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Abstract The weighted XGamma distribution, a new weighted two-parameter lifespan distribution, is introduced in this
study. Theoretical characteristics of this model are deduced and thoroughly examined, including quantile function, extreme
value, moments, moment generating function, cumulative entropy, and residual cumulative. Some classical estimation
methods such as the the maximum likelihood, weighted least square, Anderson Darling and Cramer-von-Mises are
considered. A simulation experiments are performed to compare the estimation methods. Four real-life data sets is finally
examined to demonstrate the viability of this model. Four key risk indicators are defined and analyzed under the maximum
likelihood method. A risk analysis for the exceedances of flood peaks is presented.
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1. Introduction

The risk exposure is an actuarial measurement of the possible loss that could occur in the future as a result of a
particular action or occurrence. Risks are frequently ranked according to their likelihood of happening in the future
multiplied by the potential loss if they did, as part of a study of the business’s risk exposure. Ranking the likelihood
of probable losses in the future helps the business distinguish between minor and large losses. Speculative risks
frequently lead to losses like compliance slip-ups, brand deterioration, security breaches, and liability problems.
Due to [41], the risk exposure (RiE(·)) can be calculated from

RiE (·) = Pr (·)× TL (·) , (1)

where Pr (·) is often derived from historical data, expert judgment, or probabilistic models. It represents the
likelihood that a specific event, such as a cyber-attack or natural disaster, will occur, and TL (·) could be calculated
using actuarial methods, historical loss data, or predictive modeling. It reflects the financial or operational impact
of the risk event. This framework can be extended to more complex risk environments, incorporating factors such
as interdependencies between risks, varying time horizons, and different forms of loss (financial, reputational, etc.).
On the other hand, considerable effort has gone into applying time series analysis or continuous distributions to
analyse historical insurance data. Recently, several actuaries have used continuous distributions, particularly ones
with hefty tails, to represent actual insurance data. In numerous practical fields, including economics, engineering,
risk management, dependability, and actuarial sciences, real data has been modelled using continuous heavy-tailed
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probability distributions. The skewedness of the insurance data sets can be left-skewed, right-skewed with hefty
tails, or unimodal right-skewed.

Probability-based distributions provide a sufficient framework for describing risk exposure. Often, this risk
exposure is summarized using a single figure or, in some cases, a small set of figures that represent the level of risk.
These figures, known as key risk indicators (KRIs), are derived from specific statistical models and serve as crucial
metrics for assessing risk. Prominent examples of work on KRIs include the studies by [7]. KRIs are essential tools
for quantifying the risk associated with various activities. They are used by organizations to provide early warnings
about rising risk exposures across different areas of the business. Unlike key performance indicators, which focus
on measuring how effectively something is being done, KRIs are concerned with signaling the potential for future
negative impacts. They help identify emerging risks that could disrupt the continuity of an activity or project. By
monitoring KRIs, organizations can proactively recognize and address potential threats before they escalate into
significant issues. This early detection allows for timely interventions that can mitigate risks, thereby protecting
the organization from adverse outcomes and ensuring the stability and success of ongoing operations.

The KRIs play a crucial role in providing actuaries and risk managers with valuable insights into a company’s
exposure to various types of risk. These indicators help quantify the level of risk by focusing on specific metrics
that reflect the potential for financial losses or other adverse outcomes. Among the most commonly analyzed KRIs
are value-at-risk (VAR), tail-value-at-risk (TVAR), also known as conditional tail expectation (CTE), conditional-
value-at-risk (CVAR), tail variance (TV), and tail mean-variance (TMV). Each of these KRIs serves a distinct
purpose in risk management (see [7]). For instance, the VAR indicator is particularly significant as it focuses on the
quantiles of the distribution of aggregate losses. VAR estimates the maximum potential loss that could occur within
a specified confidence level over a given period. This makes it a key tool for determining the amount of capital
that should be reserved to cover potential losses in adverse scenarios. By assessing the likelihood and impact of
these negative outcomes, VAR enables companies to better prepare for financial uncertainties. The TVAR and
the CVAR extend the analysis beyond VAR by focusing on the tail end of the loss distribution, which represents
extreme losses that could occur but are less likely. These indicators provide a more comprehensive understanding
of risk by considering not just the threshold of loss but also the severity of losses beyond that threshold. The
TV and TMV further enrich this analysis by incorporating the variability and mean-variance characteristics of
the tail distribution, offering deeper insights into the potential for extreme outcomes. To enhance the accuracy
and flexibility of risk assessment, a new statistical model known as the WXGa distribution is introduced in this
paper. The weighted XGamma (WXGa) model is designed to provide a better fit for real-life data, especially when
analyzing the tail behavior of distributions, which is critical for accurately estimating these KRIs. By applying the
WXGa model, actuaries and risk managers can gain a more nuanced understanding of risk exposure, leading to
more informed decision-making and improved risk management strategies. This paper explores the properties of
the WXGa distribution and demonstrates its effectiveness in modeling risk by applying it to real-life data sets. The
results suggest that the WXGa model offers a superior alternative to existing models, particularly when it comes to
accurately estimating KRIs and preparing for potential financial risks.

In the manufacturing sector, it is a standard procedure for finished products to undergo a thorough screening
inspection before they are dispatched to customers. During this inspection, each product is evaluated to determine
whether it meets predefined performance standards, which are typically defined by specific tolerance limits. On the
other hand, if a product does not conform to these standards, meaning it falls outside the specified tolerance limits,
it is usually not accepted for delivery. Instead, the product is either rejected and discarded as scrap, or it is sent
back for rework in an attempt to bring it up to the required standards. This quality control process is crucial for
ensuring that only products that meet the specified criteria reach the customers, thereby maintaining the integrity
and reliability of the manufacturing process. In this case, the actual distribution to the customer is truncated. For
such purposes, the tracated version are presented. However, when specifying the likelihood of events as they are
observed and noted, weighted distributions naturally develop by adjusting the likelihood that events will really
occur while taking into account the techniques of ascertainment. Making these tweaks could prevent incorrect
conclusions from developing.
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Recently, [29] explore the Burr type-X Pareto distribution, focusing on its properties and applications in finance.
They provide insights into estimating the VAR using this distribution. The study highlights its utility in risk
management. [45] introduce the odd log-logistic Weibull family, applying it to regression and financial risk
models. Their work addresses the need for flexible models in risk assessment and prediction. [23] present a new
compound Lomax model, emphasizing its properties and use in risk analysis with negatively skewed insurance
claims data. The study explores copulas and modeling techniques for improved risk assessment. [50] develop an
asymmetric density model for risk claim-size data, focusing on prediction and applications with bimodal data.
Their work addresses challenges in modeling complex risk data. [1] propose a novel G family of distributions
for single acceptance sampling plans, highlighting its applications in quality control and risk decisions. The study
offers a new approach to sampling and risk management. [60] introduce a new reciprocal Weibull extension for
modeling extreme values, with a focus on risk analysis in insurance data. Their model improves extreme value
modeling and risk estimation. [25] compare Bayesian and non-Bayesian methods for risk analysis under left-
skewed insurance data. They introduce a compound reciprocal Rayleigh extension, enhancing risk assessment
techniques. [61] analyze the bimodal heavy-tailed Burr XII model for insurance data, exploring various methods
for risk estimation and analysis. Their work provides a comprehensive approach to modeling heavy-tailed risks.
[63] propose a novel model for quantitative risk assessment using bimodal and symmetric data. The study focuses
on improving risk modeling and assessment under diverse claim-size data. [27] develop a new family of compound
probability distributions, examining their properties, copulas, and applications in reinsurance revenue data. Their
work contributes to advanced risk analysis techniques. [62] present a discrete claims-model for inflated and over-
dispersed automobile claims frequencies. Their study emphasizes applications and actuarial risk analysis for
improved claims management. [33] introduce the quasi-XGamma frailty model, addressing heterogeneity and
risk analysis for emergency care data. They focus on survival analysis and validation testing in their model.
[53] propose a Two-Parameters Lindley-Frailty Model, assessing both censored and uncensored data schemes.
Their work includes applications and validation testing for different baseline models, they also presented some
results for risk analysis. [13] develop a new probability model for losses and revenues, incorporating entropy
analysis. Their study applies the model to value-at-risk and mean of order-P (MOOP) analyses, enhancing risk
modeling techniques. [22] present a new Lindley extension for bimodal right-skewed precipitation data, focusing on
estimation and risk assessment. Their model addresses challenges in precipitation data analysis. [3] propose a novel
XGamma extension, applying it to reinsurance data for actuarial risk analysis. The study offers a new perspective
on risk modeling in the insurance industry. [47] introduce a new Lomax extension, focusing on properties and
risk analysis under left-skewed insurance and medical data. Their work includes comprehensive goodness-of-fit
validation. [24] develop a right-skewed one-parameter distribution, emphasizing its mathematical characterization
and validation. The study applies the distribution to actuarial risk analysis and practical applications. [2] explore
the extended Gompertz model, focusing on applications, mean of order P assessment, and statistical threshold risk
analysis. Their work is based on extreme stresses data and enhances reliability assessment methods. Finally, [44]
presented a new XGamma model using the odd log-logistic G family with Bayesian and some classical estimation
methods with risk analysis and assessment under the financial reinsurance revenues data.

