continuous models for modeling the ”bimodal and left skewed heavy tail data” and ”the
bimodal and right skewed heavy tail data”. As shown in this paper, the new model has shown a remarkable
superiority in modeling these types of data, whether ”bimodal and left skewed heavy tail data” or ”the bimodal
and right skewed heavy tail data”. As shown in this paper, the new model has shown a remarkable superiority in
modeling these types of data, whether ”bimodal and left skewed heavy tail data” or ”the bimodal and right skewed
heavy tail data”.The new distribution also showed a remarkable superiority in modeling real data, which contains
outliers. It is worth noting that the outliers family of distributions is one of the most popular families used in such
cases, and the new distribution can undoubtedly be considered a member of the outliers family.

5. In statistical modeling of the increasing hazard rate count data, the PBXIW model provides adequate results;
hence, the BXIW model is recommended for modeling the monotonically increasing hazard rate data. Moreover,
the same baseline model is also suitable for modeling the monotonically increasing-constant failure rate data with
adequate fitting.

2. Mathematical properties

2.1. Useful expansions

Using the power series, the PDF in (6) can be written as

fΘ (y) =

∞∑
h=0

2θbabc (−1)
h

h! [1− exp (−1)]
y−(b+1)

exp

[
−2

(
a 1
y

)b
]

exp
[
O2

V (y)
] [

1−∆V (y)
]3 {

1− exp
[
−O2

V (y)
]}θ∗−1

. (7)

Then, if
∣∣∣Υ1

Υ2

∣∣∣ < 1 and Υ3 > 0 is a real non-integer, the following power series holds(
1− Υ1

Υ2

)Υ3−1

=

∞∑
Υ4=0

(−1)
Υ4 Γ (Υ3)

Υ4! Γ (Υ3 −Υ4)

(
Υ1

Υ2

)Υ4

. (8)

Applying (8) to (7) we have

fΘ (y) =
2θbabcy−(b+1)

[1− exp (−1)]

∞

h,i=0

(−1)
h+i

Γ (θ∗)

i! Γ (θ∗ − i)
exp

[
−2

(
a
1

y

)b
]
exp

[
− (i+ 1)O2

V (y)
]

[
1−∆V (y)

]3 . (9)

Applying the power series to the term exp
[
− (i+ 1)O2

V (y)
]
, equation (9) becomes

fΘ (y) = babcy−(b+1)
∞∑

h,i,j=0

2θ (−1)
h+i+j

Γ (θ∗) (i+ 1)
j [

∆V (y)
]2j+2

i! j! [1− exp (−1)] Γ (θ∗ − i)
[
1−∆V (y)

]2j+3
|θ∗=(1+h)θ. (10)

Consider the series expansion(
1− Υ1

Υ2

)−Υ3

|(∣∣∣Υ1
Υ2

∣∣∣<1, c>0
) =

∞∑
κ=0

Γ (Υ3 + κ)

κ!Γ (Υ3)

(
Υ1

Υ2

)κ

. (11)

Applying the expansion in (11) to (10) for the term
[
1−∆V (y)

]2j+3
, Equation (10) becomes

fΘ (y) = ∞
h,i,j,κ=0

2θc (−1)
h+i+j

(i+ 1)
j

i! j!κ! [2 (j + 1) + κ] [1− exp (−1)]

Γ (θ∗) Γ (3 + 2j + κ)

Γ (θ∗ − i) Γ (2j + 3)

×baby−(b+1) [2 (j + 1) + κ] exp

{
− [2 (j + 1) + κ]

(
a
1

y

)b
}
.
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This can be written as

fΘ (y) =

∞∑
j,κ=0

ςj,κ hc∗(y; a, b)|c∗=c[2(j+1)+κ], (12)

where

ςj,κ =
2θc (−1)

j
Γ (3 + 2j + κ)

j!κ! (1− exp (−1)) Γ (2j + 3) [2 (j + 1) + κ]

∞∑
h,i=0

(−1)
h+i

Γ (θ∗) (i+ 1)
j

i! Γ (θ∗ − i)
,

and hc∗(y; a, b) is the IW PDF with scale parameter ac1/b∗ and and shape parameter b. Similarly, the CDF of the
PBXIW model can also be expressed as

FΘ (y) =

∞∑
j,κ=0

ςj,κ Hc∗ (y; a, b) , (13)

where Hc∗ (y; a, b) is the the IW CDF with scale parameter ac1/b∗ and shape parameter b.

