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Abstract We are mainly concerned with kernel-type estimators for the moment-generating function in the present paper.
More precisely, we establish the central limit theorem with the characterization of the bias and the variance for the
nonparametric recursive kernel-type estimators for the moment-generating function under some mild conditions in the
censored data setting. Finally, we investigate the methodology’s performance for small samples through a short simulation
study.
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1. Introduction

Over years ago, [29] studied some properties of kernel density estimators introduced by [1] and [36].
Nonparametric regression function estimation has been the subject of intense investigation by statisticians and
probabilists for many years, leading to the development of a large variety of methods. Kernel nonparametric
function estimation methods have long attracted a great deal of attention. We advise the reader to see the following
good references to the research literature in this area along with statistical applications consult [12], [37], [44],
[14], [4, 3] and the references therein. The moment-generating function is an important tool for several statistical
problems. Despite this importance, nonparametric estimation of the moment-generating function has received
relatively scant attention. The moment-generating function is commonly thought of as a vehicle for obtaining
the moments of a distribution. There are, however, other statistical settings in which it arises quite naturally.
[30] used the moment-generating function to develop a method of estimating the parameters of a mixture of
normal distributions. [16] used the empirical moment generating function to construct a test of separate families
of distributions. Saddlepoint methods for approximating the pdf of a sample mean involve the moment-generating
function of the underlying distribution (e.g., [31]). [10] proposed the moment-generating function to construct
statistical tests for testing composite goodness-of-fit hypotheses on the exponential and bivariate Marshall-Olkin
exponential distribution. [19] investigated the parametric estimation of the moment generating function. In the
work of [24] tests of hypothesis are constructed for the family of skew-normal distributions. The proposed tests
utilize the fact that the moment-generating function of the skew-normal variable satisfies a simple differential
equation. [20] used a system of first-order partial differential equations that characterize the moment-generating
function of the d-variate standard normal distribution to construct a class of affine invariant tests for normality
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in any dimension. This paper will consider the nonparametric recursive kernel-type estimators for the moment
generating in the censored data setting by extending the previous work [6]. Recursive estimation, was proposed
first in [34] and further investigation in many directions was given by [23], [13], [22], [26, 27], [40, 41] and [5].

This work concerns a nonparametric estimation of the recursive general kernel-type estimators for moment-
generating functions for censored data defined by the stochastic approximation algorithm. To the best of our
knowledge, the results presented here respond to a problem that has yet to be studied systematically up to the
present, which was the basic motivation of the paper.
We start by giving some notation and definitions needed for the forthcoming sections. The problem of censoring is
frequently encountered in certain statistical applications. The didactic example of censoring is arguably the study
of the survival times of patients with a given chronic disease in a medical follow-up study lasting up to a fixed
time t. If a patient is diagnosed with the disease at time s, then the survival time will be known if and only if the
patient dies before time t. If this is not the case, then the only information available is that the survival time is
equal to the censoring time t− s. In mathematical terms, the information available to the practitioner is the pair
(T,C) defined in R×R. Here T is the variable of interest, and C is a censoring variable. Throughout, we work
with a sample {(Ti, Ci)1≤i≤n} of independent and identically distributed replicæ of (T,C), n ≥ 1. Actually, in the
right censorship model, the pairs (Ti, Ci), 1 ≤ i ≤ n, are not directly observed and the corresponding information
is given by

Zi := min{Ti, Ci} and δi := 1{Ti ≤ Ci}, 1 ≤ i ≤ n,

with 1{A} standing for the indicator function of A. Accordingly, the observed sample is

Dn = {(Zi, δi), i = 1, . . . , n}.

For −∞ < t < ∞, set

F (t) = P(T ≤ t), G(t) = P(C ≤ t), and H(t) = P(Z ≤ t),

the right-continuous distribution functions of T , C and Z respectively. For example, survival data in clinical trials or
failure time data in reliability studies are often subject to censoring. More specifically, many statistical experiments
result in incomplete samples, even under well-controlled conditions. For example, clinical data for surviving most
types of disease are usually censored by other competing risks to life, which result in death, for recent references,
see [7, 8, 42]. Let T1, T2, . . . Tn be a sequence of independent random variables with common distribution function
F (x), x ∈ R and probability density function f(·) with respect to the Lebesgue measure. Suppose that the moment
generating function