Weighted distributions are widely used across various disciplines, such as medicine, ecology, and reliability
engineering, to develop more accurate and relevant statistical models. These models are particularly valuable
when traditional, or standard, distributions fail to adequately describe the data at hand. In such cases, weighted
distributions offer a more flexible approach, allowing for better data modeling and more precise predictions. The
utility of weighted distributions lies in their ability to modify standard distributions in a way that accounts for the
specific characteristics of the data or the underlying processes being studied. For example, in medicine, weighted
distributions might be used to adjust for patient characteristics that affect health outcomes, while in ecology, they
might be used to account for sampling biases in wildlife studies. In reliability engineering, these distributions
can model the life expectancy of components under different stress conditions. The importance of weighted
distributions has led to extensive research in the statistical literature. Numerous studies have been conducted to
explore the properties, applications, and advantages of these distributions across different fields. These studies
have provided a foundation for the continued development of more sophisticated models that can address a wide
range of real-life challenges. One of the more recent contributions to this area of research is the introduction of
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the XGamma (XGa) distribution by [49]. The XGa distribution is a novel statistical model that has been designed
to provide a better fit for certain types of data where standard distributions might not be adequate. The flexibility
of the XGa distribution makes it particularly useful for modeling data with complex characteristics, such as those
involving heavy tails or skewness. The cumulative distribution function (CDF) and the probability density function
(PDF) of the standard XGa distribution are fundamental to understanding its behavior and applications. The CDF
provides the probability that a random variable drawn from the XGa distribution will take on a value less than
or equal to a certain threshold, while the PDF describes the likelihood of the random variable taking on specific
values within the distribution. These functions form the mathematical foundation of the XGa distribution and are
crucial for applying it to data modeling and statistical analysis. By utilizing the XGa distribution, researchers and
practitioners in various fields can enhance their ability to model complex data, leading to more accurate predictions
and better decision-making. The introduction of the XGa distribution is a significant advancement in the field of
weighted distributions, offering new opportunities for statistical modeling and analysis in a variety of applications.
The CDF and the PDF of the standard XGa are given by

Gδ(w) = 1−
(
1 +

δ w

1 + δ
+

0.5 δ2 w2

1 + δ

)
e−δ w, gδ(w) =

δ2

1 + δ
(1 + 0.5 δ w2)e−δ w, (2)

where w > 0 and δ > 0 is the shape parameter. The XGamma distribution is applied successfully to time-to-event
data set and its different properties are studied. Building on the work of [49], [?] introduced the Exponentiated
XGamma (Exp-XGa) distribution. [48] further expanded the XGamma model by developing a compound model
known as the quasi XGamma-Poisson distribution. [11] explored a new family of distributions based on Sen et
al.’s XGamma model, referred to as the XGamma G family. Additionally, [57] provided statistical validation
for the XGamma exponential model by applying the Nikulin-Rao-Robson goodness-of-fit test to both complete
and censored samples, using various estimation methods. For further insights, [8] discussed the half-logistic
XGamma distribution, [43] examined the Poisson XGamma distribution, and [55] introduced the inverse XGamma
distribution. The CDF of the WXGa is given by

Φδ,ζ(w) =
1−

[
1 + δ w

1+δ +∆δ (w)
]
e−δ w

1 +
[
1 + ζ W

1+ζ +∆ζ (w)
]
e−δ w

(3)

where

∆ς (w) =
0.5

1 + ς
ς2 w2,

w > 0 , δ > 0 and ζ > 0 are two shape parameters. The CDF in (3) is derived by compoundig two XGa random
varaibles (RVs). We denote it by W ∼WXGa(δ, ζ). The PDF and HRF are given by

ϕδ,ζ(w) =

[
δ2

1 + δ

(
1 + 0.5 δ w2

)]
e−δ w

[
1 +

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w

]
+

ζ2

1 + ζ
(1 + 0.5 ζ w2)e−ζ w

[
1−

(
1 +

δ w

1 + δ
+∆δ (w)

)
e−δ w

]
×
[
1 +

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w

]−2

, (4)

and
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η(w; δ, ζ) =
δ2

1 + δ
(1 + 0.5 δ w2)e−δ w

[
1 +

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w

]
+

ζ2

1 + ζ
(1 + 0.5 ζ w2)e−ζ w

[
1−

(
1 +

δ w

1 + δ
+∆δ (w)

)
e−δ w

]
×
[
1 +

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w

]
×
{(

1 +
δ w

1 + δ
+∆δ (w)

)
e−δ w +

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w

}
. (5)

Figure 1 gives some plots of new PDF for some value of parameters. Figure 2 provides some plots of new
HRF for some value of parameters. Based on Figure 1, The density of the WXGa model can be right-skewed with
one peak, bimodal, right-skewed without a peak, left-skewed and unimodal PDF with different shapes. Due to
Figure 2, the WXGa model’s HRF has several possible shapes, including monotonically increasing, upside-down,
bathtub-monotonically increasing, bathtub-bathtub, upside-down-increasing and reversed-J shape (monotonically
decreasing). This wide diversity of the novel PDF and its corresponding HRF gives a great advantage in statistical
modeling processes and practical applications in various fields. This is because the modeling processes and their
related preference for a model over a model is mainly related to the extent of the flexibity of the distribution.
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Figure 1. Plots of PDF for some value of parameters.

The following factors motivate us to do this work:

• The WXGa density can be right-skewed, left-skewed, bimodal, and unimodal, as well as right-skewed
without a peak. (see Figure 1). The aforementioned traits provide the new distribution with a significant
advantage in statistical modelling.
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Figure 2. Plots of HRF for some value of parameters.

• The WXGa model’s HRF has several possible shapes, including bathtub-bathtub, bathtub-monotonically
increasing, reversed-J, upside-down, monotonically increasing, and monotonically decreasing (see Figure
2). We can apply the new model to analyze a wide range of data sets thanks to the HRF’s adaptability.

• The WXGa model may be selected as the optimal distribution in the insurance and risk management
industries, particularly when modelling left skewness insurance real data.

• Since the WXGa model’s density allows for a variety of useful forms, including the left-skewed shape, it has
demonstrated its superiority in characterising the left-skewed insurance claims data.

• In field of modeling ”upside-down-bathtub”, ”bathtub”, ”bathtub” and ”upside-down-bathtub” HRF data stes,
the WXGa model in recommended.

• In the case of dealing with real data sets which have some extreme observations, the WXGa model provided
adequate results.

• For modeling the right skewed asymmetric bimodal it is better to consider a model which exhibits and include
the same shape. By comparing Figure 1 and Figure 2, we find that the new model is a strong candidate for
modeling this type of data.

The structure of the remainder of this paper is as follows: Section 2 explores various properties of the proposed
distribution. Section 3 presents the KRIs under the WXGa model. In Section 4, several classical estimation methods
are discussed, including maximum likelihood, weighted least squares, Anderson-Darling, and Cramer-von-Mises.
Section 5 features simulation experiments designed to compare these estimation methods. In Section 6, real data
sets are analyzed to demonstrate the performance of the new distribution family. Section 7 offers a risk analysis
and an application of the model. Finally, Section 8 provides concluding remarks.
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2. Main properties

In this part, we study some structural properties of the W ∼WXGa(δ, ζ). distribution.