2.2. Some properties

The quantile function (QF) of Y, where Y ∼PBXIW (θ, c, a, b), is obtained by inverting (5) as

Q (u) = a
b

√{
− ln

[(
1 +

√
− ln

[
1− θ

√
(− ln {1− u (1− exp (−1))})

]
c−1

)]}−1

. (14)

Simulating the PBXIW r.v. is straightforward. If U is a uniform variate on the unit interval (0, 1), then the r.v.
y = Q (U) follows (6).

The rth ordinary moment of Y , say µ′
r,Y , follows from (12) as

µ′
r,Y |(r<b) = E (Y r) =

∞∑
j,κ=0

ςj,κ arc
r/b
∗ Γ (1− r/b) . (15)

Setting r = 1 in (15) gives the mean of Y as

E (Y ) |(1<b) =

∞∑
j,κ=0

ςj,κ ac
1/b
∗ Γ (1− 1/b) ,

where Γ (1 + Υ) |(Υ∈R+) = Υ!, and

Γ (Υ) =

∫ ∞

0

yΥ−1 exp (−t) dt.

The flexibility of the new distribution is influenced by the degrees of the skew coefficient, kurtosis coefficient.
Figure 3 gives some three-dimensional skewness plots. Figure 4 gives some three-dimensional kurtosis plots.
Figures 3 and 4 show the wide flexibility of the PBXIW model. In these two figures, we have explored the
skew coefficient, kurtosis coefficient numerically, and then we made 3D graphics to illustrate and highlight the
elasticity of the new distribution through these two coefficients. From Figure 3 it is clear how important and
flexible the new distribution is because the skew coefficient contains various shapes. This diversity in the shape of
the skew coefficient is important in the statistical and mathematical modeling of data. Similarly, Figure 4 shows
the diversity of the values of the kurtosis coefficient for the new distribution, and this is what gives the distribution
great importance in statistical modeling processes. The two figures also show the importance of all the parameters
of the model, and that all of these parameters directly affect the skew coefficient and the kurtosis coefficient, and
that these parameters have added to the distribution more practical importance and flexibility.
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Figure 3. Three-dimensional skewness plots.

The rth incomplete moment of Y is defined by mr,Y (y) =
∫ y

−∞ yr f(y)dy. We can write from (12)

mr,Y (y)|(r<b) = γ

(
1− r/b,

(a
t

)b
) ∞∑

j,κ=0

ςj,κ arc
r/b
∗ . (16)

Setting r = 1 in (16) gives the 1st incomplete moment of Y as

m1,Y (y)|(1<b) = γ

(
1− 1/b,

(a
t

)b
) ∞∑

j,κ=0

ςj,κ ac
1/b
∗ ,

where γ (ξ1, ξ2) is the incomplete gamma function, where
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Figure 4. Three-dimensional kurtosis plots.

γ (ξ1, ξ2) |(ξ1 ̸=0,−1,−2,...) =

∫ ξ2

0

tξ1−1 exp (−t) dt =
1

ξ1
ξξ12 {1F1 [ξ1; ξ1a+ 1;−ξ2]}

=

∞∑
κ=0

ξξ1+κ
2

(−1)
κ

κ! (ξ1 + κ)
= Γ (ξ1)− Γ (ξ1, ξ2) ,

the function 1F1 [·, ·, ·] is a called the confluent hypergeometric function and

Γ (ξ1, ξ2) =

∫ ∞

ξ2

tξ1−1 exp (−t) dt,

The moment generating function (MGF) of Y , say M(t) = E (exp (t y)), is obtained from (12) as

M(t)|(r<b) =

∞∑
j,κ,r=0

ςj,κ
tr

r!
arc

r/b
∗ Γ (1− r/b) .
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3. Estimation

In fact, the statistical literature contains many estimation methods and all of them are of interest and are appreciated
by many researchers. In this Section, different estimation methods such as the maximum likelihood estimation
method, Cramér–von Mises estimation method, the bootstrapping estimation method, Kolmogorov estimation
method and Anderson Darling method (the left-tail of the second order) are used for estimating the unknown
parameters. In this work we have neglected many of the methods of appreciation for me for their insignificance but
because we must focus our attention only on some of the most famous and efficient methods in order to be able to
compare them. But of course there are many ways that can be taken into consideration in future work. For more
methods, see Ali et al. [15], Ali et al. [14], Alizadeh et al. [20], Yousof et al. [101], El-Morshedy et al. [45] and
Yousof et al. [12].