C(t) =

∫
exp (xt) f(x)dx, t ∈ R,

exists on a non-degenerate subset I of R, necessarily containing the origin. Let us recall that, to construct a
stochastic algorithm, which approximates the function f at a given point x, we need to define an algorithm of
search of the zero of the function h : y → f (x)− y. Following Robbins-Monro’s procedure, this algorithm is
defined by setting f0(x) ∈ R, and, for all n ≥ 1,

fn (x) = fn−1 (x) + γnWn(x),

where Wn(x) is an observation of the function h at the point fn−1(x), and the stepsize (γn) is a sequence of positive
real numbers that go to zero. To define Wn(x), we follow the approach of [32, 33] and of [39], and we introduce a
kernel K (that is, a function satisfying

∫
R K(x)dx = 1), and a bandwidth (hn) (that is, a sequence of positive real

numbers that goes to zero), and sets Wn(x) = h−1
n δnG(Zn)

−1K
(
h−1
n [x− Zn]

)
− fn−1(x). Then, the estimator

fn to recursively estimate the function f at the point x can be written as

fn (x) = (1− γn) fn−1 (x) + γnh
−1
n δnG(Zn)

−1K
(
h−1
n [x− Zn]

)
. (1)

The function G(·) is generally unknown and has to be estimated. We will denote by Gn(·) the Kaplan-Meier
estimator of the function G(·), see [21]. Namely, adopting the conventions

∏
∅ = 1 and 00 = 1 and setting

Nn(u) =

n∑
i=1

1{Zi ≥ u},
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we have

Gn(u) = 1−
∏

i:Zi≤u

{
Nn(Zi)− 1

Nn(Zi)

}(1−δi)

, for u ∈ R.

The estimator f̂n to recursively estimate the function f at the point x

f̂n (x) = (1− γn) f̂n−1 (x) + γnh
−1
n δnGn(Zn)

−1K
(
h−1
n [x− Zn]

)
, (2)

where the stepsize (γn) is a sequence of positive real numbers that goes to zero, satisfying
∑

n≥1 γn = ∞ and∑
n≥1 γ

2
n < ∞ to ensure the almost sure convergence (see [13]), and the bandwidth (hn) is a sequence of positive

real numbers that go to zero. By using the equation (2), it follows that

Ĉn(t) = (1− γn) Ĉn−1(t) + γnh
−1
n δnGn(Zn)

−1

∫
R
exp (xt)K

(
h−1
n [x− Zn]

)
dx. (3)

Moreover, we set Ĉ0(t) = 0 and

Πn =

n∏
j=1

(1− γj) ,

then, we will investigate the following family of estimators

Ĉn(t) = Πn

n∑
i=1

γiΠ
−1
i h−1

i δiGn(Zi)
−1

∫
R
exp (xt)K

(
h−1
i [x− Zi]

)
dx. (4)

Let

C̃n(t) =

∫
R
exp (xt) f̃n (x) dx, (5)

where

f̃n (x) =
1

nhn

n∑
i=1

δi
1−Gn(Zi)

K
(
h−1
n [x− Zi]

)
.

The recursive scheme offers many advantages to recursive estimators: they are easy implementation and do not
require extensive data storage. More precisely, from a practical point of view, this arrangement provides important
savings in computational time and storage memory, which is a consequence of the estimate updating independent
of the data’s history, providing a decisive computational advantage. The main drawback of the classical kernel
estimator is using all data at each estimation step.

An outline of the remainder of the present paper is as follows. In Section 2, we will provide some notation and
assumptions that we will use in our analysis. Section 3 is devoted to the main results of the present work. The
finite sample performance of the proposed methodology is illustrated through Monte Carlo simulations in Section
4. Section 5 contains brief concluding remarks. To avoid interrupting the flow of the presentation, all mathematical
developments are relegated to Section 6.

2. Notation and assumptions

Throughout this paper, let us unburden our notation by writing

µ2(K) =

∫
R
z2K(z)dz, R(K) =

∫
R
K2 (z) dz,

and

ξ = lim
n→+∞

(nγn)
−1. (6)

First, let us set the following definition of the class of regularly varying sequences.
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Definition 1
Let (vn)n≥1 be a nonrandom positive sequence and γ ∈ R. We say that

(vn)n≥1 ∈ GS(γ) if lim
n→+∞

n

[
1− vn−1

vn

]
= γ. (7)

Condition (7) was introduced by [18] to define regularly Varying sequences (see also [2]). Noting that the acronym
GS stands for (Galambos and Seneta). Typical sequences in GS (γ) are, for b ∈ R, nγ (log n)

b, nγ (log log n)
b, and

so on. For our main theoretical results, we need the following assumptions.