2.1. Quantile function and asymptotics

For δ = ζ, let X ∼Exp(δ) and Z ∼Ga(3, δ), if 2u
1+u ≤ δ

1+δ , then W = X , otherwise W = Z.
For δ ̸= ζ, let V ∼ U(0, 1), then the root of equation

1−
(
1 + δ w

1+δ +∆δ (w)
)
e−δ w

1 +
(
1 + ζ x

1+ζ +∆ζ (w)
)
e−ζ w

= v (6)

has CDF (3). The asymptotic of CDF, PDF and HRF as w → 0+ are given by

Φ(w) ∼ δ w

2
, ϕ(w) ∼ δ

2
, η(w) ∼ δ

2− δ w
. (7)

Let c = min{δ, ζ}, the asymptotic of CDF, PDF and HRF asw → ∞ are given by

1− Φ(w) ∼ 0.5 c2 w2

1 + c
exp {−cw} , ϕ(w) ∼ 0.5 c3 w2

1 + c
exp {−cw} , η(w) ∼ c. (8)

These equations show the effect of parameters on tails of WXGa distribution.

2.2. Moments

Let µn = E(Wn) denote the n-th moment of W. Now we prove that all moments are exist.

Theorem 1
Let W ∼ WXGa(δ, γ), then E(Wn) < ∞.

Proof:

E(Wn) = n

∫ ∞

0

wn−1 [1− Φ(w)] dw

= n

∫ ∞

0

wn−1
(1 + γ w

1+γ + 0.5 γ2 w2

1+γ )e−γ w + (1 + δw
1+a + 0.5 δ2 w2

1+δ )e−δw

1 + (1 + γ w
1+γ + 0.5 γ2 w2

1+γ )e−γ w
dw

< n

∫ ∞

0

wn−1

[
(1 +

γ w

1 + γ
+

0.5 γ2 w2

1 + γ
)e−γ w + (1 +

δw

1 + δ
+

0.5 δ2 w2

1 + δ
)e−δw

]
dw < ∞

We define and compute

A(a1, l, a2; ζ) =

∫ ∞

0

wa1−1

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)l

e−a2 wdw

for any a1, a2 > 0 and l ∈ N . After using multinomial exapansion we can easily obtain

A(a1, l, a2; ζ) =
∑

j1,j2∈A

l!

j1!j2!(l − j1!− j2!)

(
ζ

1 + ζ

)j1 (0.5 ζ2

1 + ζ

)j2

× Γ(a1 + j1 + j2)

aa1+j1+j2
2

where
A = {(j1, j2)|0 ≤ j1 ≤ l, 0 ≤ j2 ≤ l, 0 ≤ j1 + j2 ≤ l}
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Then we can obtain

E(Wn) = n

∫ ∞

0

wn−1 [1− Φ(w)] dw

= n

∫ ∞

0

wn−1

[(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w +

(
1 +

δ w

1 + a
+∆δ (w)

)
e−δ w

]
dw

+n

∞∑
i=1

(−1)i
∫ ∞

0

wn−1(1 +
ζ w

1 + ζ
+∆ζ (w))

i+1e−ζ(i+1)wdw

+n

∞∑
i=1

(−1)i
∫ ∞

0

wn−1

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)i(
1 +

δ w

1 + δ
+∆δ (w)

)
e−(δ+ζ i)wdw

=
nΓ(n)

ζn
+

nΓ(n+ 1)

(1 + ζ)ζn
+

0.5nΓ(n+ 2)

(1 + ζ)ζn
+

nΓ(n)

δn
+

nΓ(n+ 1)

(1 + δ)δn
+

0.5nΓ(n+ 2)

(1 + δ)δn

+n

∞∑
i=1

(−1)i A(n, i+ 1, ζ(i+ 1); ζ) + n

∞∑
i=1

(−1)i A(n, i, δ + ζ i; ζ)

+n δ

∞∑
i=1

(−1)i A(n+ 1, i, δ + ζ i; ζ)

1 + δ
+ 0.5n δ2

∞∑
i=1

(−1)i A(n+ 2, i, δ + ζ i; ζ)

1 + δ
(9)

Based on theorem 1, these series equations are convergent.

2.3. Extreme Value

If W̄ = W1+...+Wn

n denote the sample mean, then using the central limit theorem,
√
n(W̄−E(W ))√

Var(W )
approaches

the standard normal distribution as n → ∞. Define extreme values Mn,W = max(W1, ...,Wn) and mn,W =
min(W1, ...,Wn). Let τ(z) = 1

min{δ,ζ} , we obtain following equations

lim
t→0

Φ(t w)

Φ(t)
= w, lim

t→∞

1− Φ(t+ w τ(t))

1− Φ(t)
= e−w.

Thus, using Theorem 1.6.2 in [32] , there must be norming constants an > 0, bn, cn > 0 and dn such that

Pr [an,W (Mn,W − bn,W ) ≤ w] → e−e−w

, Pr [cn,W (mn,W − dn,W ) ≤ W ]→1− e−w,

as n → ∞. The form of the norming constants can also be determined.

2.4. Entropy

Cumulative entropy and cumulative residual entropy (CRE) are most important measure of information. The
cumulative entropy and cumulative residual entropy of W are defined by

CE(W ) = −
∫ ∞

0

Φ(w) log [Φ(w)] dw, CRE(W ) = −
∫ ∞

0

Φ̄(w) log
[
Φ̄(w)

]
dw.

First note that

−Φ(w) log(Φ(w)) =
1−

(
1 + δ w

1+δ +∆δ (w)
)
e−δ w

1 +
(
1 + ζ w

1+ζ +∆ζ (w)
)
e−ζ w

×
{
log

[
1 +

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w

]
− log

[
1−

(
1 +

δ w

1 + δ
+∆δ (w)

)
e−δ w

]}
.
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Now we define and compute

C(d1, d2, d3; δ, ζ) =

∫ ∞

0

(
1 +

δ w

1 + δ
+∆δ (w)

)d1
(
1 +

ζ w

1 + ζ
+∆ζ (w)

)d2

e−d3 zz

Using multinomial exapnsion it is easy to show that

C(d1, d2, d3; δ, ζ) =
∑

i1,i2∈A

∑
j1,j2∈B

vi1,i2,j1,j2

d
i1+j1+2(i2+j2)+1
3

Γ(i1 + j1 + 2(i2 + j2) + 1).

where
A = {(i1, i2)|0 ≤ i1 ≤ d1, 0 ≤ i2 ≤ d1, 0 ≤ i1 + i2 ≤ d1} ,

B = {(j1, j2)|0 ≤ j1 ≤ d2, 0 ≤ j2 ≤ d2, 0 ≤ j1 + j2 ≤ d2} ,

vi1,i2,j1,j2 =
0.5i2+j2 δi1+2 i2 ζj1+2 j2 d1!d2!

i1!i2!(d1 − i1 − i2)!j1!j2!(d2 − j1 − j2)!(1 + δ)i1+i2(1 + ζ)j1+j2
(10)

then we can obtain

CE(W ) =

∞∑
k,l=0

(−1)l

k + 1
C(k + 1, l, δ(k + 1) + ζ l; δ, ζ)

−
∞∑

k,l=0

(−1)l

k + 1
C(k + 2, l, δ(k + 1) + ζ l; δ, ζ), (11)

Also after some simple algebraic calculation we can obtain

−Φ̄(w) log(Φ̄(w)) = −

(
1 + δ w

1+δ +∆δ (w)
)
e−δ w +

(
1 + ζ w

1+ζ +∆ζ (w)
)
e−ζ w

1 +
(
1 + ζ w

1+ζ +∆ζ (w)
)
e−ζ w

× log

[
1−

1− (1 + δ w
1+δ +∆δ (w))e

−δ w

1 + (1 + ζ w
1+ζ +∆ζ (w))e−ζ w

]

=

[(
1 +

δ w

1 + δ
+∆δ (w)

)
e−δ w +

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w

]
×

∞∑
i=0

1

i+ 1

[
1−

(
1 + δ w

1+δ +∆δ (w)
)
e−δ w

]i+1[
1 +

(
1 + ζ w

1+ζ +∆ζ (w)
)
e−ζ w

]i+2
(12)

Now using generalized binomial expansion we can obtain

−Φ̄(w) log(Φ̄(w)) =

[
(1 +

δ w

1 + δ
+∆δ (w))e

−δ w +

(
1 +

ζ w

1 + ζ
+∆ζ (w)

)
e−ζ w

]
×

∞∑
i,j=0

i+1∑
l=0

qi,j,l

(
1 +

δ w

1 + δ
+∆δ (w)

)l(
1 +

ζ w

1 + ζ
+∆ζ (w)

)j

e−w(δ l+ζ j)

where

qi,j,l =
(−1)l

i+ 1

(
−i− 2

j

)(
i+ 1

l

)
.
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Finally we can obtain

CRE(W ) =

∞∑
i,j=0

i+1∑
l=0

qi,j,l [C(l + 1, j, δ(l + 1) + ζ j; δ, ζ)− C(l, j + 1, δ l + ζ(j + 1); δ, ζ)] .