3.1. The maximum likelihood estimation (MLE) method

A statistical method known as maximum likelihood estimation (MLE) is used to estimate the parameters of a
probability distribution that has been assumed in light of certain observed data. To do this, a likelihood function is
maximized to increase the probability of the observed data under the presumptive statistical model. The parameter
space position where the likelihood function is maximized is known as the maximum likelihood estimate. Since
its justification is understandable and flexible, maximum likelihood is a well-liked method for drawing statistical
conclusions. If the likelihood function is differentiable, then maxima can be determined using the derivative test.
For instance, the ordinary least squares estimator increases the likelihood of the linear regression model, enabling
in some cases to explicitly solve the first-order conditions of the likelihood function. However, it is frequently
necessary to employ numerical methods to ascertain the maximum of the probability function. From the perspective
of Bayesian inference, MLE is often equivalent to maximum a posteriori (MAP) estimates under a uniform prior
distribution of the parameters. When likelihood serves as the goal function in frequentist inference, MLE is a
special illustration of an extremum estimator. Consider a random sample from the PBXIW, then the log likelihood
function can be expressed as

logL = n log 2 + n log θ + n log b+ nb log a+ n log c

−n log [1− exp (−1)]− (b+ 1)

n∑
i=1

log yi − 3 log
[
1−∆V (yi)

]
+2

n∑
i=1

log∆V (yi)−
n∑

i=1

{
1− exp

[
−O2

V (yi)
]}θ

−
n∑

i=1

O2
V (yi) + (θ − 1)

n∑
i=1

log
{
1− exp

[
−O2

V (yi)
]}

.

The maximum likelihood method and its procedures are available in the literature with details. The components of
the score vector are U (Θ) = ∂ℓ

∂Θ =
(
∂ logL

∂θ , ∂ logL
∂a , ∂ logL

∂b , ∂ logL
∂c ,

)⊺
.

3.2. The Cramér–von Mises estimation (CVME) method

The CVME of the parameter vector Θ are obtained via minimizing the following expression with respect to θ, a, b
and c , where

CVM(Θ) =
1

12
n−1 +

n∑
i=1

[
FΘ (yi)− c

[1]
(i,n)

]2
,

and c
[1]
(i,n) =

2i−1
2n , then

CVM(Θ) =

n∑
i=1

[
FΘ (yi)− c

[1]
(i,n)

]2
.
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Then, CVME of the parameters θ, a, b and c are obtained by solving the following non-linear equations

n∑
i=1

{
1

1− exp (−1)

[
1− exp

(
−
{
1− exp

[
−O2

V (yi)
]}θ

)]
− c

[1]
(i,n)

}
D(θ)(yi,Θ) = 0,

n∑
i=1

{
1

1− exp (−1)

[
1− exp

(
−
{
1− exp

[
−O2

V (yi)
]}θ

)]
− c

[1]
(i,n)

}
D(a)(yi,Θ) = 0,

n∑
i=1

{
1

1− exp (−1)

[
1− exp

(
−
{
1− exp

[
−O2

V (yi)
]}θ

)]
− c

[1]
(i,n)

}
D(b)(yi,Θ) = 0,

and
n∑

i=1

{
1

1− exp (−1)

[
1− exp

(
−
{
1− exp

[
−O2

V (yi)
]}θ

)]
− c

[1]
(i,n)

}
D(c)(yi,Θ) = 0,

where D(θ)(yi,Θ) = ∂FΘ (yi) /∂θ, D(a)(yi,Θ) = ∂FΘ (yi) /∂a, D(b)(yi,Θ) = ∂FΘ (yi) /∂b and D(c)(yi,Θ) =
∂FΘ (yi) /∂c are the first derivatives of the CDF of PBXIW distribution with respect to θ, a, b and c respectively.