Assumptions:

(A1) K : R → R is a continuous, bounded function satisfying
∫
R K (z) dz = 1, and,

∫
R zK (z) dz = 0 and∫

R z2K (z) dz < ∞.
(A2) (i) (γn)n≥1 ∈ GS(−α), with α ∈

(
1
2 , 1
]
,

(ii) (hn)n≥1 ∈ GS(−a), with a ∈ (0, α],
(iii) lim

n→+∞
(nγn) ∈

(
min{a, α−a

2 },∞
]
;

(A3) the density function f(·) is bounded and differentiable.

Discussion on the assumptions:

• Assumptions (A1) and (A3) are standard in the framework of nonparametric kernel estimation (see, for
instance, [39]).

• Assumption(A2) is widely used on the stochastic approximation algorithms (see, for instance, [26]).
• Assumption (A2) (iii) on the limit of (nγn) as n goes to infinity is usual in the framework of stochastic

approximation algorithms. It implies in particular that the limit of
(
[nγn]

−1
)

is finite.
• To understand better the use the assumption (A2), it is advised to consider the easiest sequence belonging to
GS (γ), which is nγ , one can check that for (an) ∈ GS (a) and (bn) ∈ GS (b), we have (anbn) ∈ GS (a+ b)
and

(
anb

−1
n

)
∈ GS (a− b). For a sequences vn belonging to GS (γ) with positive γ, we have limn→∞ vn =

∞ and for sequences wn belonging to GS (β) with negative β, we have limn→∞ wn = 0. Then, it comes
from (A2)(i) that, γn → 0,

∑
n γn = ∞ and

∑
n γ

2
n < ∞, the assumption (A2)(ii) ensures that hn → 0

and γn/hn → 0, the assumption (A2)(iii), is very useful for the applicability of Lemma 1.
• The intuition behind the use of such bandwidth hn belonging to GS (−a) is that the ratio hn−1/hn is equal

to 1 + a/n+ o (1/n), the application of Lemma 1 under the assumption (A2), ensures that the bias and the
variance depend only on hn and not on h1, . . . , hn.

3. Main results

Our first result is the following, which gives the bias and the variance of Ĉn(·) respectively.

Proposition 1 (Bias and Variance of Ĉn (t))
Let Assumptions (A1)-(A3) hold.

1. If a ∈
(
0, α

5

]
, then

E[Ĉn (t)]− C(t) =
h2
n

2(1− 2aξ)
t2µ2(K)

∫
R
exp (xt) f (x) dx+ o

(
h2
n

)
. (8)

2. If a ∈
(
α
5 , 1
)
, then

E[Ĉn (t)]− C(t) = o

(√
γnh

−1
n

)
. (9)
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3. If a ∈
(
0, α

5

)
, then

Var[Ĉn (t)] = o
(
h4
n

)
. (10)

4. If a ∈
[
α
5 , 1
)
, then

Var[Ĉn (t)] =
γn
hn

1

(2− (α− a) ξ)G(t)
R (K)

∫
R
exp (2tx) f (x) dx+ o

(
γn
hn

)
. (11)

The bias and the Variance of the estimator Ĉn(·) defined by the stochastic approximation algorithm (5) then
heavily depend on the choice of the stepsize (γn).

By following the proof of Proposition 1, we obtain this corollary.

Corollary 1 (Bias and Variance of C̃n (t))
Let Assumptions (A1), (A1) (i)− (ii) and (A3) hold.

E[C̃n(t)]− C(t) =
h2
n

2
t2µ2(K)

∫
R
exp (xt) f (x) dx+ o

(
h2
n

)
, (12)

and

Var[C̃n (t)] =
γn

hnG(t)
R (K)

∫
R
exp (2xt) f (x) dx+ o

(
γn
hn

)
. (13)

Now, let us state the following theorem, which gives the asymptotic normality of the generalized recursive
estimator Ĉn(·) defined in (3) and the generalized nonrecursive estimator C̃n(·) defined in (5) respectively.

3.1. Asymptotic normality

Let us now state the following theorem, which gives the weak convergence rate of the estimator Ĉn(·) defined
in (5). Below, we write Z

D
= N (µ, σ2) whenever the random Variable Z follows a normal law with expectation µ

and Variance σ2, D→ denotes the convergence in distribution and P→ the convergence in probability.

Theorem 1 (Weak pointwise convergence rate of Ĉn(·))
Let the assumptions (A1)-(A3) hold.

1. If there exists c ≥ 0 such that γ−1
n h5

n → c, then√
γ−1
n hn(Ĉn (t)− C(t))

D−→
n→+∞

N
( √

c

2(1− 2aξ)
t2µ2(K)

∫
R
exp (xt) f (x) dx,

R (K)

(2− (α− a) ξ)G(t)

∫
R
exp (2xt) f (x) dx

)
.