3. KRIs

Evaluating the exposure to market risk in a portfolio of instruments that results from changes in the underlying
variables, such as equity prices, interest rates, or currency rates, is one of the most crucial duties of the actuarial
sciences institutes. In this part, we compute some KRIs for the proposed distribution, including VAR, TVAR, TV
and TMV. These indicators are vital for maximizing a portfolio in the face of uncertainty.

3.1. VAR indicator

The VAR is frequently utilised by practitioners as a standard financial market risk in the context of actuarial
sciences. It is sometimes referred to as the quantile premium principle or the quantile risk measure.

Definition 1: Let W denote a loss random variable (LRV). The VAR of W at the 100q% level, say VaRq(W ) or
π (q), is the 100q% quantile (or percentile (QW )) of the distribution of W .

Then, based on Definition 1 for the WXGa distribution, we can simply write

Pr (W > QW ) =


1%|q=99%

5%|q=95%

...

, (13)

where QW represents the numerical suotion of (6). From (13), for a one-year time when q = 99%, the interpretation
is that there is only a very small chance (1%) that the insurance company will be bankrupted by an adverse outcome
over the next year. The quantity VAR(W ; q) does not satisfy one of the four criteria for coherence (see [54]).

3.2. TVAR risk indicator

Definition 2: Let W denote a LRV. The TVaRq of W at the 100q% confidence level is the expected loss given that
the loss exceeds the 100q% of the distribution of W , namely

TVaRq(W ) = E (W |W > π (q)) =
1

1− Φδ,ζ(π (q))

∞∫
π(q)

W fδ,ζ (W ) dx =
1

1− q

∞∫
π(q)

xϕδ,ζ(w)dx. (14)

Thus, the quantity TVaRq(W ) is an average of all VAR values above at the confidence level q, which provides
more information about the tail of the WXGa distribution. Further, it can also be expressed as

TVAR(W ; q) = VAR(W ; q) + e (VAR(W ; q)) ,

where e (VAR(W ; q)) is the mean excess loss function evaluated at the 100q%th quantile. So, TVAR(W ; q) is
larger than its corresponding VAR(W ; q) by the amount of average excess of all losses that exceed the EL(W ; q)
value of VAR(W ; q). The VAR(W ; q) has been independently developed and is also known as the conditional tail
expectation in the insurance literature ([54]). According to [52] and [6], it has also been referred to as the expected
shortfall (ES) or the tail conditional expectation (TCE).
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3.3. TV risk indicator

The TV risk indicator, introduced by [16], is a critical tool for assessing the variability of potential losses within the
tail of a distribution. Unlike other risk metrics that focus on the central tendency or expected value of losses, the TV
risk indicator specifically measures the deviation of losses from the average within the tail region of the distribution.
This focus on tail variability is particularly important in risk management because it helps to capture the extent of
extreme outcomes, which can have a significant impact on financial stability. The tail of a distribution represents the
part where extreme values, those that are rare but potentially catastrophic, occur. The TV risk indicator quantifies
how spread out these extreme losses are from their average value. A higher TV indicates greater variability and a
wider range of potential outcomes within the tail, signaling that the risk of large, unpredictable losses is substantial.
Conversely, a lower TV suggests that the extreme losses are more concentrated around their average, implying a
more predictable risk profile within the tail. [16] not only introduced the concept of the TV risk indicator but
also provided explicit formulas for calculating it under specific conditions. One of their key contributions was
the development of formulas for the TV risk indicator in the context of the multivariate normal distribution.
The multivariate normal distribution is a fundamental model in statistics that describes the behavior of multiple
interrelated variables, each following a normal distribution with some correlation structure between them. The
explicit formulas for the TV risk indicator under the multivariate normal distribution allow for precise computation
of tail variance in scenarios where multiple risk factors are at play, each influencing the overall risk profile. This is
particularly valuable in fields such as finance, insurance, and actuarial science, where risk exposure often depends
on the interaction between various market variables, such as interest rates, stock prices, and exchange rates. By
using these formulas, actuaries and risk managers can accurately measure the dispersion of extreme losses in
complex, multi-variable environments. This measurement is crucial for understanding the potential impact of rare
but severe events, enabling better risk mitigation strategies and more informed decision-making.

Definition 3: Let W denote a LRV. The TV risk indicator (TVq(W )) can be expressed as

TV(W ; q) = E
(
W 2|W > π (q)

)
− [TVAR(W ; q)]

2
, (15)

see [50] for more details.

3.4. TMV risk indicator

As a metric for the best portfolio choice, [31] developed the TMV risk indicator, which is based on the TCE risk
indicator and the TV risk indicator.

Definition 4: Let W denote a LRV. The TMV risk indicator can then be expressed as

TMV(W ; q) = TVAR(W ; q) + πTV(W ; q)|0<π<1. (16)

Then, for any LRV, TMV(W ; q) >TV(W ; q) and, for π = 1, TMV(W ; q) =TVARq(W ; q).

4. Estimation

In this Section, some classical estimation methods such as the the maximum likelihood (ML) method, weighted
least square (WLS) method, Anderson Darling (AD) method and Cramer–von–Mises (CVM) method are
considered. We obtain the maximum likelihood estimates (MLEs) of the parameters of the WXGa distribution with
complete samples . Let w1, . . . , wm denote the observed value of random sample of size m from the WXGa(δ, ζ)
distribution. The log-likelihood function for the vector of parameters Θ = (δ, ζ)T can be written as

l(Θ) =

m∑
l=1

log {g(wl; δ) [2−G(wl, ζ)] + g(wl; ζ)G(wl, δ)} − 2

m∑
l=1

log [2−G(wl, ζ)] .
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The log-likelihood can be maximized either directly by using the SAS (Procedure NLMixed) or by solving the
nonlinear likelihood equations obtained by differentiating (13). The components of the score vector U() are given
by

Uδ() =

m∑
l=1

g(δ)(wl; δ) [2−G(wl, ζ)] + g(wl; ζ)G
(δ)(wl, δ)

g(wl; δ) [2−G(wl, ζ)] + g(wl; ζ)G(wl, δ)
= 0,

Uζ() =

m∑
l=1

−g(wl; ζ)G
(b)(wl, ζ) + g(ζ)(wl; ζ)G

(δ)(wl, δ)

g(wl; δ) [2−G(wl, ζ)] + g(wl; ζ)G(wl, δ)
+ 2

n∑
i=1

G(wl, ζ)
(ζ)

2−G(wl, ζ)
. (17)

where

G(δ)(wl; δ) =
∂G(wl; δ)

∂δ
=

wl e
−δ wl(δ2 + 2δ + δ2 wl − 0.5 δ2 w2

l − 0.5 δ3 w2
l )

(1 + δ)2
,

G(ζ)(wl; ζ) =
∂G(wl; ζ)

∂ζ
=

wl e
−ζ wl(ζ2 + 2γ + ζ2 wl − 0.5 ζ2 w2

l − 0.5 ζ3 w2
l )

(1 + ζ)2
,

g(δ)(wl; δ) =
∂g(wl; δ)

∂δ
=

a

1 + δ
e−δ wl

[
2δ

1 + δ
(1 + 0.5 δ w2

l ) + 0.5δ w2
l − awl(1 + 0.5 δ w2

l )

]
,

g(ζ)(wl; ζ) =
∂g(wl; ζ)

∂ζ
=

ζ

1 + ζ
e−ζ wl

[
2γ

1 + ζ
(1 + 0.5 ζ w2

l ) + 0.5γ w2
l − ζ wl(1 + 0.5 ζ w2

l )

]
,

(18)

We can find the root of these equations with numerical methods by R software. The weighted Least Squares
estimators (WLSE) was introduced by [51]. The WLSE’s are obtained by minimizing the following functions:

WLSE(δ, ζ) =

m∑
r=1

(m+ 1)2(m+ 2)

r(m− r + 1)

(
1− (1 + δ tr:m

1+δ +
0.5 δ2 t2r:m

1+δ )e−δ tr:m

1 + (1 + ζ tr:m
1+ζ +

0.5 ζ2 t2r:m
1+ζ )e−ζ tr:m

− r

m+ 1

)2

.