3.3. Bootstrapping estimation (Bootst.E) method

The wider category of resampling techniques includes bootstrapping, a form of test or measure that uses random
sampling with replacement to replicate the sampling procedure. Bootstrapping provides sample estimates with
accuracy ratings for bias, variance, confidence intervals, prediction error, and other factors. This method provides
estimate of the sample distribution for almost any statistic using random sampling techniques. One popular
choice for an approximation distribution is the empirical distribution function of the observed data. When a set
of observations can be assumed to come from a separate population with a same distribution, a few resamples
with replacement of the observed dataset can be created (and of equal size to the observed dataset). So, the
bootstrapping method is a powerful statistical technique which is useful especially when the sample size is small.
Under the normal circumstances, sample sizes of less than 40 cannot be dealt with by assuming a ”normal” or a ”t
” distribution. Bootstraping techniques work quite well with samples that have less than 40 observation. The reason
for this is that bootstrapping involves resampling. These kinds of techniques assume nothing about the distribution
of our data. Bootstrapping has become more popular as computing resources have become more readily available.
This is because for bootstrapping to be practical a computer must be used (see Efron and Tibshirani [37] and
Hesterberg [53]).

3.4. KE method

The Kolmogorov estimates (KEs) θ̂, â, b̂ and ĉ of θ, a, b and c are obtained by minimizing the function

K = max
1≤i≤n

{
i

n
− FΘ (yi:n) , FΘ (yi:n)− c

[2]
(i,n)

}
,

where c
[2]
(i,n) =

i−1
n .

3.5. Anderson Darling method-2LD (Left-Tail Second-Order)

The Anderson Darling-2LT estimates (AD2LEs) θ̂(AD2LE), â(AD2LE) , b̂(AD2LE)and ĉ(AD2LE) of θ, a, b and c are
obtained by minimizing

AD2LE (Θ) = 2

n∑
i=1

log
[
FΘ (yi:n)

]
+

1

n

n∑
i=1

2i− 1

FΘ (yi:n)
.
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Then, the parameter estimates of θ̂(AD2LE), â(AD2LE) , b̂(AD2LE)and ĉ(AD2LE) can be obtained by solving the
nonlinear equations

∂ [AD2LE (Θ)] /∂θ = 0, ∂ [AD2LE (Θ)] /∂a = 0, ∂ [AD2LE (Θ)] /∂b = 0

and

∂ [L.T. ADE (Θ)] /∂c = 0.

4. Simulation for comparing estimation methods

A numerical simulation is performed to compare the classical estimation methods. The simulation study is based
on N=1000 generated data sets from the OBLx version where n = 50, 100, 150 and 300 and

θ a b c
I 1.2 2.0 1.5 0.6
II 2.0 1.5 0.5 1.5

The estimates are compared in terms of their Average values (AVs) and mean squared errors MSEs(Θ). From
Tables 1, 2, 3 and 4 we note that the MSE(Θ) tend to zero when n increases which means incidence of consistency
property.

Table 1: AVs and the corresponding MSEs (in parentheses) for n = 50.
Parameters MLE CVM Bootstrap KE AD2LE
θ = 1.2 1.22326 1.22430 1.20642 1.18581 1.17724

(0.02515) (0.03297) (0.02939) (0.03272) (0.02980)
c = 2 2.00485 2.00670 2.00611 1.98146 1.96121

(0.01063) (0.01229) (0.01141) (0.01237) (0.03050)
a = 1.5 1.50827 1.51093 1.51001 1.47941 1.45794

(0.01675) (0.01940) (0.01801) (0.01905) (0.04443)
b = 0.6 0.60187 0.60074 0.59748 0.60995 0.59066

(0.02461) (0.00125) (0.02935) (0.00159) (0.00320)
θ = 2 2.02161 2.04038 1.79441 1.97785 1.97131

(0.06436) (0.08956) (0.09829) (0.08750) (0.07593)
c = 1.5 1.49878 1.50343 1.43937 1.48966 1.48008

(0.00386) (0.00425) (0.00706) (0.00426) (0.00935)
a = 0.5 0.49963 0.50066 0.48635 0.49760 0.49533

(0.00019) (0.00021) (0.00036) (0.00021) (0.00047)
b = 1.5 1.50758 1.50230 1.56312 1.52119 1.48829

(0.06395) (0.00669) (0.01431) (0.00808) (0.01556)
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Table 2: AVs and the corresponding MSEs (in parentheses) for n = 100.
Parameters MLE CVM Bootstrap KE AD2LE
θ = 1.2 1.21132 1.21137 1.20031 1.19149 1.18022