2. If γ−1
n h5

n → ∞, then

1

h2
n

(Ĉn (t)− C(t))
P→ t2µ2(K)

(2 (1− 2aξ))

∫
R
exp (xt) f (x) dx.

The following corollary can be easily derived from the proof of Theorem 1.

Corollary 2 (Weak pointwise convergence rate of C̃n (t))
Let the assumptions (A1), (A1) (i)− (ii) and (A3) hold.

1. If there exists c ≥ 0 such that nh5
n → c, then√

nhn(C̃n (t)− C(t))

D−→
n→+∞

N
(√

c

2
t2µ2(K)

∫
Rd

exp (xt) f (x) dx,
R (K)

G(t)

∫
R
exp (2xt) f (x) dx

)
.

Stat., Optim. Inf. Comput. Vol. 11, March 2023



BOUZEBDA ET AL. 201

2. If nh5
n → ∞, then

1

h2
n

(C̃n (t)− C(t))
P→ 1

2
t2µ2(K)

∫
R
exp (xt) f (x) dx.

Remark 1 1. The rate of convergence of the recursive estimator Ĉn (t) is
√

γ−1
n hn, while the rate of convergence

of the recursive estimator C̃n (t) is
√
nhn.

2. In the case when (γn) =
(
n−1

)
, the bias, variance and the rate of convergence of the two estimators Ĉn (t)

and C̃n (t) are the same.
3. The advantage of recursive estimators on their nonrecursive version is that their update, from a sample of

size n to one of size n+ 1, require fewer computations. This property can be generalized if we suppose that
we receive two sets of data separately, the first one of cardinal n1 smaller or equal to n− 1 and the second
set of cardinal n− n1. We infer from (5) that,

Ĉn(t) =

n∏
j=n1+1

(1− γj) Ĉn1
(t)

+

n−1∑
k=n1

 n∏
j=k+1

(1− γj)

 γkh
−1
k δkGn(Zk)

−1

∫
R
exp (xt)K

(
x− Zk

hk

)
dx.

= α1Ĉn1
(t) +

n−1∑
k=n1

βkγkh
−1
k δkGn(Zk)

−1

∫
R
exp (xt)K

(
x− Zk

hk

)
dx,

where α1 =
∏n

j=n1+1 (1− γj) and βk =
∏n

j=k+1 (1− γj). Then the proposed estimator can be viewed as a
linear combination of two estimators, which improves the computational cost significantly.

4. Simulation results

In this section, series of experiments are conducted to examine the performance of the proposed estimators given
in (5). The computing program codes are implemented in R. More precisely, we consider the case of drawing i.i.d.
univariate random samples Xi, i = 1, . . . , n. We consider the exponential E(1) for which C(t) = 1/(1− t). In our
simulation study, we make use of the following kernels:

• the gaussian kernel:

K(x/h) =
1√
2π

e−x2/2h2

,

• the [15] kernel:

K(x/h) =
3

4
(1− (x/h)2)1{|x/h| ≤ 1},

• the quadratic kernel :

K(u) =
15

16

(
1− u2

)2
1{|u| ≤ 1}.

Here, h is the smoothing bandwidth. We adopt the “normal scale rule” or the rule-of-thumb method, see for instance
[38], to select the bandwidth, i.e., we chose h to be αhσ̂(X)n−1/5 where αh is some positive constant and σ̂(X) is
the standard deviation of X . These frameworks allow us to examine the finite sample properties of our estimators
in (5). To this end, we compute our estimators for each of the three kernels presented above and some values of αh

and n ∈ {100, 250, 500, 1000}. The parameter αh is calculated by minimizing the L2 distance between fn(·) and
f(·), i.e.,
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Figure 1. The local MSE of C̃n(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.18 in (a), the Epanečnikov kernel with αh = 0.37 in (b) and the quadratic kernel with αh = 0.44 in (c).
Complete data.

arg min
αh∈A

ℓ∑
i=1

(fn(ti)− f(ti))
2,

where A is an appropriately chosen set. In our simulation A = [0, 001, 10]. We have chosen the uniform
discretization t1, . . . , tℓ with ℓ = 50 of [−0, 10, 0, 10]. The choice of αh is not optimal since we are choosing this to
minimize the distance between the densities rather than between the moment-generating functions. This choice is
sufficient for our needs. The flexibility of this choice is due to the rule-of-thumb method. For the sake of effective
calculations of these measures, the theoretical density can be replaced by the empirical counterparts based, for
example, on 10000 simulations. For each setting, we consider three local measures are given for a given t and for
any estimate (say C̃n(t)), let

- the (local) bias: Bias(t) := E
[
C̃n(t)

]
− C(t),

- the (local) variance: Var(t) := E
[(

C̃n(t)− E
[
C̃n(t)

])2]
,

- the (local) mean square-error: MSE(t) := E
[(

C̃n(t)− C(t)
)2]

.