Cramér–von–Mises estimator (CME) is introduced by [10]. The CMEs is obtained by minimizing the following
function:

CME(δ, ζ) =
1

12m
+

m∑
r=1

1−
(
1 + δ tr:m

1+δ +
0.5 δ2 t2r:m

1+δ

)
e−δ tr:m

1 +
(
1 + ζ tr:m

1+ζ +
0.5 ζ2 t2r:m

1+ζ

)
e−ζ tr:m

− 2r − 1

2m

2

.

The Anderson Darling estimator (ADE) was introduced by [5]. The ADE’s are obtained by minimizing the
following functions:

ADE(δ, ζ) = −m− 1

m

m∑
r=1

(2r − 1) log

 1−
(
1 + δ tr:m

1+δ +
0.5 δ2 t2r:m

1+δ

)
e−δ tr:m

1 +
(
1 + ζ tr:m

1+ζ +
0.5 ζ2 t2r:m

1+ζ

)
e−ζ tr:m


− 1

m

m∑
r=1

(2r − 1) log

1− 1−
(
1 + δ tm+1−r:m

1+δ +
0.5 δ2 t2m+1−r:m

1+δ

)
e−δ tm+1−r:m

1 +
(
1 + ζ tm+1−r:m

1+ζ +
0.5 ζ2 t2m+1−r:m

1+ζ

)
e−ζ tm+1−r:m

 .

5. Simulation study

The performance of the estimated parameters are studied in this part.

For Θ = (δ, ζ) = (0.25, 0.35), (0.3, 0.45), (0.4, 0.4), (1.5, 2), we performed simulation analysis based on the
following steps.
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1. Generate M=1000 samples of the size m = 30, 80, . . . , 480 from (3) .

2. Compute the estimates for the M=10000 samples, say
(
δ̂l, ζl

)
for l = 1, 2, ..., 1000.

3. Compute the bias and mean squared errors with following equation.

Bias(δ̂) =
1

1000

1000∑
m=1

(δ̂m − δ), Bias(ζ) =
1

1000

1000∑
m=1

(ζm − ζ),

MSE(δ̂) =
1

1000

1000∑
m=1

(δ̂m − δ)2, MSE(ζ) =
1

1000

1000∑
m=1

(ζm − ζ)2.

The estimated Bias and MSE are reported in tables 1-8. For estimating parameter δ, for all method of estimation,
biases are mostly negative and the absolute value of biases are approch to zero by increasing the sample size.
For estimating parameter ζ, for all method of estimation, biases are mostly positive and are approch to zero by
increasing the sample size. MSE for both parameters in each method are approch to zero by increasing the sample
size.

Table 1. Estimated Biases for (δ, γ) = (0.25, 0.35)

n WLSE(δ̂) CME(δ̂) MLE(δ̂) AD(δ̂) WLSE(γ̂) CME(γ̂) MLE(γ̂) AD(γ̂)
30 -0.00326 -0.014116 0.00991 -0.00661 -.00125 0 .01122 0.00820 0.00081
80 -0.01130 -0.015714 0.00678 -0.01226 0.00722 0.01438 0.00240 0.00648
130 -0.01544 -0.018587 0.00760 -0.01640 0.01023 0.01551 0.00152 0.01231
180 -0.01520 -0.018948 0.00967 -0.01598 0.01029 0.01659 0.00112 0.01170
230 -0.01410 -0.016637 0.00708 -0.01480 0.00753 0.01319 0.00104 0.00953
280 -0.01064 -0.013345 0.00196 -0.01111 0.00362 0.00910 0.00090 0.00409
330 -0.01117 -0.013613 0.00388 -0.01173 0.00671 0.01177 0.00080 0.00810
380 -0.01122 -0.013187 0.00261 -0.01175 0.00607 0.00954 0.00068 0.00738
430 -0.01226 -0.013644 0.00394 -0.01252 0.00753 0.01001 0.00064 0.00829
480 -0.01019 -0.011877 0.00032 -0.01058 0.00249 0.00558 0.00051 0.00356

Table 2. Estimated MSE for (δ, γ) = (0.25, 0.35)

n WLSE(δ̂) CME(δ̂) MLE(δ̂) AD(δ̂) WLSE(γ̂) CME(γ̂) MLE(γ̂) AD(γ̂)
30 0.00677 0.006218 0 .00820 0.00646 0.01131 0.01169 0.01418 0.00875
80 0.00319 0.003508 0.00240 0.00317 0.00835 0.00902 0.00806 0.00677
130 0.00207 0.002321 0.00152 0.00212 0.00560 0.00640 0.00479 0.00560
180 0.00147 0.001710 0.00112 0.00152 0.00425 0.00526 0.00435 0.00421
230 0.00131 0.001518 0.00104 0.00136 0.00321 0.00450 0.00324 0.00351
280 0.00112 0.001340 0.00090 0.00115 0.00279 0.00380 0.00229 0.00257
330 0.00102 0.001206 0.00080 0.00106 0.00248 0.00346 0.00191 0.00264
380 0.00090 0.001037 0.00068 0.00093 0.00235 0.00308 0.00167 0.00252
430 0.00083 0.000951 0.00064 0.00086 0.00235 0.00303 0.00163 0.00247
480 0.00068 0.000815 0.00051 0.00071 0.00160 0.00215 0.00120 0.00174

6. Application

In this section, we introduce and analyze four real-life data applications by comparing the performance of the
proposed WXGa model with several well-established models. First, we examine the four real data sets. Analyzing
real-life data can be approached through numerical methods, visual techniques, or a combination of both. To assess
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Table 3. Estimated Biases for (δ, γ) = (0.3, 0.45)

n WLSE(δ̂) CME(δ̂) MLE(δ̂) AD(δ̂) WLSE(γ̂) CME(γ̂) MLE(γ̂) AD(γ̂)
30 0.00605 -0.005465 0.01018 0.00140 0.00448 0.02302 0.03486 0.01008
80 -0.01613 -0.020787 -0.00992 -0.01721 0.01866 0.02342 0.02190 0.01828
130 -0.01310 -0.018210 -0.00626 -0.01434 0.01302 0.02281 0.00988 0.01542
180 -0.01304 -0.016813 -0.00728 -0.01422 0.00357 0.01123 0.00068 0.00610
230 -0.01336 -0.018503 -0.00880 -0.01455 0.00430 0.01553 0.00359 0.00732
280 -0.01564 -0.019477 -0.01051 -0.01657 0.01063 0.02049 0.00727 0.01311
330 -0.01431 -0.018015 -0.00944 -0.01534 0.00921 0.01795 0.00487 0.01186
380 -0.00982 -0.012689 -0.00523 -0.01051 0.00215 0.00841 -0.00168 0.00385
430 -0.01134 -0.013806 -0.00621 -0.01180 0.00540 0.01004 -0.00050 0.00633
480 -0.00811 -0.010897 -0.00418 -0.00890 -0.00070 0.00498 -0.00346 0.00124

Table 4. Estimated MSE for (δ, γ) = (0.3, 0.45)

n WLSE(δ̂) CME(δ̂) MLE(δ̂) AD(δ̂) WLSE(γ̂) CME(γ̂) MLE(γ̂) AD(γ̂)
30 0.01152 0.010925 0 .01149 0.01084 0.02260 0.02493 0.04577 0.01983
80 0.00409 0.004316 0.00302 0.00403 0.01478 0.01404 0.02060 0.01260
130 0.00272 0.003015 0.00200 0.00275 0.01041 0.01209 0.01069 0.01026
180 0.00195 0.002292 0.00149 0.00201 0.00652 0.00806 0.00575 0.00661
230 0.00162 0.002008 0.00126 0.00169 0.00511 0.00710 0.00474 0.00549
280 0.00148 0.001828 0.00109 0.00154 0.00504 0.00729 0.00513 0.00533
330 0.00136 0.001676 0.00105 0.00143 0.00417 0.00591 0.00335 0.00447
380 0.00120 0.001447 0.00095 0.00124 0.00369 0.00467 0.00328 0.00388
430 0.00103 0.001236 0.00077 0.00106 0.00340 0.00411 0.00242 0.00338
480 0.00099 0.001211 0.00077 0.00104 0.00285 0.00383 0.00249 0.00307