(0.01080) (0.01516) (0.00722) (0.01613) (0.01486)
c = 2 2.00094 2.00225 1.96626 1.99017 1.97332

(0.00517) (0.00603) (0.00614) (0.00611) (0.01479)
a = 1.5 1.50225 1.50406 1.45911 1.48899 1.46976

(0.00812) (0.00946) (0.00936) (0.00950) (0.02198)
b = 0.6 0.60170 0.60091 0.61244 0.60490 0.59279

(0.01068) (0.00061) (0.00737) (0.00072) (0.00167)
θ = 2 2.01715 2.01065 2.10828 1.97735 1.95809

(0.03361) (0.04005) (0.03948) (0.04256) (0.04747)
c = 1.5 1.50012 1.49943 1.46454 1.49234 1.47950

(0.00185) (0.00206) (0.00245) (0.00215) (0.00601)
a = 0.5 0.49998 0.49982 0.49206 0.49825 0.49529

(0.00009) (0.00010) (0.00012) (0.00011) (0.00031)
b = 1.5 1.50346 1.50420 1.59567 1.51368 1.48755

(0.03333) (0.00330) (0.01431) (0.00399) (0.00873)

Table 3: AVs and the corresponding MSEs (in parentheses) for n = 200.
Parameters MLE CVM Bootstrap KE AD2LE
θ = 1.2 1.20332 1.20197 1.17288 1.19176 1.17684

(0.00611) (0.00725) (0.00601) (0.00771) (0.00939)
c = 2 2.00020 1.99890 1.96973 1.99253 1.97345

(0.00265) (0.00299) (0.00354) (0.00308) (0.00977)
a = 1.5 1.50080 1.49925 1.46290 1.49131 1.46887

(0.00414) (0.00467) (0.00538) (0.00478) (0.01433)
b = 0.6 0.600454 0.60110 0.60746 0.60340 0.59256

(0.00610) (0.00030) (0.00533) (0.00037) (0.00098)
θ = 2 2.00978 2.01364 2.02303 1.99593 1.97617

(0.01696) (0.02088) (0.01472) (0.02201) (0.02136)
c = 1.5 1.50059 1.50179 1.50930 1.49764 1.49011

(0.00098) (0.00108) (0.00106) (0.00107) (0.00259)
a = 0.5 0.50011 0.50037 0.50204 0.49945 0.49774

(0.00005) (0.00005) (0.00005) (0.00005) (0.00013)
b = 1.5 1.50114 1.49936 1.48914 1.50469 1.48944

(0.01687) (0.00166) (0.01431) (0.00190) (0.00457)
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Table 4: AVs and the corresponding MSEs (in parentheses) for n = 250.
Parameters MLE CVM Bootstrap KE AD2LE
θ = 1.2 1.20132 1.20633 1.24601 1.19828 1.18597

(0.00430) (0.00590) (0.00655) (0.00620) (0.00768)
c = 2 1.99945 2.00252 1.99351 1.99704 1.98267

(0.00206) (0.00243) (0.00194) (0.00242) (0.00767)
a = 1.5 1.49974 1.50366 1.49229 1.49680 1.47995

(0.00322) (0.00380) (0.00302) (0.00378) (0.01133)
b = 0.6 0.60060 0.59976 0.60922 0.60168 0.59316

(0.00429) (0.00024) (0.00452) (0.00029) (0.00078)

θ = 2 2.00739 2.01055 1.88229 1.99714 1.97661
(0.01244) (0.01638) (0.02632) (0.01723) (0.02134)

c = 1.5 1.50031 1.50146 1.46312 1.49821 1.48964
(0.00074) (0.00085) (0.00209) (0.00085) (0.00281)

a = 0.5 0.50005 0.50030 0.49175 0.49958 0.49763
(0.00004) (0.00004) (0.00011) (0.00004) (0.00014)

b = 1.5 1.50115 1.49932 1.54121 1.50372 1.48821
(0.01238) (0.00131) (0.01417) (0.00150) (0.00406)