The same remark that C(t) can be replaced by the empirical counterparts based, for example, on 10000 simulations.
We will consider different intensities of censoring in the sample. The desired censoring rates (proportions) (cr) are
5%, 10% or 30%.
Notice that, as in any other inferential context, the greater the sample size is, the better the performance is. Simple
inspection of the results reported in the Figures 1, 3, 5 and 7 show local MSE for C̃n(t)), while Figures 2, 4, 6 and
8 show local MSE for Ĉn(t) allows us to deduce that large values of the sample size n gives smaller MSE. Figures
9, 11, 13 and 15, show local variance results for C̃n(t)), Figures 10, 12, 14 and 16, show local variance results
for Ĉn(t) display the results for the bias and the variance for the nonrecursive and the recursive estimators. As in
the results for the MSE, we have good performance of the estimators for the normal distribution. From figures, the
best results are obtained when the data is complete, and the results in the censoring case are satisfactory when the
censoring rate is moderate 5%, 10% and 30% and the performance deteriorates when the censoring rate increase.
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Figure 2. The local MSE of Ĉn(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.14 in (a), the Epanečnikov kernel with αh = 0.29 in (b) and the quadratic kernel with αh = 0.35 in (c).
Complete data.
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Figure 3. The local MSE of C̃n(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.19 in (a), the Epanečnikov kernel with αh = 0.40 in (b) and the quadratic kernel with αh = 0.48 in (c).
Censored data, cr = 0.05.

5. Conclusion

In this paper, we have considered estimating the nonparametric moment-generating function in the censored data
setting. We have investigated the asymptotic properties of the nonparametric recursive kernel-type estimators
for the moment-generating function. More precisely, we obtained the central limit theorem together with the
characterization of the bias and the Variance of these estimators under general conditions. A future research
direction would be to study the problem of estimation in nonparametric moment-generating function models as
such investigated in this work in the setting of serially dependent observations (mixing or weak dependent), which
requires nontrivial mathematics that goes well beyond the scope of the present paper. We plan to extend the current
work to some applied fields, such as psychological data.
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Figure 4. The local MSE of Ĉn(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.14 in (a), the Epanečnikov kernel with αh = 0.30 in (b) and the quadratic kernel with αh = 0.36 in (c).
Censored data, cr = 0.05
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Figure 5. The local MSE of C̃n(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.21 in (a), the Epanečnikov kernel with αh = 0.43 in (b) and the quadratic kernel with αh = 0.52 in (c).
Censored data, cr = 0.10

6. Proofs

This section is devoted to the proof of our results. The previously presented notation continues to be used in the
following.
For any distribution function (df) L(·) recall that

τL = sup{t : L(t) < 1}

be its support’s right endpoint. Further, we will denote by τF (resp. τG) the upper endpoints of F (·) (resp. of G(·)).
In the following we assume that τF < ∞, G(τF ) > 0, τH < min(τF , τG) and C is independent to (X, T ).
Now, we define the sequence (mn) by setting
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Figure 6. The local MSE of Ĉn(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.15 in (a), the Epanečnikov kernel with αh = 0.30 in (b) and the quadratic kernel with αh = 0.37 in (c).
Censored data, cr = 0.10
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Figure 7. The local MSE of C̃n(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.31 in (a), the Epanečnikov kernel with αh = 0.64 in (b) and the quadratic kernel with αh = 0.77 in (c).
Censored data, cr = 0.30

(mn) =


log logn√
γ−1
n h2

n

if log log n√
γ−1
n h6

n

= ∞,

h2
n otherwise.