Table 5. Estimated for (δ, γ) = (0.4, 0.4)

n WLSE(δ̂) CME(δ̂) MLE(δ̂) AD(δ̂) WLSE(γ̂) CME(γ̂) MLE(γ̂) AD(γ̂)
30 -0.03148 -0.050046 -0.02529 -0.03801 0.05231 0.07771 0.06197 0.05628
80 -0.03018 -0.037133 -0.02736 -0.03146 0.02005 0.02848 0.01785 0.02205
130 -0.02321 -0.026867 -0.02384 -0.02334 0.01403 0.02001 0.01264 0.01265
180 -0.02502 -0.026762 -0.02688 -0.02534 0.01234 0.01325 0.01508 0.01328
230 -0.02313 -0.024900 -0.02415 -0.02310 0.00478 0.00930 0.00668 0.00432
280 -0.01980 -0.021653 -0.02285 -0.02041 0.00212 0.00559 0.00871 0.00434
330 -0.02143 -0.022297 -0.02299 -0.02128 0.00453 0.00605 0.00771 0.00468
380 -0.01980 -0.020234 -0.02128 -0.01990 0.00115 0.00146 0.00353 0.00154
430 -0.01694 -0.018054 -0.01833 -0.01687 -0.00091 0.00032 0.00222 -0.00086
480 -0.01587 -0.015987 -0.01737 -0.01580 -0.00099 -0.00054 0.00182 -0.00092

Table 6. Estimated for (δ, γ) = (0.4, 0.4)

n WLSE(δ̂) CME(δ̂) MLE(δ̂) AD(δ̂) WLSE(γ̂) CME(γ̂) MLE(γ̂) AD(γ̂)
30 0.02294 0.020996 0.04526 0.02205 0.03329 0.03847 0.03722 0.02714
80 0.00830 0.008957 0.00967 0.00864 0.01426 0.01495 0.00948 0.01321
130 0.00577 0.006227 0.00510 0.00575 0.01067 0.01201 0.00643 0.00850
180 0.00456 0.004758 0.00429 0.00461 0.00663 0.00606 0.00508 0.00672
230 0.00355 0.003828 0.00333 0.00350 0.00390 0.00600 0.00323 0.00344
280 0.00256 0.002868 0.00271 0.00267 0.00239 0.00369 0.00317 0.00333
330 0.00256 0.002679 0.00259 0.00257 0.00329 0.00388 0.00331 0.00334
380 0.00205 0.002103 0.00200 0.00207 0.00161 0.00162 0.00151 0.00165
430 0.00161 0.001762 0.00160 0.00161 0.00105 0.00136 0.00127 0.00106
480 0.00153 0.001628 0.00155 0.00153 0.00131 0.00153 0.00141 0.00132

how well theoretical distributions such as normal, uniform, exponential, logistic, beta, lognormal, and Weibull fit
the data, we use a range of graphical tools. These include the skewness-kurtosis plot (also known as the Cullen
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Table 7. Estimated for (δ, γ) = (1.5, 2)

n WLSE(δ̂) CME(δ̂) MLE(δ̂) AD(δ̂) WLSE(γ̂) CME(γ̂) MLE(γ̂) AD(γ̂)
30 0.00002 -0.005331 0.00155 -0.00702 -0.00322 -0.01190 0.02527 0.06443
80 -0.00099 -0.003341 0.00440 -0.00279 -0.00638 -0.00813 -0.00213 0.00170
130 -0.00243 -0.005064 0.00012 -0.00374 -0.00930 -0.00616 -0.00447 -0.00606
180 -0.00221 -0.004998 0.00025 -0.00348 -0.01488 -0.00878 -0.01022 -0.01112
230 -0.00186 -0.004462 0.00076 -0.00304 -0.01037 -0.00472 -0.01080 -0.00630
280 -0.00187 -0.003972 0.00064 -0.00279 -0.01280 -0.00958 -0.01321 -0.01035
330 -0.00291 -0.004881 -0.00072 -0.00388 -0.00738 -0.00366 -0.00905 -0.00448
380 -0.00358 -0.005575 -0.00113 -0.00425 -0.00768 -0.00289 -0.01079 -0.00589
430 -0.00151 -0.003060 -0.00021 -0.00214 -0.01135 -0.00770 -0.01177 -0.00950
480 -0.00227 -0.003793 -0.00124 -0.00328 -0.00953 -0.00594 -0.00935 -0.00598

Table 8. Estimated for (δ, γ) = (1.5, 2)

n WLSE(δ̂) CME(δ̂) MLE(δ̂) AD(δ̂) WLSE(γ̂) CME(γ̂) MLE(γ̂) AD(γ̂)
30 0.00371 0.003190 0.00245 0.00312 0.04049 0.01562 0.04766 1.12855
80 0.00171 0.001687 0.00144 0.00164 0.01498 0.01172 0.02166 0.02400
130 0.00105 0.001059 0.00087 0.00102 0.00902 0.00820 0.01006 0.00901
180 0.00083 0.000890 0.00071 0.00083 0.00623 0.00628 0.00786 0.00628
230 0.00067 0.000712 0.00056 0.00067 0.00516 0.00521 0.00465 0.00548
280 0.00058 0.000612 0.00048 0.00058 0.00457 0.00423 0.00451 0.00451
330 0.00051 0.000543 0.00040 0.00050 0.00455 0.00449 0.00406 0.00469
380 0.00043 0.000510 0.00035 0.00044 0.00365 0.00377 0.00273 0.00355
430 0.00044 0.000493 0.00037 0.00044 0.00350 0.00366 0.00298 0.00358
480 0.00039 0.000437 0.00031 0.00039 0.00317 0.00331 0.00269 0.00347

and Frey plot), which helps visualize how distributions compare in terms of their skewness and kurtosis. For
improved accuracy, we also use plotting and bootstrapping techniques. While Cullen and Frey’s plot provides a
reasonable overview, it is limited to comparing distributions based on squared skewness and kurtosis alone. To
address this limitation, we employ additional graphical methods. The ”nonparametric Kernel density estimation
(NKDE)” approach is used to explore the initial shape of the insurance claims density. The ”Quantile-Quantile
(Q-Q)” plot is employed to assess the normality of the data. The ”Total Time in Test (TTT)” plot helps investigate
the initial shape of the empirical hazard rate function (HRF). Finally, the ”box plot” is utilized to identify extreme
values, such as significant flood peaks. These diverse graphical techniques provide a comprehensive analysis of the
data and the fit of the WXGa model compared to other distributions.

For all examples, the criteria of the Cramér–von Mises (W∗), the criteria of the Anderson-Darling (A∗) ,
akaike Information Criterion (AIC) and bayesian information criterion (BIC) are choosed. The MLE method
was employed to estimate the parameters of the various distributions under consideration. We compared the
performance of several distributions using MLE, including the Weibull distribution (W), the Lindley distribution
(Li) introduced by [17], the generalized Lindley (GL) distribution, the power Lindley (PL) distribution proposed by
[18], the generalized exponential (GE) model from [20], the XGamma distribution, and the exponentiated XGamma
(Exp-XGa) distribution. These distributions were evaluated using four different real-life data sets:

The first data set consists of survival times (measured in months) for 48 patients who were treated with alkylating
agents for multiple myeloma. This data was sourced from [19], providing insights into the efficacy and outcomes
of the treatment. The second data set records the times between failures of secondary reactor pumps. The third data
set details the exceedances of flood peaks (in cubic meters per second, m3/s) from the Weaton River. This data was
analyzed by [12] and is valuable for assessing flood risk and managing water resources. The fourth data set includes
the failure times of 20 components, as reported by [42]. This data provides information on the longevity and
durability of various components, essential for reliability engineering. By comparing these distributions across the
diverse data sets, we aim to evaluate their performance and suitability for different types of data and applications.
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This comparison helps in determining which distribution best fits the data and provides the most accurate and
reliable parameter estimates.