5. Real data modeling

5.1. Real data modeling for comparing competitive estimation methods

The 1st data set from Bjerkedal [31] which consists of 72 observations of survival times Guinea pigs injected with
different doses of tubercle bacilli. This set of data has received a great deal of study and analysis using many
new probability distributions, perhaps because its failure rate is increasing-constant, or perhaps because it contains
some extreme observations, and this is what prompted many researchers to study and analyze it (see, for example,
Afify et al [10] and Almazah et al. [22]).We consider the Cramér-Von Mises (W⋆) and the Anderson-Darling (A⋆)
statistis. Figure 5 gives probability-probability (P-P) plots for comparing all methods under the failure times data
set. From Table 5 (part I), the CVME method is the best method with W⋆=0.11519 and A⋆=0.65323 then MLE
method with W⋆=0.12540 and A⋆=0.69132. The 2nd data set is obtained from Smith and Naylor [95]. The data
are the strengths of 1.5 cm glass fibres, measured at the National Physical Laboratory, England. Unfortunately,
the units of measurement are not given in the paper. The data set consisting of 63 observations. Also, this set of
data has received a huge deal of study and analysis under many new probability distributions, perhaps because its
failure rate is monotonically increasing, or perhaps because it contains many extreme observations, and this is what
prompted many researchers to study and analyze it (see Ibrahim et al. [60]). Figure 6 gives P-P plots for comparing
all methods under the failure times data set. From Table 5 (part II), the Bootst.E method is the best method with
W⋆=0.56078 and A⋆=3.06719 then the KE and AD2LE methods with W⋆=0.70103, 0.70039 and A⋆=3.83111,
3.83573.
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Figure 5. P-P plots for comparing classical methods (MLE, CVME , KE, Bootst.E and AD2LE) under survival times.

Table 5: The values of estimators A⋆ and W⋆ under the two real data sets.
Estimates Statistics

Data Methods θ̂ ĉ â b̂ W∗ A∗

I MLE 9.93006 5.68762 0.001870 0.22937 0.12540 0.69132
CVME 22.20835 3.09761 0.00668 0.20829 0.11519 0.65323

KE 0.22721 2.35263 0.00126 0.00695 0.15748 0.85344
Bootst.E 7.71116 6.08833 0.00716 0.26370 0.12996 0.71170
AD2LE 4.16669 10.60278 0.00509 0.30077 0.15251 0.82587

II MLE 1.12286 2.55974 0.74915 1.62329 7.56496 45.4009
CVME 27.27497 17.20453 0.01051 0.73736 0.88524 4.82125

KE 0.22608 2.31098 0.00126 0.00714 0.70103 3.83111
Bootst.E 3.10980 46.73873 0.07795 1.33608 0.56078 3.06719
AD2LE 5.77463 8.51306 0.00478 0.47296 0.70039 3.83573

5.2. Real data modeling for comparing competitive distributions

In this section we provide two applications of the PBXIWdistribution using two real data sets. For the 1st

application we shall compare the PBXIWdistribution with related models namely: the odd log logistic IW (OLLIW)
the Marshall-Olkin IW (MOIW), Kumaraswamy IW (KIW), beta IW (BIW), Kumaraswamy Marshall-Olkin
Inverse exponential (KMOIE), Kumaraswamy Marshall-Olkin Inverse Rayleigh (KMOIR) and IW distributions.
For the 2nd application we shall compare the PBXIWdistribution with related models namely: the MOIW, BIW,
KMOIR and IW distributions. The total time test (TTT) plot, the quantile-quantile (Q-Q) plot, box plot and
nonparametric Kernel density estimation (KDE) plot for the1st real data sets are presented in Figure 7. Based
on TTT plot, the empirical HRF of 1st data sets is ”upside down then increasing”. The KDE plot is ”bimodal
and right skewed with heavy tail. The TTT, the Q-Q plot, box plot and the KDE plot for the 2nd real data sets
is presented in Figure 8. Based on TTT plot, the empirical HRF of 2nd data sets is ”increasing”. The KDE plot
is ”bimodal and left skewed with heavy tail. In order to compare the distributions, we consider some criteria like
−2ℓ̂ (Maximized Log-likelihood), C(1) (Akaike-Information-Criterion), C(4) (the consistent-Akaike-Information-
Criterion), C(2) (Bayesian-Information-Criterion) and C(3) (Hannan-Quinn-Information criterion) for the real data
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Figure 6. P-P plots for comparing classical methods (MLE, CVME , KE, Bootst.E and AD2LE) under glass fibres data.
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Figure 7. TTT, QQ, box, KDE plots for the 1st real data.

set. Tables 6 and 8 list the MLEs and their corresponding standard errors (SEs). The numerical values of −2ℓ̂,
C(1), C(2), C(3) and C(4) are listed in Tables 7 and 9, respectively. Figure 9 and 10 give the fitted PDF, fitted CDF
and fitted HRF and for the two data sets respectively. Tables 7 and 9 compares the PBXIW distribution with other
extensions of IW distribution. We note that the PBXIW distribution gives the lowest values for the C(1), C(2), C(3)

and C(4) statistics among all fitted models. So, the PBXIW distribution could be chosen as the best model.
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Figure 8. TTT, QQ, box, KDE plots for the 2nd real data.