(14)

Further, we consider the following notation throughout this section

Tn (t) = h−1
n δnG(Zn)

−1

∫
R
exp (xt)K

(
x−Xn

hn

)
dx,

and we use the fact that,

1{T1≤C1}φ (Z1) = 1{T1≤C1}φ (T1)
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Figure 8. The local MSE of Ĉn(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.17 in (a), the Epanečnikov kernel with αh = 0.35 in (b) and the quadratic kernel with αh = 0.43 in (c).
Censored data, cr = 0.30
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Figure 9. The local VAR of C̃n(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.18 in (a), the Epanečnikov kernel with αh = 0.37 in (b) and the quadratic kernel with αh = 0.44 in (c).
Complete data.

for all measurable function φ(·). Then, we readily obtain that

Tn (t) = h−1
n 1{Tn<Cn}G(Tn)

−1

∫
R
exp (xt)K

(
x−Xn

hn

)
dx. (15)

Let,

Cn(t) = Πn

n∑
i=1

γiΠ
−1
i h−1

i δiG(Zi)
−1

∫
R
exp (xt)K

(
h−1
i [x−Xi]

)
dx. (16)
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Figure 10. The local VAR of Ĉn(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.14 in (a), the Epanečnikov kernel with αh = 0.29 in (b) and the quadratic kernel with αh = 0.35 in (c).
Complete data.
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Figure 11. The local VAR of C̃n(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.19 in (a), the Epanečnikov kernel with αh = 0.40 in (b) and the quadratic kernel with αh = 0.48 in (c).
Censored data, cr = 0.05

The combination between (4) and (16) ensure that∣∣∣Ĉn(t)− Cn(t)
∣∣∣

= Πn

∣∣∣∣∣
n∑

i=1

Π−1
i γih

−1
i δi

[
1

Gn(Zi)
− 1

G(Zi)

]∫
R
exp (xt)K

(
h−1
i [x−Xi]

)
dx

∣∣∣∣∣
= Πn

∣∣∣∣∣
n∑

i=1

Π−1
i γih

−1
i 1{Ti<Ci}

[
1

Gn(Ti)
− 1

G(Ti)

]∫
R
exp (xt)K

(
h−1
i [x−Xi]

)
dx

∣∣∣∣∣
≤ Πn

∣∣∣∣∣
n∑

i=1

Π−1
i γih

−1
i

[
Gn(Ti)−G(Ti)

Gn(Ti)G(Ti)

]∫
R
exp (xt)K

(
h−1
i [x−Xi]

)
dx

∣∣∣∣∣
≤

supt≤τH (|Gn(t)−G(t)|)
Gn(τH)G(τH)

Πn

∣∣∣∣∣
n∑

i=1

Π−1
i γih

−1
i

∫
R
exp (xt)K

(
h−1
i [x−Xi]

)
dx

∣∣∣∣∣ .
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Figure 12. The local VAR of Ĉn(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.14 in (a), the Epanečnikov kernel with αh = 0.30 in (b) and the quadratic kernel with αh = 0.36 in (c).
Censored data, cr = 0.05.
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Figure 13. The local VAR of C̃n(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.21 in (a), the Epanečnikov kernel with αh = 0.43 in (b) and the quadratic kernel with αh = 0.52 in (c).
Censored data, cr = 0.10

Then by using the strong law of large numbers (SLLN) and the law of iterated logarithm (LIL) on the censoring
law (see formula (4.28) in [11], see also [17]), we have

sup
x∈S

∣∣∣Ĉn(t)− Cn(t)
∣∣∣ = O

(√
log log n

nh2
n

)
= o (mn) . (17)

The following simple lemma will play an instrumental role in the sequel. This section is devoted to the proof of our
results. The previously presented notation continues to be used in the following. Before giving the outlines of the
proofs, we state the following technical lemma, proved in [26], and widely applied throughout the demonstrations.
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Figure 14. The local VAR of Ĉn(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.15 in (a), the Epanečnikov kernel with αh = 0.30 in (b) and the quadratic kernel with αh = 0.37 in (c).
Censored data, cr = 0.10.
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Figure 15. The local VAR of C̃n(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.31 in (a), the Epanečnikov kernel with αh = 0.64 in (b) and the quadratic kernel with αh = 0.77 in (c).
Censored data, cr = 0.30

Lemma 1
Let (vn) ∈ GS (v∗), (γn) ∈ GS (−α), and m > 0 such that m− v∗ξ > 0 where ξ is defined in (6). We have

lim
n→+∞

vnΠ
m
n

n∑
k=1

Π−m
k

γk
vk

=
1

m− v∗ξ
. (18)

Moreover, for all positive sequence (αn) such that limn→+∞ αn = 0, and all δ ∈ R,

lim
n→+∞

vnΠ
m
n

[
n∑

k=1

Π−m
k

γk
vk

αk + δ

]
= 0. (19)

Let us underline that the application of Lemma 1 requires Assumption (A1)(iii) on the limit of (nγn) as n goes
to infinity.
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Figure 16. The local VAR of Ĉn(t) estimator for the exponential distribution. The used kernel and αh are: the gaussian
kernel with αh = 0.17 in (a), the Epanečnikov kernel with αh = 0.35 in (b) and the quadratic kernel with αh = 0.43 in (c).
Censored data, cr = 0.30.