Figure 3 gives the TTT plots for the four data sets, Figure 4 gives the box plots for the four data sets, Figure 5
gives the Q-Q plots for the four data sets, Figure 6 gives the NKDE plots for the four data sets and finally, Figure
7 gives the Cullen and Frey plot for the four data sets. Based on Figure 3, the emperical HRFs are ”upside-down-
bathtub”, ”bathtub”, ”bathtub” and ”upside-down-bathtub”

respectively. Based on Figure 4, all real data sets have some extreme observations except the fourth dataset, and
same results can be conducted from Figure 5. Due to Figure 6 the four real data sets are asymmetric bimodal and
right skewed.

Second, we obtained the MLE estimators for each data using R software. The estimated parameters, standard
errors and other information criteria are reported in tables 9, 10, 11 and 12. For all data sets, WXGa provide a
better fit than other models. Figure 7, Figure 8, Figure 9 and Figure 10 show the estimated PDF with histogram
and estimated hazard rate function. It is clearly that the new WXGa is a good selection for modelling bathtub and
upside down bathtub hazard rate data sets.

Table 9. Result for survival data

model estimatted parameters (se) W ∗ A∗ AIC BIC

WXGa (δ, γ) 0.283 0.079 0.038 0.275 404.89 408.64
(0.041) (0.010)

XGa (δ) 0.11 0.177 1.046 428.92 430.80
(0.009)

Li (δ) 0.078 0.094 0.566 416.29 418.16
(0.008)

expXGa (δ, γ) 0.079 0.506 0.208 1.214 415.30 419.04
(0.011) (0.092)

GL (δ, γ) 0.057 0.568 0.101 0.606 408.67 412.42
(0.009) (0.108)

PL (δ, γ) 0.184 0.747 0.069 0.431 407.13 410.88
(0.046) (0.070)

Ga (δ, γ) 1.044 23.404 0.074 0.450 406.76 410.51
(0.188) (5.369)

W (δ, γ) 0.039 1.006 0.074 0.452 406.82 410.56
(0.017) (0.111)

GE (δ, γ) 0.042 1.053 0.073 0.447 406.75 410.49
(0.007) (0.202)

7. Risk analysis and application under the exceedances of flood peaks

Risk aversion is the tendency of people to favour outcomes with low uncertainty over those with high uncertainty,
even when the average outcome of the latter is equal to or higher in monetary worth than the more definite event.
This tendency is shown in both economics and finance. However, no matter how a person tries to avoid risk,
risk is an integral part of natural phenomena and activities. For the exceedances of flood peaks data, we propose an
application for risk analysis using VAR, TVAR, TV, and TMV metrics.The risk analysis is done for some confidence
levels (q = (70%, 75%, 82%, 85%, 90%, 95%, 99%, 99.95% and 99.99%)). The four measures are estimated for the
WXGa and XGa models. The XGa model is the baseline model for this application. In this paper we employ the
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Table 10. Result for reactor pumps data

model estimatted parameters (se) W ∗ A∗ AIC BIC

WXGa (δ, γ) 3.476 0.909 0.036 0.250 66.12 68.39
(0.972) (0.178)

XGa (δ) 1.156 0.110 0.668 70.92 72.06
(0.171)

Li (δ) 0.957 0.102 0.635 72.61 73.74
(0.150)

expXGa (δ, γ) 0.951 0.677 0.111 0.673 70.56 72.84
(0.205) (0.178)

GL (δ, γ) 0.725 0.612 0.108 0.662 70.97 73.24
(0.178) (0.164)

PL (δ, γ) 1.195 0.725 0.073 0.473 69.49 71.76
(0.212) (0.112)

Ga (δ, γ) 0.745 2.115 0.078 0.501 69.51 71.78
(0.188) (0.739)

W (δ, γ) 0.765 0.807 0.065 0.431 69.02 71.29
(0.182) (0.129)

GE (δ, γ) 0.515 0.739 0.080 0.511 69.56 71.83
(0.154) (0.193)

Table 11. Result for dWeaton River data

model estimatted parameters (se) W ∗ A∗ AIC BIC

WXGa (δ, γ) 0.932 0.179 0.042 0.259 503.53 508.09
(0.193) (0.015)

XGa (δ) 0.204 0.152 0.989 534.92 537.20
(0.015)

Li (δ) 0.153 0.139 0.852 530.42 532.70
(0.012)

expXGa (δ, γ) 0.147 0.509 0.147 0.967 512.55 517.10
(0.017) (0.074)

GL (δ, γ) 0.104 0.508 0.132 0.822 509.34 513.90
(0.014) (0.076)

PL (δ, γ) 0.338 0.699 0.150 0.866 508.44 512.99
(0.055) (0.056)

Ga (δ, γ) 0.838 14.549 0.130 0.751 506.68 511.24
(0.121) (2.812)

W (δ, γ) 0.109 0.901 0.137 0.785 506.99 511.55
(0.030) (0.085)

GE (δ, γ) 0.072 0.828 0.128 0.742 506.58 511.14
(0.011) (0.123)

WXGa model to analyze the risk however there many other usefull models with chan be used for the same aim
(see [58], [34], [35], [36], [37], [38], [39], [30], [28], [14] and [45] for more details).

Table 13 reports the KRIs for the WXGa and XGa models. For the WXGa model, the quantity VAR(W ; q)
ranges from 6.107068 to 14.99099, TVAR(W ; q) ranges from 10.007352 to 17.867624, TV(W ; q) ranges from
3.077639 to 3.398732 and TMV(W ; q) ranges from 14.697092 to 18.767642. For the XGa model, VAR(W ; q)
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Table 12. Result for failure time data

model estimatted parameters (se) W ∗ A∗ AIC BIC

WXGa (δ, γ) 0.325 0.068 0.084 0.468 173.94 175.93
(0.070) (0.011)

XGa (δ) 0.089 0.192 1.120 189.47 190.47
(0.012)

Li (δ) 0.063 0.168 0.964 182.62 183.61
(0.009)

expXGa (δ, γ) 0.065 0.514 0.195 1.136 185.04 187.03
(0.014) (0.143)

GL (δ, γ) 0.047 0.601 0.168 0.963 181.38 183.37
(0.012) (0.177)

PL (δ, γ) 0.143 0.771 0.164 0.943 181.14 183.13
(0.061) (0.114)

Ga (δ, γ) 1.141 26.904 0.162 0.927 180.75 182.74
(0.322) (9.457)

W (δ, γ) 0.024 1.075 0.163 0.932 180.81 182.80
(0.018) (0.188)

GE (δ, γ) 0.035 1.148 0.162 0.927 180.76 182.75
(0.010) (0.344)
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Figure 3. The TTT plots.
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Figure 4. The box plots.

ranges from 5.004395 to 9.431434, TVAR(W ; q) ranges from 5.721463 to9.660566, TV(W ; q) ranges from
2.669988 to 2.880101, and TMV ranges from 5.861466 to 9.7665812. The conclusions follow as:

VAR(W ; q) for WXGa > VAR(W ; q) for XGa∀ q,

TVAR(W ; q) for WXGa > TVAR(W ; q) for XGa∀ q,

TV(W ; q) for WXGa > TV(W ; q) for XGa∀ q,

TMV for WXGa > TMV for XGa∀ q,

and generally
VAR(W ; q) < TVAR(W ; q) < TMV(W ; q) ∀ q.

Also, ∀ q, EL(W ; q) is evaluated where for the WXGa model the EL(W ; q) decreases as q increases and it started
with 3.900284|q = 70% and eded with 2.876634|q = 99.99%. For the XGa model the EL(W ; q) decreases as q
increases and it started with 0.717068|q = 70% and eded with 0.229132|q = 99.99%. EL(W ; q) for the WXGa
model>EL(W ; q) for the XGa model ∀ q.