Table 6: MLEs and their SEs for the 1st data.

Model θ̂ ĉ â b̂

PBXIW 9.93006 5.68762 0.001870 0.22937
(0.4322) (0.69) (0.0001) (0.0205)

OLLGIW 4.7989 1.3108 13.9901 0.38
(5.1585) (1.889) (55.23) (0.404)

KIW 0.6207 0.7111 45.7326 8.2723
(0.003) (0.013) (0.092) (0.979)

BIW 0.322 24.5032 19.9786 20.1331
(0.0012) (0.087) (7.246) (7.26)

KMOIE 8.8727 0.1758 68.1393 2.6258
(1.174) (0.000) (0.020) (0.512)

KMOIR 9.993 1.6788 58.4697 0.6389
(1.972) (0.001) (0.105) (0.098)

MOIW 14.9816 1.7855 13.991
(4.631) (0.193) (2.96)

IW 1.4148 54.1888
(0.003) (0.111)
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Figure 9. The fitted PDF, CDF and estimated HRF and for the first data set.

Table 7: −2ℓ̂, C(1), C(2), C(3) and C(4) for 1st data.

Model −2ℓ̂ C(1) C(2) C(3) C(4)

PBXIW 721.8 731.86 743.24 736.4 732.77
OLLGIW 779.2 787.4 796.5 791 788
Kw-IW 780.5 788.5 797.6 792.1 789.1

BIW 780.6 788.6 797.7 792.3 789.2
KMOIE 782.7 790.7 799.8 794.3 791.3

IW 791.3 795.3 799.9 797.1 795.5
MOIW 790.1 796.1 802.9 798.8 796.5
KMOIR 800.2 808.2 817.3 811.8 808.8

Table 8: MLEs and their SEs for the 2nd data.

Model θ̂ ĉ â b̂

PBXIW 1.12286 2.55974 0.74915 1.62329
(0.0043) (0.0054) (0.0541) (0.0089)

OLLGIW 28.31 0.604 3.068 0.197
(17.17) (0.201) (4.689) (0.118)

BIW 0.685 1.331 19.591 30.411
(0.181) (1.085) (18.115) (18.238)

Kw-MOIR 1 2.7498 0.5971 5.7974
(0.192) (0.079) (0.034) (0.008)

MOIW 0.4816 2.3876 1.5441
(0.252) (0.253) (0.226)

IW 2.888 1.264
(0.234) (0.059)
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Figure 10. The fitted PDF, CDF and estimated HRF and for the second data set.

Table 9: −2ℓ̂, C(1), C(2), C(3) and C(4) for 2nd data.

Model −2ℓ̂ C(1) C(2) C(3) C(4)

PBXIW 41.6 31.72 21.01 27.5 30.67
OLLGIW 46.8 54.73 63.32 58.05 55.42

BIW 61.7 69.69 78.29 73.09 70.43
Kw-MOIR 67.3 75.33 83.88 78.73 76.45

IW 93.7 97.70 102.1 99.42 97.91
MOIW 95.7 101.7 108.2 104.4 102.1

6. Concluding remarks and future points

A new extension of the inverse Weibull model is introduced and studied. Some of its statistical properties are
derived. The density of the new model can be right skewed and unimodal with symmetric and asymmetric shapes
also it can be left skewed. The failure rate function of the new model can be decreasing-constant-increasing
(U-shape or bathtub shape), increasing-constant-increasing, increasing, upside down-bathtub, monomaniacal
decreasing, upside down-increasing, monomaniacal increasing and upside down. Three-dimensional skewness and
kurtosis plots are presented to show the wide flexibility of the PBXIW model. Different estimation methods of
are used for estimating the unknown parameters. We assessed the performance of all methods via simulation study.
Two real data applications are used for comparing competitive estimation methods. For modeling the survival times
Guinea pigs, the the CVME method is the best method with W⋆=0.11519 and A⋆=0.65323 then MLE method
with W⋆=0.12540 and A⋆=0.69132. For modeling the strengths of glass fibres, the Bootst.E method is the best
method with W⋆=0.56078 and A⋆=3.06719 then the KE and AD2LE methods with W⋆=0.70103, 0.70039 and
A⋆=3.83111, 3.83573. The importance of the new model is demonstrated via two real data applications. The new
model is much better than other competitive models in modeling two real data sets.