We denote by C a constant Varying from line to line. Our proofs are organized as follows. Propositions 1 in Section
6.1, Theorem 1 in Section 6.2.

6.1. Proof of Proposition 1

We first note that we have

Ĉn(t)− C (t) = Ĉn(t)− Cn(t) + Cn(t)− C (t) . (20)

Then, it follows from (17), that the asymptotic behavior of Ĉn(t)− C (t) can be deduced from the one of
Cn (t)− C (t). Moreover, in view of (16) and (15), we can write that

E [Cn(t)]− C (t) = Πn

n∑
i=1

Π−1
i γi {E [Ti (t)]− C (t)} .

Since we have

E [Ti (t)] = E
[
h−1
i E

[
1{Ti<Ci}|Ti, Xi

]
G(Ti)

−1

∫
R
exp (xt)K

(
h−1
i [x−Xi]

)]
dx

= E
[
h−1
i

∫
R
exp (xt)K

(
h−1
i [x−Xi]

)]
dx.

Moreover, in view of (16), we infer that

Cn (t)− C (t) = (1− γn) (Cn−1 (t)− C (t)) + γn (Tn (t)− C (t))

=

n−1∑
k=1

 n∏
j=k+1

(1− γj)

 γk

(
Tk (t)− Ĉn

)
+ γn (Tn (t)− C (t))

+

[
n∏

j=1

(1− γj)

]
(C0 (t)− C (t))

= Πn

n∑
k=1

Π−1
k γk (Tk (t)− C (t)) + Πn (C0 (t)− C (t)) . (21)
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This readily implies that

E (Cn (t))− C (t) = Πn

n∑
k=1

Π−1
k γk (E (Tk (t))− C (t)) + Πn (C0 (t)− C (t)) . (22)

Taylor’s expansion with integral remainder ensures that

E [Tk (t)]− C (t) =

∫
R2

{exp (t (x+ zhk))− exp (tx)}K (z) f(x)dzdx.

=
h2
k

2
t2µ2 (K)

∫
R
exp (xt) f (x) dx+ h2

kδk (t) , (23)

where

δk (t) = h−2
k

∫
R2

f (x)K (z)

[
{exp (t (x+ zhk))− exp (tx)} − t2z2

h2
k

2
exp (xt)

]
dxdz.

We have limk→∞ δk (t) = 0. In the case a ≤ α/5, we have limn→∞ (nγn) > 2a; the application of Lemma 1 then
gives

E [Cn (t)]− C (t) =
1

2
t2µ2 (K)

∫
R
exp (xt) f (x) dx

{
Πn

n∑
k=1

Π−1
k γkh

2
k[1 + o(1)]

}
+Πn (C0 (t)− C (t))

=
1

2(1− 2aξ)
t2µ2 (K)

∫
R
exp (xt) f (x) dx

[
h2
n + o(1)

]
,

and (8) follows form the combination of (17) and (20). In the case a > α/5, we have h2
n = o

(√
γnh

−1
n

)
. Since

we have limn→∞ (nγn) > (α− a) /2, the application of Lemma 1 gives

E [Cn (t)]− C (t) = Πn

n∑
k=1

Π−1
k γko

(√
γkh

−1
k

)
+O (Πn) = o

(√
γnh

−1
n

)
,

the combination of (17) and (20) gives (9). Now, since X1, X2, . . . Xn is a sequence of independent uni-dimensional
random vectors with common distribution function F (x), we have Cov (Zk (t) , Z

′
k (t)) = 0 for k ̸= k′, then, it

comes that

Var [Cn (t)] =
Π2

n

G(t)

n∑
k=1

Π−2
k γ2

kVar [Tk (t)]

=
Π2

n

G(t)

n∑
k=1

Π−2
k γ2

k

hk

[∫
R

{∫
R
exp (t (x+ zhk))K (z) dz

}
×
{∫

R
exp (t (x+ z′hk))K (z′) dz′

}
f (x) dx

−hk

(∫
R2

K (z) exp (t (x− zhk)) f (x− zhk) dxdz

)2
]

=
Π2

n

G(t)

n∑
k=1

Π−2
k γ2

k

hk

[
R (K)

∫
R
exp (2xt) f (x) dx+ νk (t)− hkν̃k (t)

]
,

Stat., Optim. Inf. Comput. Vol. 11, March 2023



212 NONPARAMETRIC MOMENT GENERATING FUNCTION UNDER CENSORED DATA

where

νk (t) =

∫
R

{∫
R
{exp (t (x+ zhk))− exp (xt)}K (z) dz

}
×
{∫

R
{exp (t (x+ z′hk))− exp (xt)}K (z′) dz′

}
f (x) dx

ν̃k (t) =

(∫
R2

exp (t (x+ zhk))K (z) f (x) dxdz

)2

.