Figure 11 provides three scatter plots, autocorrelation function and partial autocorrelation function for the the
exceedances of flood peaks data. Figure 12 reports the plots of VAR, TVAR, TV, TMV and EL. Each plot provides
a graphical comparison between WXGa and XGa models. Based on Figure 12, the WXGa model has a heavier
tail than the XGa distribution for all KRIs. Therefore, when measuring risk and issues of disclosure, we prefer the
model with has a heavier tail. Table 13 below provides a detailed comparison of KRIs for the exceedances of flood
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Figure 5. The Q-Q plots.

peaks data, contrasting the performance of the WXGa model with the XGa model. This comparison is conducted
across a range of confidence levels from 0.70 to 0.9999. The WXGa Model: Exhibits consistently higher VAR
values across all confidence levels. For instance, at the 0.70 confidence level, the WXGa model predicts a VAR
of 6.107068, compared to the XGa model’s 5.004395. This trend continues at higher confidence levels, with the
WXGa model showing a VAR of 14.99099 at the 0.9999 confidence level, while the XGa model’s VAR is 9.431434.
These higher VAR values suggest that the WXGa model predicts a higher potential maximum loss, reflecting
a more conservative estimate of risk exposure. Also shows higher TVAR values compared to the XGa model
across all confidence levels. For example, at the 0.70 confidence level, the WXGa model’s TVAR is 10.007352,
while the XGa model’s TVAR is 5.721463. This indicates that the WXGa model anticipates larger expected losses
conditional on exceeding the VAR threshold, reinforcing the notion of greater risk exposure in extreme scenarios.
Generally presents higher or comparable TV values than the XGa model. For instance, the WXGa model has a
TV of 3.077639 at the 0.70 confidence level, compared to the XGa models 2.669988. Higher tail variance values
in the WXGa model suggest it accounts for greater variability in extreme losses, reflecting a more comprehensive
understanding of risk distribution. Displays higher TMV values across the board. At the 0.70 confidence level, the
WXGa model’s TMV is 14.697092, while the XGa models TMV is 5.861466. This metric, which combines the
mean and variance of losses in the tail, indicates that the WXGa model captures more risk associated with extreme
events, highlighting its ability to represent severe loss scenarios more effectively.

The WXGa model shows consistently higher EL values compared to the XGa model. For example, at the 0.70
confidence level, the EL for the WXGa model is 3.900284, compared to 0.717068 for the XGa model. This suggests
that the WXGa model anticipates higher average losses when extreme flood peaks are considered, reinforcing its
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Figure 6. NKDE plots.
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Figure 7. Estimated pdf and hrf for survival data.

role in capturing more substantial risk. The WXGa model’s metrics are notably higher at more extreme confidence
levels (e.g., 0.9995 and 0.9999) compared to the XGa model. This trend indicates that the WXGa model provides
a more cautious and conservative estimate of risk, particularly in scenarios involving rare but severe flood events.
For example, the WXGa model’s VAR at 9999 is 14.99099, whereas the XGa models VAR at the same level is
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Figure 8. Estimated pdf and hrf for reactor pump data.
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Figure 9. Estimated pdf and hrf for Weaton River data.

9.431434. The consistently higher risk estimates provided by the WXGa model suggest it offers a more conservative
approach to risk assessment, particularly in the context of extreme flood peaks. This can be advantageous for risk
management and financial planning, as it ensures that potential losses are accounted for more comprehensively,
thus providing a buffer against severe events. The WXGa models ability to capture higher potential losses, greater
variability, and more substantial average losses makes it a valuable tool for understanding and preparing for extreme
risk scenarios. In fact, risk analysis is closely related to the extreme value theory, as financial or actuarial risks are
often caused by unexpected financial events. The extreme value theory includes three basic distributions, but there
are many important extensions that have contributed to expanding the theory. For more details and applications,
see [21], [26], [9], [59], [15], [63], [40] and [4].
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Figure 10. Estimated pdf and hrf for failure time data.

Table 13: KRIs under thethe exceedances of flood peaks data.
Model q VAR(W ; q) TVAR(W ; q) TV(W ; q) TMV(W ; q) EL(W ; q)

WXGa 70% 6.107068 10.007352 3.077639 14.697092 3.900284
75% 7.268941 11.141077 3.117321 14.997978 3.872136
82% 8.481329 13.676029 3.170909 15.002943 5.194700
85% 8.722445 13.984716 3.191098 15.834933 5.262271
90% 9.078533 14.156375 3.202032 16.052160 5.077842
95% 9.662075 15.734118 3.267672 16.742077 6.072043
99% 10.94994 16.352006 3.333333 17.070798 5.402066
99.95% 12.94954 17.867624 3.379876 18.046487 4.918084
99.99% 14.99099 17.867624 3.398732 18.767642 2.876634

XGa 70% 5.004395 5.721463 2.669988 5.861466 0.717068
75% 6.193295 6.988843 2.696512 7.449665 0.795548
82% 7.046690 7.543656 2.729823 7.193565 0.496966
85% 7.335459 7.998723 2.757551 8.068723 0.663264
90% 7.494305 8.991763 2.800981 8.294463 1.497458
95% 7.983715 9.055544 2.818734 8.790365 1.071829
99% 8.615416 9.109447 2.838787 9.494322 0.494031
99.95% 8.999853 9.207645 2.859864 9.3393574 0.207792
99.99% 9.431434 9.660566 2.880101 9.7665812 0.229132
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Figure 11. Scatter plots, autocorrelation function and partial autocorrelation function.
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Figure 12. Plots of the VaR, TVaR, TV and TMV.
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8. Concluding remarks

Continuous distributions are highly effective for characterizing risk exposure. Ideally, a single value or a small
set of values is used to quantify the level of risk exposure. These values are generated by specific models and are
known as key risk indicators (KRIs). To address this need, we introduce a new two-parameter lifetime distribution
called the Weighted XGamma (WXGa) distribution. This new distribution offers several valuable properties,
including moments, mean past lifetime, residual entropy, order statistics, as well as asymptotic and extreme value
characteristics. We estimate the parameters of the WXGa distribution using various methods, including Maximum
Likelihood Estimation (MLE). To ensure the reliability of these estimation methods, we analyze Bias and Mean
Squared Error (MSE) plots. These plots demonstrate that as the sample size increases, both bias and MSE approach
zero, confirming the validity of our estimation techniques. We assess the flexibility and effectiveness of the
WXGa distribution by applying it to four real-life data sets and comparing its performance with other established
distributions. The results, presented in tables and figures, show that the WXGa model consistently provides better
fits than competing models. This comparison underscores the advantages of the WXGa distribution in practical
applications. For risk analysis, particularly in the context of insurance claims data, we employ four essential risk
indicators: Value-at-Risk (VAR), Tail Value-at-Risk (TVAR), Tail Variance (TV), and Tail Mean-Variance (TMV).
These metrics are specifically developed for the WXGa model. Additionally, we present a risk analysis using these
indicators to evaluate the exceedances of flood peaks, highlighting the importance and effectiveness of the WXGa
model in assessing risk exposure.
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Statistics and Operation Research, 13(3), 617-632.

22. Hashempour, M., Alizadeh, M. and Yousof, H. M. (2023). A New Lindley Extension: Estimation, Risk Assessment and Analysis
Under Bimodal Right Skewed Precipitation Data. Annals of Data Science, 1-40.

23. Hamed, M. S., Cordeiro, G. M. and Yousof, H. M. (2022). A New Compound Lomax Model: Properties, Copulas, Modeling and
Risk Analysis Utilizing the Negatively Skewed Insurance Claims Data. Pakistan Journal of Statistics and Operation Research, 18(3),
601-631. https://doi.org/10.18187/pjsor.v18i3.3652

24. Hamedani, G. G., Goual, H., Emam, W., Tashkandy, Y., Ahmad Bhatti, F., Ibrahim, M. and Yousof, H. M. (2023). A new right-
skewed one-parameter distribution with mathematical characterizations, distributional validation, and actuarial risk analysis, with
applications. Symmetry, 15(7), 1297.

25. Ibrahim, M.; Emam, W.; Tashkandy, Y.; Ali, M.M.; Yousof, H.M. (2023). Bayesian and Non-Bayesian Risk Analysis and
Assessment under Left-Skewed Insurance Data and a Novel Compound Reciprocal Rayleigh Extension. Mathematics 2023, 11,
1593. https://doi.org/10.3390/ math11071593

26. Jahanshahi, S.M.A., Yousof, H. M. and Sharma, V.K. (2019). The Burr X Fréchet Model for Extreme Values: Mathematical Properties,
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