We may employ a variety of novel beneficial goodness-of-fit tests, such the Nikulin-Rao-Robson goodness-
of-fit test and the Bagdonaviius-Nikulin goodness-of-fit test, for right censored validation as a potential future
project.Bayesian analysis can also be considered using various loss functions and making a comparison between
the loss function and each other. The new distribution can also be applied in the field of insurance and reinsurance,
especially with regard to insurance claims and data on reinsurance returns. It is also possible to create a set of
acceptance sampling plans (single, double and multiple), which are of great importance in solving problems of
results, examination and statistical quality control (see Ahmed and Yousof [5] and Ahmed et al. [6]). Bayesian
and classical inference of the reliability in the multicomponent stress-strength under the new model can also be
considered (see Rasekhi et al. [82], Saber and Yousof [84], Saber et al. [86] and Saber et al. [87]). The new
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distribution qualifies to be used in censored regression modeling processes and their consequences and future
predictions (see Korkmaz et al. ([65], [66] and [67]), Ibrahim et al. [57], Hamedani et al. [51] and Altun et al. ([24],
[25], [26], [27], [28] and [23])).

Finally, the new distribution is flexible enough and it is expected that many researchers will be motivated to
derive more bivariate and multivariate distributions accordingly. Derivation of more bivariate and multivariate
distributions helps us and researchers in applied fields to facilitate statistical and mathematical modeling of second
variable and multivariate data. In fact, data is available in binary or multivariate form, because natural phenomena
are often complex and many variables are intertwined with each other. Recently, many bivariate and multivariate
distributions have been presented using the copula methods, and the copulas in general are mathematical functions
from which more than one bivariate (or multivariate) versions of the same distribution can be derived. Given the
limited space in this work, we will mention some of these works, and for more details see Salah et al. ([88]), Al-
babtain et al. [8], Ali et al. ([13] and [16]), Aboraya et al. [3], Elgohari and Yousof ([40], [41] and [42]), Saber et
al. [85], Elgohari et al. ([43]), Shehata and Yousof ([90], [91] and [92]), Shehata et al. ([93]), Hamed et al. ([50]),
Ibrahim et al. ([59]) and Chesneau et al. [33].

Future research on the PBXIW distribution can take various promising directions inspired by the referenced
works. Following Ahmed et al. [6], PBXIW can be employed in acceptance sampling plans to enhance decision-
making in quality and risk management. Inspired by Alizadeh et al. [17], statistical threshold risk analysis under
extreme stresses could be explored, particularly for insurance and natural disaster modeling. Building on Alizadeh
et al. [17] and Khedr et al. [64], PBXIW could be extended for compound risk models and applied to reinsurance
revenue and actuarial data. Survival and reliability analysis, as discussed by Loubna et al. [71] and Teghri et al. [96],
could benefit from frailty models based on PBXIW for censored and uncensored schemes under heterogeneous
data. Financial applications like Value-at-Risk (VaR) and peaks-over-threshold analysis, as highlighted by Korkmaz
et al. [69] and Aljadani et al. [21], are additional areas to explore. Drawing from Shrahili et al. [94] and Yousof et
al. [103], PBXIW can be applied to model bimodal, asymmetric, and heavy-tailed data, particularly in insurance
and automobile claims. Bayesian and non-Bayesian methods for risk and reliability estimation, inspired by Ibrahim
et al. [58], offer another potential research avenue. Investigating entropy and information measures, as emphasized
by Elbatal et al. [38], can quantify uncertainty in losses or revenues and order-p mean analysis. Extensions or
generalizations of PBXIW, incorporating skewness and kurtosis for improved modeling of left-skewed and financial
datasets, align with the works of Salem et al. [89] and Rasekhi et al. [80]. Lastly, performance assessment under
extreme values, as explored by Yousof et al. [111], can validate PBXIW in insurance and natural hazard data.
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