In view of (A3), we have limk→∞ νk (t) = 0 and limk→∞ hkν̃k (t) = 0, we let εk (t) = νk (t)− hkν̃k (t), we
have limk→∞ εk (t) = 0. In the case a ≥ α/5, we have limn→∞ (nγn) > (α− a) /2, we make use of Lemma 1 to
infer that

Var [Cn (t)] =
Π2

n

G(t)

n∑
k=1

Π−2
k γ2

k

hk

[
R (K)

∫
R
exp (2xt) f (x) dx+ εk (t)

]
=

1

(2− (α− a) ξ)G(t)

γn
hd
n

[
R (K)

∫
R
exp (2xt) f (x) dx+ o (1)

]
,

the combination of (17) and (20) gives (10). When a < α/5, we have γnh
−1
n = o

(
h4
n

)
. Then, since

limn→∞ (nγn) > 2a, we apply Lemma 1 to infer that

Var [Cn (t)] = Π2
n

n∑
k=1

Π−2
k γko

(
h4
k

)
= o

(
h4
n

)
,

the combination of (17) and (20) proves (11). 2

6.2. Proof of Theorem 1

First, it comes from (21) and (22), that

Cn (t)− E [Cn (t)] = Πn

n∑
k=1

Yk (t),

where

Yk (t) = Π−1
k γk (Tk (t)− E (Tk (t))) .

Since limn→∞ (nγn) > (α− a) /2, the application of Lemma 1 ensures that

v2n =

n∑
k=1

Var (Yk (t)) =

n∑
k=1

Π−2
k γ2

kVar (Tk (t))

=
R (K)

G(t)

n∑
k=1

Π−2
k γ2

k

hn

[∫
R
exp (2xt) f (x) dx+ o (1)

]
=

R (K)

Π2
nG(t)

γn
hn

[
1

2− (α− a) ξ

∫
R
exp (2xt) f (x) dx+ o (1)

]
.

On the other hand, we have, for all p > 0,

E
[
|Tk (t)|2+p

]
= O

(
1

h
(1+p)
k

)
,
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and, since limn→∞ (nγn) > (α− a) /2, there exists p > 0 such that limn→∞ (nγn) >
1+p
2+p (α− a). Applying

Lemma 1, we get

n∑
k=1

E
[
|Yk (x)|2+p

]
= O

(
n∑

k=1

Π−2−p
k γ2+p

k E
[
|Tk (t)|2+p

])

= O

(
n∑

k=1

Π−2−p
k γ2+p

k

h
(1+p)
k

)
= O

(
γ1+p
n

Π2+p
n h

d(1+p)
n

)
,

and we thus obtain

1

v2+p
n

n∑
k=1

E
[
|Yk (x)|2+p

]
= O

([
γnh

−1
n

]p/2)
= o (1) .

Then the application of Lyapunov’s Theorem ensures that√
γ−1
n hn (Cn (t)− E [Cn (t)])

D→ N
(
0,

1

2− (α− a) ξ

R (K)

G(t)

∫
R
exp (2xt) f (x) dx

)
. (24)

Now, in the case when a > α/5, Part 1 of Theorem 1 follows from the combination of (9), (17), (20) and (24).
Moreover, in the case when a = α/5, Parts 1 and 2 of Theorem 1 follow from the combination of (8), (17), (20)
and (24). In the case a < α/5, (11) implies that

h−2
n (Cn (t)− E (Cn (t)))

P→ 0,

and the combination of (8), (17) and (20) gives Part 2 of Theorem 1.
2
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10. Csörgő, S. and Welsh, A. H. (1989). Testing for exponential and Marshall-Olkin distributions. J. Statist. Plann. Inference, 23(3),
287–300.

11. Deheuvels, P. and Einmahl, J. H. J. (2000). Functional limit laws for the increments of Kaplan-Meier product-limit processes and
applications. Ann. Probab., 28(3), 1301–1335.

12. Devroye, L. (1987). A course in characteristic estimation, volume 14 of Progress in Probability and Statistics. Birkhäuser Boston
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